
1

2

Monte Carlo fictitious play for finding pure Nash3

equilibria in identical interest games4

Seksan Kiatsupaibul5

Department of Statistics, Chulalongkorn University, Bangkok 10330, Thailand, seksan@cbs.chula.ac.th6

Giulia Pedrielli7

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona 85281,8

gpedriel@asu.edu9

Christopher Thomas Ryan10

UBC Sauder School of Business, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2,11

chris.ryan@sauder.ubc.ca12

Robert L Smith13

Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109, rlsmith@umich.edu14

Zelda B Zabinsky15

Department of Industrial and Systems Engineering, University of Washington, Seattle, Washington 98195,16

zelda@u.washington.edu17

Computing equilibria in large-scale games is an important topic in many areas. One approach is to define a

dynamic procedure such as Fictitious play (FP) that converges to a mixed Nash equilibrium (NE) in identical

interest games (among other classes) but suffers from exponential iteration complexity. Recent variants of FP

reduce the computational burden, but many still do not guarantee convergence to a pure NE. We analyze a

procedure—Monte Carlo Fictitious Play (MCFP)—that overcomes these limitations and efficiently discovers

a pure NE in finite time with probability one in identical interest games. We also show a variant of MCFP

finds a pure NE with optimal utility with probability one. Numerical results demonstrate the comparative

performance of several variants of MCFP.
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1. Introduction21

Devising simple dynamic procedures that converge to equilibria in large-scale games is an important22

topic. Concrete applications are plentiful, including routing and motion planning (Dolinskaya23

et al. 2016, Swenson et al. 2018), pedestrian flow (Ma et al. 2017), and dynamic pricing (Masuda24

and Whang 1999). Moreover, these simple dynamic procedures can be used as a basis to solve25

distributed learning and control problems (Marden and Shamma 2015, Swenson et al. 2018, 2015).26

In these scenarios, multiple agents with their own individual utilities achieve a coordinated effort27
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to minimize an overall objective by communicating with each other to arrive at a game-theoretic28

equilibrium. See Marden and Shamma (2015) for an accessible overview of the approach. In29

particular, we discuss in detail how our methods apply to the drone coordination problem in30

Swenson et al. (2018) that employs this type of approach. These methods are also used to solve31

large-scale optimization problems (Lambert et al. 2005, Garcia et al. 2007, Swenson et al. 2018, ?,32

Lei and Shanbhag 2020, Lei et al. 2020). Large-scale optimization problems can be cast as identical33

interest games by assigning subsets of the decision variables to players and set each player’s utility34

function equal to the same overall objective. In this context, a pure-strategy Nash equilibrium35

(what we refer to as a pure NE throughout) serves as a kind of locally optimal solution, since players36

cannot improve the objective function by changing the variables that they have been assigned.37

Known procedures for identifying equilibria have their inherent benefits and drawbacks.38

Fictitious play (FP), introduced in (Brown 1951), has been shown to converge to a Nash equilibrium39

(NE) in a growing number of classes of games including identical interest games (Monderer and40

Shapley 1996a), potential games (Monderer and Shapley 1996b), and 2-player games with 2 rows41

and n columns (2 by n games) (Berger 2005) (for a unified approach to convergence see (Shamma42

and Arslan 2004)). Unfortunately, this NE may be mixed, which is undesirable in many applications.43

In addition, the per iteration complexity of FP grows exponentially fast in the number of players.44

This motivated innovations to maintain the convergence properties of FP but ease its computational45

burden (Abernethy et al. 2019). Sampled fictitious play (SFP) (Lambert et al. 2005) greatly46

reduces the amount of work performed in each iteration of FP by eliminating the need to compute47

empirical expectations in each iteration. Best replies are computed using samples of plays drawn48

independently from history. However, SFP still suffers from a growing number of samples at each49

iteration. (Swenson et al. 2017) reduce this computational burden via single sample fictitious play50

(SSFP) algorithm to only requiring a single sample per iteration although, unlike SFP (Dolinskaya51

et al. (2016)), this algorithm must tune parameters appropriately. Importantly, Hannan consistency52

for the sampled fictitious play mechanism was proved in (Li and Tewari 2018) under Bernoulli53

sampling.54

These improvements on FP maintain its attractive property of converging to mixed Nash55

equilibria in identical interest games. However, these algorithms (including SSFP) are not56

guaranteed to find pure NE, but only mixed NE, which are impractical in some applications.57

Moreover, the iterates of the algorithm converge only to a subset of mixed equilibria (with no single58

one delivered), even in the limit as the number of iterations grows.59

Algorithms such as FP can sometimes be adapted to find pure NE, at the expense of introducing60

additional parameters and computational challenges. For instance, fictitious play with limited61

memory and inertia (Young 2004) and a joint strategy fictitious play with inertia (Marden et al.62
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2009) revise dynamic procedures that hone in on pure Nash equilibria. The iterates of these63

algorithms converge to pure NE, but users must select tuning parameters in order to run the64

procedures.65

Beyond this, even if a pure NE is eventually found, not all pure NE have the same utility.66

In identical interest games, equilibria can be ordered according to the utility they deliver to67

each player. In fact, in identical interest games, a pure NE is a local optimum with respect to68

a neighborhood system consisting of translations along coordinate axes. These local optima are69

ordered by their payoffs where the most preferred NE is a global optimal solution we call a pure70

optimal NE.71

We study an implementation of fictitious play called Monte Carlo Fictitious Play (MCFP)72

that overcomes many of the limitations of previous variants of FP. (Dolinskaya et al. 2016)73

originally developed this algorithm to deliver optimal solutions in finite time with probability one74

for deterministic dynamic programs. However, when applied directly to identical interest games in75

strategic form, its performance may still suffer from a lack of convergence to a pure equilibrium as76

with FP, SFP, and SSFP.77

Our innovation is that we define an auxiliary tree game and prove that MCFP, applied to the78

auxiliary tree game, is guaranteed to find a pure NE in finite time with probability one. The79

auxiliary game modifies the extensive-form tree description of the original strategic-form game to80

remove all non-singleton information sets by having different players at each node in the tree, called81

tree players. It is here where the value of the auxiliary tree structure for convergence is evident.82

Whereas fictitious play algorithms applied to strategic form games can get “stuck” in cycles of83

unilateral best responses that do not converge to a pure NE, the auxiliary tree structure allows84

exploration of unilateral best responses among tree players that are not unilateral best responses85

in the original game. It is precisely the randomization induced in “off equilibrium paths” (which86

can become equilibrium paths in the auxiliary tree formulation) which allows the MCFP algorithm87

to determine a pure NE. Another benefit of MCFP applied to the auxiliary tree game is that88

an optimal, pure NE is guaranteed to be discovered in finite time with probability one, although89

confirmation of the global optimum is not computationally practical. An optimal pure NE in an90

identical-interest game is a pure NE that maximizes the shared utility function of all players.91

In summary, we establish the following attractive features when applying MCFP to the auxiliary92

tree game formulation of identical interest games: (i) it finds a pure NE for the original game in93

finite time with probability one, (ii) if allowed to continue instead of stopping at the first pure NE94

found, it will find an optimal pure NE for the original game in finite time with probability one,95

(iii) each iteration of MCFP can be executed in polynomial time in the number of strategic game96
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players and the maximum number of actions per player, and (iv) it is efficient and empirically97

outperforms other known algorithms (e.g., Young’s FP with inertia (Young 2004)).98

We should acknowledge that our algorithms require each agent to communicate with a central99

coordinator that broadcasts random draws to all players at each iteration of the algorithm. This100

is in contrast to recent papers that focus on settings where communication is restricted (see, for101

instance, Young (2009), Pradelski and Young (2010), Marden et al. (2014)). These papers must102

settle for weaker notions of convergence than what we achieve here.103

The rest of the paper is organized as follows. Section 2 introduces identical interest games in104

their strategic form. In Section 3, we develop the auxiliary tree game for an identical interest105

game. Section 4 describes our application of the MCFP algorithm concept to the auxiliary tree106

game. Section 5 includes a proof that MCFP delivers a pure NE in finite time with probability107

one. Section 6 contains the results of our numerical experiments that demonstrate the practical108

advantages of our approach, including an application to the drone assignment problem posed in109

(Swenson et al. 2018).110

2. Identical interest games in strategic form111

Let Ξ be a finite game in strategic form with the set of players N = {1, . . . , n}. Let the finite set of112

pure strategies (actions) of player i∈N be Xi with xi ∈Xi a specific action. Also, let mi = |Xi| be113

the cardinality of Xi and let m=maxi∈N mi. For simplicity, we denote the elements of actions sets114

as Xi = {1,2, . . . ,mi} for all i unless specified otherwise. Let x= (x1, . . . , xn) be an action profile and115

let X =Πn
i=1Xi be the set of all action profiles. Let the utility function of player i∈N be ui :X →R.116

We consider the case where the utility functions are identical, i.e., ui(x1, . . . , xn) = u(x1, . . . , xn) for117

i= 1, . . . , n.118

Our objective is to find a pure NE for this identical interest game. An action profile119

x = (x1, . . . , xn) is a pure NE if no player has anything to gain by changing only their120

own action. Symbolically, x is a pure NE if, for every player i, given the actions x−i =121

(x1, x2, . . . , xi−1, xi+1, · · · , xn) of the remaining players, u(xi,x−i) ≥ u(ai,x−i) for ai ∈ Xi, where122

u(xi,x−i) := u(x1, x2, . . . , xn) and u(ai,x−i) := u(x1, x2, . . . , xi−1, ai, xi+1, . . . , xn).123

We also consider finding an optimal solution, denoted x∗, that maximizes utility as follows:124

u∗ :=max
x∈X

u(x). (1)125

An optimal solution exists since X is finite. Observe that x∗ is a pure NE with optimal utility value126

u∗ = u(x∗).127

In this paper, we often give special attention to the class of identical interest coordination games.128

In a coordination game, all players have the same action set; i.e., there exists a set Z such that129
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Xi =Z for all i ∈N . Players get positive utility if and only if players “coordinate” by taking the130

same action in Z. Thus, we can assign a utility uz = u(z, z, . . . , z)> 0 to each action z ∈Z and set131

ui(x1, x2, . . . , xn) =

{
uz if xi = z for all i∈N
0 otherwise.

(2)132

Admittedly, the class of identical interest coordination games is quite simple. Finding an optimal133

pure NE simply amounts to finding the largest uz over z ∈ Z, which takes O(m) time. However,134

general algorithms for solving identical interest games cannot easily identify that a game is an135

identical interest coordination game. Indeed, verifying that a game is a coordination game is136

essentially as difficult as finding an equilibrium in the game since, in the worst case, you must137

enumerate all action profiles.138

Before proposing our variant of fictitious play (FP), let us recall standard FP. In fictitious play,139

each player i believes all opponents are playing mixed strategies given by the empirical distribution140

of their historical actions. That is, for every action xj ∈Xj, let wj(xj) denote the number of times141

opponent j took action xj. Then, player i believes opponent j will take action xj with probability142

Pj(xj) =wj(xj)/
∑

x∈Xj
wj(x). Player i then best replies to the mixed strategies represented by the143

probabilities Pj(xj) for each opponent j. It was shown in (Monderer and Shapley 1996a) that if all144

players best reply in this way, their beliefs converge to the set of mixed NE. To illustrate this, let145

us take the very simple scenario of an identical interest coordination game with two players.146

Table 1 Game A in its strategic form Ξ.

Player 2
U D

Player 1
U 1 0
D 0 1

Example 1. Let Game A be the two-person identical interest coordination game with the147

strategic form Ξ shown in Table 1. Suppose the initial actions are x1 = U and x2 = D. Then,148

player 1 forms a belief that player 2 will take action D with probability 1. In this case, player 1149

best responds with action D. Similarly, player 2 forms a belief that player 1 will take action U150

with probability 1 and so best responds with action U . The empirical distributions in the second151

round of fictitious play are thus both discrete uniform distributions: each player believes the other152

will take action U with probability 0.5 and action D with probability 0.5. In that scenario, the153

action that maximizes expected utility is tied. Assuming ties are broken randomly, as fictitious154

play iterates, the empirical distribution converges to the mixed NE of each player equally likely155

playing U or D. In other words, the procedure, breaking ties in this way, does not converge to156

either of the pure Nash equilibria (U,U) or (D,D). ◁157
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We are now ready to state a variant of Monte Carlo Fictitious Play (MCFP) algorithm applied158

directly to the original game in strategic form. In each iteration k of the algorithm, we maintain159

a vector Sk
i that tracks the best replies of player i. That is, for all i = 1,2, . . . , n, we have Sk

i =160

(Sk
i (xi) : xi ∈ Xi) where Sk

i (xi) is the number of times player i best replies with action xi ∈ Xi161

through iteration k.162

MCFP on the original strategic form game (MCFP-O)

Step O.1 Initialization. For each player i∈N , set S0
i ← (0,0, . . . ,0). Set k← 1.

Step O.2 Draw an action profile. For each player i ∈N , draw action xi ∈ Xi with probability

Sk−1
i (xi)/(k− 1) (if k = 1, draw uniformly at random from Xi) to form the drawn action

profile pD = (x1, x2, . . . , xn).

Step O.3 Compute a best-reply action profile. For each player i∈N , compute a best reply x∗
i to

pD, breaking ties uniformly at random, to form a best-reply action profile pR = (x∗
1, . . . , x

∗
n).

Step O.4 Stopping Condition. If pR is a pure NE then return pR and terminate. Otherwise, go

to Step O.5.

Step O.5 Update. For all i ∈ N , update Sk
i (x

∗
i )← Sk−1

i (x∗
i ) + 1; and for xi ̸= x∗

i , Sk
i (xi)←

Sk−1
i (xi). Update k← k+1 and go to Step O.2.

163

Table 2 Game B in its strategic form Ξ.

Player 2
U D

Player 1
U 1 0
D 0 2

Table 3 Applying MCFP-O to Game B.

Iter. Draw Best reply Utility History

k pD pR u(pR) Sk
i

1 2 1 2 1 2

0 (0,0) (0,0)
1 U D D U 0 (0,1) (1,0)
2 D U U D 0 (1,1) (1,1)
3 D D D D 2 (1,2) (1,2)

Actions in bold indicate a nondeterministic choice that was
selected randomly for purposes of illustration.

Example 2. In Table 3, we apply MCFP-O algorithm to Game B given in strategic form in164

Table 2. Suppose the first draw from Step O.2 is pD = (U,D). Based on this drawn profile, the165

best reply is pR = (D,U) and histories update to S1
1 = (0,1) and S1

2 = (1,0). The second iteration166

is now entirely deterministic, resulting in S2
1 = (1,1) and S2

2 = (1,1). Now, the draw for each player167

is uniform with probability 0.50 of drawing either U or D. In the illustration in Table 3, we took168

pD = (D,D). This was a “lucky” draw since it results in terminating the algorithm.169
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Observe that this pass of MCFP-O resulted in the optimal pure NE (D,D) with a utility of 2.170

There is no guarantee that MCFP-O finds an optimal pure NE even if allowed to continue after171

finding its first pure NE. Suppose the first draw was pD = (U,U). The players will best reply by172

(U,U) and the algorithm terminates. Even if the algorithm were allowed to continue, the players173

would take action U in every iteration. Therefore, there is no opportunity for them to switch to174

the optimal pure NE (D,D). Indeed, the algorithm is absorbed in the nonoptimal pure NE (U,U).175

◁176

Interestingly, in identical interest coordination games, the MCFP-O algorithm finds a pure177

(potentially non-optimal) NE in finite time with probability one. To make this notion of convergence178

precise, we make the following formal definition.179

Definition 1. Let Fk denote the event that pR is a pure NE in Step O.3 in iteration k of the180

MCFP-O algorithm. Let F denote the union of all Fk; that is, F =
⋃∞

k=1Fk. Then we say MCFP-O181

finds a pure NE in finite time with probability one if the probability of event F is one. Indeed,182

if the event F occurs with probability one, then this means, with probability one, there exists a183

positive integer k such that Fk occurs. In other words, with probability one there exists a k such184

that the algorithm terminates after k iterations.185

Proposition 1. MCFP-O, when applied to an identical interest coordination game, finds a pure186

NE in finite time with probability one.187

Proof of Proposition 1. Let X ∗ denote the “coordinated” action profiles; that is, X ∗ =188

{(z, z, . . . , z) ∈X : z ∈Z}. Let pD be a drawn profile on iteration k and let pR denote a best reply189

to pD. At iteration k, one of the following holds:190

(i) pD ∈X ∗,191

(ii) pD can be adjusted in one player’s action to yield a coordinated action profile in X ∗,192

or193

(iii) pD must be changed in an at least two players’ action to yield a coordinated action194

profile in X ∗.195

If case (i) is ever reached in any iteration k then the algorithm terminates in iteration k since196

pR = pD when pD ∈ X ∗. In other words, the event Fk in Definition 1 occurs. Indeed, there is no197

possibility for ties in best replies in an identical interest coordination game since uz > 0 for all198

z ∈ Z and so the only possible choice for pR is pD. This is because any deviation would lead to199

non-coordinated outcome (i.e., element not in X ∗), yielding a payoff of zero for the deviating player.200

Moreover, if case (ii) or (iii) produce a best reply in X ∗ for any iteration k, the algorithm201

terminates with a pure NE and event Fk has occurred. Thus, it suffices to show that the probability202

of the event that cases (ii) and (iii) are visited infinitely often, and a best reply in X ∗ is not chosen,203
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has probability zero. This establishes that the event F in Definition 1 occurs with probability one204

and the proof is done.205

First, consider the setting where n= 2. Observe that case (iii) cannot happen when n= 2, and206

so the only way the algorithm has not reached case (i) (and terminated) is if it has only found itself207

in (ii) up until that point. In particular, in the first iteration where case (ii) occurs, pD = (z1, z2)208

where z1 ̸= z2. Then, when considering the best reply step, player 1 will best reply with action z2209

and player 2 will best reply with action z1. Action z2 is included in player 1’s history and action z1210

is included in player 2’s history. Thus, in the next round, player 1 will draw action z2 and player211

2 will draw action z1. But then, in this round, the best reply will be player 1 taking action z1212

and player 2 taking action z2. Thus, the only possible best replies vectors are (z1, z2) or (z2, z1).213

Due to symmetry, the probability of player i drawing action zi approaches 1/2 as the number of214

times case (ii) is reached approaches infinity. Thus, the probability that case (ii) is reached k(ii)215

times before termination is (1/2)k(ii) for k(ii) sufficiently large. Thus the probability that case (ii)216

is reached infinitely often (and results in no best replies in X ∗) is zero.217

Next, we consider n > 2. Consider the setting where case (iii) is visited infinitely often. Then,218

all actions in pR are selected uniformly at random from Z because all unilateral deviations yield219

a utility of 0. Thus, pR ∈ X ∗ with probability at least (1/m)n. This probability is irrespective of220

the iteration number k, so the probability that pD ∈ X ∗ after k(iii) visits to case (iii) is less than221

((1/m)n)k(iii) . Since case (iii) is visited infinitely often, this probability converges to 0 as k(iii)→∞.222

Thus the probability that case (iii) is reached infinitely often (and results in no best replies in X ∗)223

is zero.224

Thus, we are only left to consider the event that case (ii) is visited infinitely often when n> 2.225

When case (ii) is reached, all but one player, say player i, chooses their action randomly from Z226

when determining pR. Hence, there is at least a (1/m)n−1 chance (irrespective of k) that all other227

players best reply with the action of player i, resulting in xR ∈ X ∗. The probability this does not228

happen after k(ii) iterations is at most ((1/m)n−1)k(ii) , which converges to 0 as k(ii) →∞. This229

completes the proof. ■230

It is an open question whether MCFP-O terminates with probability one when applied to a more231

general identical interest game (that is, non-coordination game) in strategic form.232

3. An auxiliary tree-game233

Our method for finding pure Nash equilibria in general identical interest games analyzes an auxiliary234

game to Ξ (denoted Γ), which we call the tree game. We construct Γ in two steps. First, we write235

Ξ in its equivalent extensive form Ξ̃. We represent the extensive form game Ξ̃ by a tree (V ∪W,A)236

where V ∪W is the set of nodes and A is the set of arcs. The node set is partitioned into two237
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subsets V andW. The subset V is the union of subsets V1, . . . ,Vn where subset Vi, i= 1, . . . , n (what238

we often call simply Stage i) is the information set of player i of the original game. The special239

subset W is reserved for the terminal representation of utilities. The set of arcs A is partitioned240

into subsets A1,A2, . . . ,An. For i= 1,2, . . . , n− 1, every arc in Ai is directed from a node in Vi to241

a node in Vi+1. The arcs in An are directed from nodes in Vn into W. For all i, each node v in Vi242

has out-degree mi (one for each action of player i). For i= 2, . . . , n, each node in Vi has in-degree243

1. The nodes in V1 have in-degree zero, while the nodes in W have in-degree 1 and out-degree 0.244

Taken together, this implies that for i= 2, . . . , n, Vi has m1m2 · · ·mi−1 nodes with in-degree 1.245

In the second step, convert Ξ̃ into the tree game Γ as follows. Each player in Γ corresponds to a246

node in V = V1 ∪ · · · ∪Vn and is called a tree player. The tree game now has complete information:247

each player has an information set that consists of a single node in the tree.248

For each Stage i, the action set Yj available for each tree player j ∈ Vi is equal to the set of249

actions Xi. Thus, all tree players in the same stage have the same action set. We denote the nodes250

in the tree according to the path of actions taken to reach that node from the unique node in V1.251

That is, for i= 2, . . . , n, the node labels in Stage i represent the actions taken by players in Stage252

1 to Stage i− 1 leading to that node, with the default label (0) for the player in Stage 1. These253

node labels capture the actions taken by preceding players to reach each node.254

The space of all strategies of tree players in the tree game Γ is then Y = Πj∈VYj. We call the255

strategy y ∈Y in the tree game Γ a tree policy since it provides an action for each player in the tree.256

This is also to distinguish it from the terminology “action profile” that we reserve for speaking257

about the original game Ξ. Each tree policy y contains a unique complete path starting from node258

(0) to a terminal node in W. A tree player that is on the complete path is said to be a path player259

(or in-play). The remaining tree players are said to be non-path players (or not-in-play).260

We define a projection π as a mapping from Y to X where π(y) denotes the actions of the in-play261

tree players of tree policy y ∈ Y. Thus, the projection of a tree policy in Γ is an action profile in262

Ξ. We say that y ∈ Y is an extension of x ∈ X if π(y) = x. Note that many possible extensions263

of an action profile x ∈ X exist. We define the utility function v(y) of a tree policy y ∈ Y as the264

utility at the terminal node on the complete path contained in y, i.e., v(y) = u(π(y)), for all y ∈Y.265

Intuitively, the utility function of the tree game Γ is the utility of the path players playing the266

original game Ξ. Accordingly, there is a connection—but not a correspondence—between equilibria267

in Γ and Ξ.268
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Figure 1 The tree game Γ corresponding to Game B.
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Example 3. Consider the identical interest coordination game Game B with strategic form Ξ269

shown in Table 2. Figure 1 illustrates the auxiliary tree game Γ corresponding to Game B. The270

tree game Γ has three tree players: (0), (U), and (D). Tree players (U) and (D) have the same271

action set. The heavy arcs in Figure 1 indicate a tree policy y = (U,U,U) corresponding to tree272

players (0), (U), and (D) that play U,U , and U , respectively. Observe that there is one complete273

path – the uppermost path – ending at the terminal node with u(U,U) = 1. Therefore, tree players274

(0) and (U) are path players (or in-play), while tree player (D) is a non-path player (or not-in-play).275

The utility of tree policy y is v(y) = u(π(U,U,U)) = u(U,U) = 1. ◁276

Proposition 2. Let Ξ be a strategic form identical interest game and let Γ be its corresponding277

tree game. Every pure NE action profile x in Ξ can be extended to a pure NE tree policy in Γ. If278

x∗ is an optimal pure NE in Ξ (i.e., x∗ solves (1)) then every extension of x∗ is an optimal pure279

NE in Γ and, conversely, if y∗ is an optimal pure NE in Γ with v(y∗) = u∗, then the projection of280

y∗ is an optimal pure NE in Ξ.281

Proof of Proposition 2. Given a pure NE x= (x1, . . . , xn) of Ξ, we construct a tree policy y ∈Y282

and show that it is a pure NE tree policy. For all tree players j ∈ Vi, we let yj = xi, i = 1, . . . , n283

so that all tree players in the same stage have the same action (such a construction is found in284

Figure 1). It is clear from this construction that π(y) = x.285

Since x is a pure NE in Ξ, its utility cannot be improved by any unilateral deviation x′, i.e.,286

u(x)≥ u(x′) for every x′ that is a unilateral deviation of x. Let y′ be a unilateral deviation of the287

y constructed in the previous paragraph. Since y is constructed such that all tree players in the288

same stage have the same action, if any tree player switches actions to form a unilateral deviation289

y′, then the projection of y′ is a unilateral deviation in Ξ, i.e., π(y′) = x′. Therefore, we have290
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v(y) = u(π(y)) = u(x)≥ u(x′) = u(π(y′)) = v(y′), where x′ = π(y′) is the unilateral deviation in x′
291

corresponding to the unilateral deviation y′ in Γ. Therefore y is a pure NE tree policy in Γ.292

Let x∗ be an optimal pure NE in Ξ, with u(x∗) = u∗. Then every extension y of x∗ has the293

utility v(y) = u(π(x∗)) = u∗ and so is automatically a pure NE since no deviation (unilateral or294

otherwise) can improve on a utility of u∗ in Γ. Conversely, suppose that y∗ is an optimal pure NE295

in Γ with v(y∗) = u∗. This means that v(y∗) = u(π(y∗)) = u∗, and thus the projection x= π(y∗) is296

an optimal pure NE in Ξ. ■297

Remark 1. It is important to note that not every extension of a pure NE action profile x in Ξ298

is a pure NE in Γ nor does every pure NE tree policy in Γ project to a pure NE action profile in299

Ξ. See the counter-examples in Examples 4 and 5 for illustrations.300

Example 4. Consider again Game B, whose tree game form is given in Figure 1, and consider301

the tree policy y = (U,U,D). Tree players (0) and (U) are path players and the tree policy y302

projects to the action profile (U,U) in the original game. Observe that the projection π(y) = (U,U)303

is a pure NE in Ξ, but y is not a pure NE in the tree game. Indeed, tree player (0) has a profitable304

deviation to take action D, resulting in improving the utility from 1 to 2. This unilateral deviation305

in action from U to D for tree player (0) (i.e., comparing (U,U,D) to (D,U,D)) results in tree306

players (0) and (D) becoming path players, and projects to (D,D) in the original game. Notice307

that (D,D) is not a unilateral deviation of (U,U) in the original game.308

By contrast, consider the tree policy (u,u,u) represented by heavy red arcs in Figure 1. This309

tree policy is a pure NE in the tree game since no tree player has a profitable unilateral deviation.310

The tree policy also projects to the same action profile (U,U) in the original game Ξ. ◁311

Example 5. Consider Game C, a two-person game that is a slight variation of Game B. The312

strategic form Ξ of Game C is captured in Table 4, and its associated tree game is captured in313

Figure 2. Observe that the only difference is that the utility of action profile (U,D) has changed314

from 0 to 1. Consider the tree policy (U,D,U) represented by heavy arcs in Figure 2. This is a315

pure NE in the tree game since no tree player has a profitable unilateral deviation. However, this316

pure NE in the tree game maps to the action profile (U,D) in the original game, which is not a317

pure NE in Ξ. Observe that shifting from action U to D is a profitable unilateral deviation from318

(U,D) for player (U) in the original game. However, this outcome cannot be reached by a unilateral319

deviation in the tree game since a unilateral deviation for tree player (0) (to go “down” instead320

of “up”) projects to the action profile (D,U) in the original game. The reader may note that this321

issue arises because tree players (U) and (D) are taking different actions. ◁322
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Table 4 The strategic form of Game C.

Player 2
U D

Player 1
U 1 1
D 0 2

Figure 2 The tree game associated with Game C.
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4. MCFP on the auxiliary tree game for general identical interest323

games324

In this section, we adapt MCFP logic to the tree game to find equilibria in the original strategic325

game Ξ. Whereas we showed that the iterates of MCFP-O only converge to a pure NE in the original326

game when that game is an identical interest coordination game, we return here to consideration327

of general (that is, not necessarily coordination) identical-interest games. We present two versions328

of MCFP applied to the tree game: MCFP-C and MCFP-I. The first is a conceptual algorithm329

that makes clear the basic operations of the approach but is not implementable in practice because330

it has the potential for making many unnecessary calculations. This is resolved in MCFP-I where331

careful attention is paid to when and where calculations are necessary as the algorithm proceeds.332

We first discuss MCFP-C. In each iteration k and for each i∈N , we maintain a vector Hk
j ∈Zmi333

that tracks the best replies of tree player j ∈ Vi. That is, for all i= 1,2, . . . , n and every tree player334

j in Stage i, we have Hk
j = (Hk

j (yj) : yj ∈ Xi) where Hk
j (yj) is the number of times tree player j335

best replies with action yj ∈Xi through iteration k.336
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Conceptual version of MCFP for the auxiliary tree game (MCFP-C)

Step C.1 Initialization. For each tree player j ∈ V, set H0
j ← (0,0, . . . ,0). Set k← 1.

Step C.2 Draw a tree policy. For each tree player j ∈ V, draw action yj from Yj with

probability Hk−1
j (yj)/(k−1) (if k= 1, draw uniformly at random from Yj) to form a drawn

tree policy yD = (yj)j∈V .

Step C.3 Compute a best-reply tree policy. For each j ∈ V, compute a best reply y∗
j to yD,

breaking ties uniformly at random, to form a best-reply tree policy yR.

Step C.4 Stopping Condition. If yR projects to a pure NE in Ξ then return the projection

π(yR) and terminate. Otherwise, go to Step C.5.

Step C.5 Update. For each player j, update Hk
j (y

∗
j ) ← Hk−1

y∗
j
j (y

∗
j ) + 1; and for yj ̸= y∗

j ,

Hk
j (yj)←Hk−1

j (yj). Set k← k+1 and go to Step C.2.

337

The algorithm deserves a few words of explanation. In every iteration, Step C.2 produces an338

action for each tree player, which provides a drawn tree policy yD in the tree game (the subscript ‘D’339

connotes “draw”). This determines a unique set of path players and the remaining set of non-path340

players. In Step C.3, all tree players determine their best reply to the actions drawn in Step C.2.341

To calculate best replies, we look at unilateral deviations. For path players, unilateral deviations342

give rise to a different unique complete path to consider. Indeed, if path player j in node-set Vi343

considers an alternate action aj ∈Yj, aj ̸= yj, this determines a new path of tree players in stages344

i+1 to n. This resulting tree policy y′ in the tree game projects to a different action profile x′ in345

the original game and yields a potentially different utility value.346

However, for non-path players, unilateral deviations do not change the path or the projection.347

That is, if the unilateral deviation of a non-path player changes the tree policy in the tree game348

from y to y′ then π(y) = π(y′) and so v(y) = v(y′). Thus, each non-path player is indifferent349

between all of its alternative actions because the outcome is tied, so every alternative action is a350

best reply. Accordingly, the stipulation in Step C.3 to break ties uniformly at random makes the351

best-reply step a uniform random selection for non-path players.352

In every iteration, at the end of Step C.3, there is a new tree policy yR generated in the tree353

game. Step C.4 checks if the projection x = π(yR) is a pure NE in the original game Ξ. This354

involves computing the utilities of all unilateral deviations x′ to x and checking if u(x)≥ u(x′). We355

know from Proposition 2 that this check is insufficient for implying that yR is a pure NE in the356

tree game. However, our goal is to find equilibria in the original game. Thus, in principle, there is357

no loss if a pure NE in the tree game is never found in the course of the algorithm.358

Example 6. To illustrate the MCFP-C algorithm, we apply it to the tree game induced by359

Game C. As in Figure 2, the three tree players are represented by nodes (0), (U), and (D). Table 5360

shows step-by-step the states of the algorithm, identified by the drawn tree policies and the best361
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replies of the three tree players. We also track the histories of each tree player. In this example, in362

iteration 1 there is a tie for path player (U), so its best reply is also sampled uniformly from the363

action set.364

In iteration 2, the best reply for tree player (D) is sampled as D, but, with probability 1/2,365

it could have been sampled as U . If the tie is broken with U , then we get the same path and it366

is possible to repeat the cycle for a long time. However, with probability one, ties will eventually367

be broken differently and the algorithm will terminate in finite time with probability one. This is368

formalized in Theorem 1.369

The algorithm stops when the tree policy projects to a pure NE in the original game. At370

termination, the action profile of the original game (D,D), is not only a pure NE but also achieves371

the maximum utility of the original game Ξ. ◁372

Table 5 An example of MCFP-C applied to the tree game associated with Game C

Iteration Draw Best reply of player Projected policy Utility History of player

k yD yR π(yR) u(π(yR)) Hk
j

(0) (U) (D) (0) (U) (D) (0) (U) (D)

0 (0,0) (0,0) (0,0)
1 U D U U D U (U,D) 1 (1,0) (0,1) (1,0)
2 U D U U D D (U,D) 1 (2,0) (0,2) (1,1)
3 U D D D D D (D,D) 2

Actions in bold indicate a nondeterministic choice selected randomly for illustration purposes.

When looking at the conceptual version of the algorithm, one notices that this algorithm is not373

efficient computationally in each iteration. Recall that there are a total of |V| tree players in Γ374

and so, in principle, Step C.2 and Step C.3 need to be executed for each of these |V| players375

in every iteration. We now present an implementable version of the algorithm with a far smaller376

computational burden.377

The overall idea of the implementable algorithm is as follows. Only tree players on the unique378

path of the random draw in Step C.2 need to “actively” determine a best reply (all non-path379

players best reply from their full action set uniformly at random). Accordingly, we do not need to380

maintain an explicit history for tree players that have never been in play. For players that have381

been in play at least once, we only update their history in iterations in which they are in play.382

Similar to the vector Hk in the conceptual algorithm, we maintain a vector Bk that tracks the383

best replies of path players through iteration k. Specifically, for all i = 1,2, . . . , n and every tree384

player j in Stage i, we have Bk
j = (Bk

j (yj) : yj ∈Xi) where B
k
j (yj) is the number of times tree player385

j was a path player and best-replied with action yj ∈Xi through iteration k. We also need to keep386

track of the number of times a tree player j was a path player and computes a best reply, which387
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is simply the || · ||1-norm of the vector Bk
j ; that is, ||Bk

j ||1 =
∑

yj∈Xi
Bk

j (yj) when tree player j is in388

Stage i.389

We need to be able to efficiently draw a random action from history at each stage in a way that390

is stochastically equivalent to the conceptual algorithm, in the following sense.391

Definition 2. We say the algorithms MCFP-C and MCFP-I are stochastically equivalent if for392

each iteration k, the probability of drawing the complete path (y1, y2, . . . , yn) in the drawn tree393

policy yD in MCFP-C is equal to the probability of drawing the path pD = (y1, y2, . . . , yn) in MCFP-394

I, and the probability of projecting best-reply tree policy yR in Step C.3 to the action profile395

(y∗
1 , . . . , y

∗
n) in MCFP-C is the same probability as computing the best-reply path pR = (y∗

1 , . . . , y
∗
n)396

in MCFP-I on iteration k.397

For tree player j in Vi, a random draw from history at iteration k uses weighted draws from398

history, and the whole action set Yj = Xi. Specifically, with probability ||Bk−1
j ||1/(k − 1), action399

yj ∈ Xi is drawn using historical data with probability Bk−1
j (yj)/||Bk−1

j ||1, and with probability400

1− (||Bk−1
j ||1/(k− 1)), action q is drawn with probability 1/mi (that is, uniformly from the action401

set Xi). In summary, the probability of drawing action yj ∈ Xi from history for tree player j ∈ Vi402

at iteration k is:403

Bk−1
j (yj)

k−1
+

(
1− ||Bk−1

j ||1
k−1

)
1
mi

. (3)404

405

If k= 1, the probability of drawing action yj is simply 1/mi.406
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Implementable version of MCFP (MCFP-I)

Step I.1 Initialization. For each tree player j ∈ V, set B0
j ← (0,0, . . . ,0). Set k← 1.

Step I.2 Draw a path. For tree player (0) in Stage 1, draw the action y1 ∈ X1 using

distribution (3) and draw uniformly from X1 if k = 1. Then recursively for Stage i =

2,3, . . . , n, draw action yi for tree player (y1, y2, . . . , yi−1) in Stage i according to distribution

(3) (when k= 1 draw uniformly at random from Y(0) =X1). Let pD = (y1, y2, . . . , yn) denote

the drawn path from tree player (0) to a node in W.

Step I.3 Compute best replies for path players. For i = 1, . . . , n, evaluate the alternate

actions of tree player (y1, y2, . . . , yi−1) in Stage i (or tree player (0) in the case of i = 1)

as follows. For each action a ∈ {1, . . . ,mi} compute a path that reaches tree players in

Stages i+ 1, . . . , n, starting with action a as (a, ỹa
i+1, . . . , ỹ

a
n). If a= yi, we set ỹa

h = yh for

h= i+ 1, i+ 2, . . . , n, where the yh are the drawn actions in Step I.2. For a ̸= yi, ỹ
a
h for

h = i+ 1, i+ 2, . . . , n are drawn randomly according to distribution (3). Choose the best

reply ŷi uniformly at random from the set

arg max
a∈{1,...,mi}

u(y1, y2, . . . , yi−1, a, ỹ
a
i+1, . . . , ỹ

a
n).

Step I.4 Compute a path of best replies. In this step, we form a path of best replies pR =

(y∗
1, y

∗
2, . . . , y

∗
n) recursively as follows. The best reply for Stage 1 is y∗

1 = ŷ1, where ŷ1 is as

computed in Step I.3. If ŷ1 ̸= y1, then the best replies for Stages 2 through n must be

determined for non-path players, which are sampled uniformly from their action sets. If

ŷ1 = y1, then the best reply for Stage 2 is set as y∗
2 = ŷ2. If ŷ1 = y1 and ŷ2 ̸= y2, then the

best replies for Stages 3 through n must be determined for non-path players by sampling

uniformly from their action sets. If ŷ1 = y1 and y∗
2 = y2, then set y∗

3 = ŷ3 and continue in

this fashion. In this manner, the best-reply path, pR = (y∗
1, y

∗
2, . . . , y

∗
n) is constructed.

Step I.5 Stopping condition. If pR is a pure NE in Ξ then return that pure NE and

terminate the algorithm. Otherwise, go to Step I.6.

Step I.6 Update. For each tree player j ∈ V in the path pR at Stage i, update Bk
ĵ
(yi)←

Bk−1
j (ŷi)+ 1; and for yi ̸= ŷi, B

k
j (yi)←Bk−1

j (yi). Set k← k+1 and go to Step I.2.

407

A few words of explanation are in order. The draws that occur in Step I.2 of MCFP-I are408

simulating a small subset of those that would have occurred in Step C.2 in the conceptual409

algorithm. In particular, only a single path is generated through the tree as opposed to a whole410

tree policy, as in the conceptual algorithm. Having said that, parts of Step C.2 of the conceptual411

algorithm need to be executed in Step I.3 of the implementable algorithm. Indeed, in order to412

compute best replies for the path players, alternate paths in the tree need to be “drawn” and413
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compared with. In other words, Step I.3 of MCFP-I includes a combination of computations in414

Step C.2 and Step C.3 of MCFP-C.415

Step I.4 provides the portion of the best-reply tree policy yR in Step C.3 of MCFP-C that is416

equivalent to the projection π(yR) in Step C.4. In MCFP-C, the complete path to project is clear417

from the tree policy yR. However, in Step I.3, the best replies of the path players computed in this418

step need not form a complete path. Accordingly, Step I.4 must be executed in order to construct419

the path pR to be used in Step I.5. In particular, Step I.4 can be seen as part of the original420

best-reply step (Step C.3) in MCFP-C, here executed if a best reply of a path player directs421

away from the original path. It turns out, however, that the best replies in this step need not be422

recorded in history since either they are the same as drawn in the previous step or are uniformly423

selected from the set of actions. This allows for polynomial iteration complexity, as described in424

Proposition 4 below.425

It is also critical to note that Step I.3 plays a very important role in the convergence properties426

for the algorithm, even when it produces actions ŷi that are different from those in the path pR.427

Every action choice outside of Step I.3 is “random”. It is only in Step I.3 that an optimization428

step needs to be performed to compute the best reply. In other words, Step I.3 is the “signal” the429

algorithm uses to make “smart” choices, with other steps aiding future “exploration”.430

Example 7. To illustrate MCFP-I, we apply it to the tree game associated with Game C.431

Table 6 shows the step by step implementation. Comparing Table 6 for MCFP-I with Table 5 for432

MCFP-C, we can see that MCFP-I draws a complete path and determines a best-reply path using433

the two path players (as opposed to three tree players with MCFP-C). We also show the histories434

of each path player in Bk
j (as opposed to Hk

j in MCFP-C).435

On the first iteration, the drawn action for tree player (0) is uniform from {U,D} because k= 1.436

The first iteration for MCFP-I is the same as for MCFP-C, with the exception that there is no437

explicit draw or best reply calculation for tree player (D). In the second iteration, the probability438

of choosing U for tree player (0) in MCFP-I is the same as for MCFP-C. And the second iteration439

is also comparable. In the third iteration, the drawn path is again consistent with MCFP-C, and440

the best reply for tree player (0) is D. Although the random action used in the best reply is not441

recorded explicitly, the probability that the Stage 2 action is D for MCFP-I is the same probability442

as MCFP-C. ◁443
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Table 6 An example of MCFP-I applied to the tree game associated with Game C

Iteration Draw of player Best reply of player Best-reply path Payoff History of player

k pD pR path off Bk
j

(0) (U) (D) (0) (U) (D) pR u(pR) (0) (U) (D)

0 (0,0) (0,0) (0,0)
1 U D - U D - (U,D) 1 (1,0) (0,1) (0,0)
2 U D - U D - (U,D) 1 (2,0) (0,2) (0,0)
3 U D - D D - (D,D) 2

Actions in bold indicate a nondeterministic choice that was selected randomly for purposes of illustration.

We summarize the above discussion in the following result. For brevity, a detailed proof beyond444

the above discussion is omitted.445

Proposition 3. The algorithms MCFP-C and MCFP-I are stochastically equivalent, in the446

sense defined in Definition 2. The stopping conditions for both algorithms are also equivalent.447

The next result studies the iteration complexity of the algorithm. Note that the number of tree448

players is |V|= 1+
∑

j∈V
∏j

k=1mk, which is on the order of O(mn) where m=maxi=1,...,n{mi}.449

Proposition 4. Each iteration of MCFP-I requires O(mn2) random samples and O(mn) utility450

function calls.451

Proof of Proposition 4. Step I.2 entails n draws from history, since only n stages are needed452

to determine a complete path. Each of these n draws include a random sample from an action set453

with at most m actions. For each path player, Step I.3 makes at most m utility evaluations to454

explore all unilateral deviations, and each unilateral deviation requires at most n random draws455

from history. Altogether, for n players, Step I.3 entails O(mn2) random samples to generate mn456

alternative paths. Each alternate path requires a utility function to evaluate for deciding a best457

reply for a total of mn utility function calls. Step I.4 constructs pR and samples random actions at458

most n times without calling the utility function. Finally, Step I.5 also makes mn utility function459

calls in order to check if the projection is a pure NE in the original game Ξ. □460

5. Analysis of MCFP461

In this section, we analyze the performance of MCFP-C and MCFP-I, as well as a “mixed”462

algorithm MCFP-M that combines MCFP-O and MCFP-I.463

We first adapt the definition of “finite time with probability one” given in Definition 1 to our464

current setting.465

Definition 3. Let Fk denote the event that pR in Step I.4 is a pure NE in iteration k of the466

MCFP-I algorithm. Let F denote the union of all Fk; that is, F =
⋃∞

k=1Fk. Then we say MCFP-I467

terminates with a pure NE in finite time with probability one if the probability of event F is one.468
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Consider the MCFP-I algorithm where we ignore the stopping condition Step I.5. That is, the469

algorithm continues to run regardless of whether pR is a pure NE or not. Under this condition,470

let Gk denote the event that pR in Step I.2 is an optimal pure NE in iteration k of the MCFP-I471

algorithm. Then we say MCFP-I finds an optimal pure NE in finite time with probability one if the472

probability of event G=
⋃∞

k=1Gk is one. ◁473

Theorem 1. Let Ξ be a strategic identical interest game whose corresponding tree game Γ is474

taken as input to algorithm MCFP-I. Then (i) MCFP-I terminates with a pure NE in finite time475

with probability one, and (ii) MCFP-I finds an optimal pure NE in finite time with probability one.476

The proof of this result is subsumed by a later result (Theorem 2). We defer the argument until477

that point.478

Remark 2. Observe that (ii) in Theorem 1 implies that the algorithm produces a sequence479

of utility values that eventually yield the optimal utility. It is important to stress, however, that480

the algorithm cannot verify that this utility is, in fact, optimal. We know of no simple stopping481

condition that can certify global optimality. ◁482

Remark 3. As argued in Example 2, MCFP-O does not enjoy property (ii) in Theorem 1;483

namely, that an optimal pure NE is found in finite time with probability one. Even running the484

algorithm indefinitely may not uncover the optimal pure NE because it gets absorbed in a non-485

optimal equilibrium. ◁486

Theorem 1 has attractive convergence properties. However, in our numerical experiments in487

Section 6 we still find that MCFP-I can require significant computational effort to find a pure488

NE, despite it being faster than many other known methods. By contrast, we find in those489

same numerical experiments that MCFP-O finds a pure NE more rapidly, despite not having a490

theoretical guarantee of convergence to a pure NE. Moreover, each iteration of MCFP-O requires491

less computation than an iteration of MCFP-I. In the remainder of this section, we show how to492

“mix” MCFP-I and MCFP-O to get a “best of both worlds”.493

The first step to construct this “mixing” is to adapt MCFP-O to the tree game. We call this494

algorithm Structured Monte Carlo Fictitious Play (MCFP-S). MCFP-S mimics MCFP in the495

original game by controlling the “structure” of the draws and best replies to mimic how they would496

appear if the algorithm was applied to the original game; namely, where tree players in the same497

stage have the same history and take the same actions.498
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Structured Monte Carlo fictitious play (MCFP-S)

Step S.1 Initialization. For each Stage i∈N , set S0
i ← (0,0, . . . ,0). Set k← 1.

Step S.2 Draw a path. For each Stage i, draw yi ∈Xi with probability Sk−1
i (yi)/(k− 1) (if

k= 1, draw uniformly at random from Xi), resulting in a drawn path pD = (y1, y2, . . . , yn).

Step S.3 Compute best replies for path players. For i∈N compute the best reply y∗
i for the

tree player in pD in Stage i. If a non-path player j is reached, take that non-path player’s

action to be yi (as drawn in Step S.2) when j ∈ Vi. Let sR = (y∗
1, . . . , y

∗
n) be the best-reply

path.

Step S.4 Stopping Condition. If sR is a pure NE in Ξ then return sR and terminate.

Otherwise, go to Step S.5.

Step S.5 Update. For all i ∈ N , update Sk
i (y

∗
i )← Sk−1

i (y∗
i ) + 1; and for yi ̸= y∗

i , S
k
i (yi)←

Sk−1
i (yi). Update k← k+1 and go to Step S.2.

499

The algorithms MFCP-S and MCFP-I differ in how best replies are constructed. In the MCFP-500

I algorithm, tree players in the same Stage i can draw different actions whereas in MCFP-S501

there is uniformity across stages. This alters the “alternate paths” that a player experiences when502

considering unilateral deviations, and thus ultimately can impact their calculation of best replies.503

In the mixed algorithm below (MCFP-M), iterations execute one of two types of best replies504

depending on a parameter α. We need to keep track of this history of best replies in order to505

compute the probability of drawing an action in the draw step. Here we need to track both MCFP-I506

best replies and MCFP-S best replies. The caveat here is that MCFP-I best replies are at the tree507

player level whereas MCFP-S are at the stage level. As in MCFP-I, we let BkI
j denote the vector of508

best-reply counts accrued through executing kI MCFP-I-style best replies for tree player j ∈ V and509

we let SkS
i denote the vector of best-reply counts accrued through kS MCFP-S-style best replies510

for players in Stage i.511

Thus, the probability of drawing an action in the draw step is more complicated than it was in512

MCFP-I (see formula (3)). Here, the unconditional probability of drawing action yi ∈ {1, . . . ,mi}513

from history for tree player j ∈ Vi after kI − 1 calls to MCFP-I-style best replies and kS − 1 calls514

to MCFP-S-style best replies is:515

B
kI−1
j (yi)+S

kS−1
i (yi)

kI+kS−2
+

(
1− ||BkI−1

j ||1+||SkS−1
i ||1

kI+kS−2

)
1
mi

(4)516

when kI + kS > 2 and equal to 1/mi otherwise.517
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Mixed Monte Carlo Fictitious Play (MCFP-M)

Step M.1 Initialization. For each Stage i∈N , set S0
i ← (0,0, . . . ,0) and for each tree player

j ∈ V, set B0
j ← (0,0, . . . ,0). Set kI← 1 and kS← 1 and input α∈ [0,1].

Step M.2 Draw a path. For tree player (0) in Stage 1, draw action y1 ∈X1 using distribution

(4). Then, recursively for i= 2,3, . . . , n, draw action yi for tree player (y1, y2, . . . , yi−1) in

Stage i according to distribution (4). Let pD = (y1, y2, . . . , yn) denote the drawn path from

player (0) to a node in W.

Step M.3 Mixing step. With probability α go to Step M.4, otherwise, go to Step M.5.

Step M.4 Best reply step of MCFP-I

Step M.4.1 Compute a best-reply path. Execute Step I.3 and Step I.4 where

draws from history follow (4) instead of (3) to form the best-reply path pR =

(y∗
1, . . . , y

∗
n).

Step M.4.2 Stopping condition. If pR is a pure NE in Ξ then return that pure

NE and terminate the algorithm. Otherwise, go to Step M.4.3.

Step M.4.3 Update. For each tree player j ∈ V in the path pR at Stage i, update

BkI
j (ŷi)←BkI−1

j (ŷi)+1; and for yi ̸= ŷi, B
kI
j (yi)←BkI−1

j (yi). Set kI← kI +1

and go to Step M.2.

Step M.5 Best reply set of MCFP-S

Step M.5.1 Compute best replies for path players. Execute steps analogous to

Step S.3 (only now referring to draws in Step M.2). Let pR = (y∗
1, . . . , y

∗
n)

be the resulting best-reply path.

Step M.5.2 Stopping condition. If pR is a pure NE in Ξ then return pR and

terminate. Otherwise, go to Step M.5.3.

Step M.5.3 Update. For all i∈N , update SkS
i (y∗

i )← SkS−1
i (y∗

i )+1; and for yi ̸=
y∗
i , S

kS
i (yi)← SkS−1

i (yi). Set kS← kS +1 and go to Step M.2.

518

We are now ready to prove the main result of the paper. The result refers to the definitions in519

Definition 3, but applied to algorithmMCFP-M instead of algorithmMCFP-I (with the appropriate520

straightforward changes).521

Theorem 2. Let Ξ be a general identical interest game whose corresponding tree game Γ is522

taken as input to algorithm MCFP-M with parameter 0 < α ≤ 1. Then (i) MCFP-M terminates523

with a pure NE in finite time with probability one, and (ii) MCFP-M finds an optimal pure NE in524

finite time with probability one.525

Proof of Theorem 2. Consider an optimal path of tree nodes, denoted p∗1, p
∗
2, . . . , p

∗
n, with526

associated optimal actions y∗
1 , y

∗
2 , . . . , y

∗
n, (i.e. (y

∗
1 , y

∗
2 , . . . , y

∗
n) forms an optimal solution to (1)) with527
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a utility value of u∗. Also, suppose that the number of optimal actions at each of these optimal528

nodes is at most ℓ, thus allowing multiple optima.529

Begin MCFP-M by drawing an arbitrary action for each node. If the drawn actions include530

y∗
1 , y

∗
2 , . . . , y

∗
n for optimal path players p∗1, p

∗
2, . . . , p

∗
n, that is, if yD is an extension of this optimal531

solution, then a best reply to yD (structured or unstructured) also has an optimal utility value of532

u∗. Its projection is a pure NE for the original game and the algorithm terminates with a pure NE533

for Ξ. This yields (i). Thus, it suffices to show that actions y∗
1 , y

∗
2 , . . . , y

∗
n can be drawn.534

We now show that in each iteration k, the probability of drawing optimal actions y∗
1 , y

∗
2 , . . . , y

∗
n535

for optimal nodes p∗1, p
∗
2, . . . , p

∗
n is at least (α/m)n independent of past draws and best replies where536

m is an upper bound on the number of feasible actions at each node.537

Adopt the inductive hypothesis on i that at every iteration k, the probability of drawing optimal538

actions y∗
i , y

∗
i+1, . . . , y

∗
n for optimal nodes p∗i , p

∗
i+1, . . . , p

∗
n is at least (α/m)n−i+1 independently of539

the past. Note that the inductive hypothesis is satisfied for i= n since before iteration k, either540

p∗n was in play and loaded action y∗
n into its history with probability at least 1/ℓ, independent541

of the past, or it was not in play and loaded action x∗
n into its history with probability at least542

1/m if its best reply is unstructured which happens with probability α. Therefore, x∗
n gets loaded543

independently into history for iterations before k with probability at least α/m and therefore is544

drawn in iteration k with probability at least α/m. Consider now node p∗i−1. At each iteration545

before k, if p∗i−1 was not in play, it best replied randomly with probability α and loaded action y∗
i−1546

into its history with probability at least 1/m. If it was in play, it best replied with optimal action547

y∗
i−1 with probability at least 1/ℓ, if optimal actions y∗

i , y
∗
i+1, . . . , y

∗
n were drawn for the subsequent548

optimal nodes p∗i , p
∗
i+1, . . . , p

∗
n. But this happens with probability at least (α/m)n−i+1 independently549

of the past by the inductive hypothesis. Hence p∗i−1 when in play best replies and loads y∗
i−1 into its550

history with probability at least (1/ℓ)(α/m)n−i+1. In either case (in-play or not), p∗i−1 loads y∗
i−1551

into its history with probability at least (α/m)n−(i−1)+1 thus restoring the inductive hypothesis.552

By setting i= 1, we conclude that the probability of drawing the optimal actions y∗
1 , y

∗
2 , . . . , y

∗
n for553

optimal nodes p∗1, p
∗
2, . . . , p

∗
n is at least (α/m)n.554

We have shown that the probability that we draw an optimal path and consequently the best555

reply is optimal, at any iteration k is at least δ = (α/m)n > 0 independent of what occurred556

in iterations 1 through k − 1. In the terminology of Definition 3, we have thus shown that the557

probability of Gk is at least δ. We next show that the event G (in the terminology of Definition 3)558

has probability 1, completing the proof.559

Let G≤k denote the event that the algorithm finds an optimal path within k iterations. That is,560

G≤k =
⋃k

j=1Gj. Let Ḡk denote the complement event of Gk, and so we know P (Ḡk)≤ 1− δ. Now,561

consider the event Ḡ≤k = Ḡ1 ∩ Ḡ2 ∩ · · · ∩ Ḡk that the algorithm does not terminate in the first k562
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iterations. That is, P (Ḡ≤k) = P (Ḡ1 ∩ Ḡ2 ∩ · · · ∩ Ḡk) = P (Ḡ1)P (Ḡ2) · · ·P (Ḡk)≤ (1− δ)k. From here563

we have564

P (G≤k) = 1−P (Ḡ≤k)≥ 1− (1− δ)k (5)565
566

Observe that the event G≤k is contained in the event G. So, in particular, P (G≤k) ≤ P (G).567

Now, suppose that P (G) = β < 1. This implies that P (G≤k)≤ P (G) = β for all k. However, this568

contradicts (5) because there exists a k(β) such that P (G≤k(β) > β. Contradiction. That is, we569

eventually find an optimal path in finite time with probability one. ■570

Observe that Theorem 1 is a direct consequence of the above result taking α= 1. The proof of571

Theorem 2 includes, as part of its argument, intermediaries that are similar in spirit to the proofs572

found in Section 4.2 of (Dolinskaya et al. 2016).573

6. Numerical experiments574

In the following section, we explore the practical performance of our algorithms. The measure of575

“speed” here is in terms of the number of calls to the utility function u(x). Since our algorithms576

involve random draws and random tie-breaking, performance is averaged over multiple replications577

(50 instances for the coordination game, and 30 for the drone example). Performance is compared578

to fictitious play with memory and inertia FP-MI introduced in (Young 2004) and studied more579

recently in (Swenson et al. 2018).580

We describe FP-MI briefly here. Fictitious play with memory is a process in which each player581

chooses the best reply in expected utility based on the empirical distribution of past plays by582

their opponent(s) where more recent plays receive more weights. We consider two versions of the583

fictitious play with memory in the next two subsections. In the first subsection, we consider the584

fictitious play with finite memory. In this version, controlled by the memory size M , the empirical585

distribution of the plays at iteration k is built considering actions taken by the players at iterations586

k −M, . . . , k − 1. In the second subsection, we consider the fictitious play with fading memory.587

In the fictitious play with fading memory, the empirical distribution of the plays at iteration k is588

defined recursively as the convex combination of the latest empirical distribution at iteration k−1589

and the last play. In particular, let fi,k be the empirical distribution of player i’s plays at iteration590

k and let φ(ai,k) be the degenerate probability distribution placing mass 1 on player i’s action ai,k591

at iteration k. Controlled by the fading memory parameter γ, the empirical distribution of player592

i’s plays at iteration k is defined recursively as593

fi,k = (1− γ)fi,k−1 + γφ(ai,k). (6)594

It has been shown that fictitious play can fail to converge to a pure NE (Young 2004). To avoid595

such behavior, inertia is introduced. Specifically, assume that a player takes the same action as in596
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Figure 3 Av. no. of utility function accesses to

obtain first pure NE.
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the previous period with probability λ ∈ (0,1) and chooses the best reply against the product of597

the empirical distributions with probability (1−λ). If the previous action is within the current set598

of best replies, the player plays it again, so that inertia is used to break the tie. Convergence to a599

pure NE for FP-MI was proven in (Young 2004). We will use FP-MI generically to refer to both600

the finite memory and fading memory versions.601

In the next two subsections, we show that our algorithms perform favorably in comparison to602

FP-MI when comparing calls to the utility function to find a first pure NE. We are also interested603

in the quality of the found pure NEs. As discussed in Remark 3, our algorithms can be run without604

terminating when the first pure NE is reached, if left to run, both MCFP-I and MCFP-M find an605

optimal pure NE in finite time with probability one. In our numerical investigations, we terminate606

after a large number of utility function accesses and track the “best” pure NE reached to that607

iteration.608

6.1. Coordination games609

We first apply our different implementations of MCFP to find equilibria in identical interest610

coordination games. In these experiments, we assume each player has two actions; that is, Xi =611

{U,D} for all i∈N . As a result, there are 2n possible action profiles and only two possible equilibria:612

(U,U, . . . ,U) and (D,D, . . . ,D). We assume that u (U,U, . . . ,U) = 2 and u (D,D, . . . ,D) = 1.613

We consider the scenario with 5 players (we also tried 10 players with qualitatively similar614

results). Figure 3 shows the performance for finding the first pure NE. Each of the algorithms has615

a stopping rule to terminate once an equilibrium is reached, and so the data in Figure 3 can be616

viewed as average termination times under the stopping rule. This data suggests that the MCFP617

variants outperform FP-MI under different parameter specifications. We present three alternate618

parameter specifications; other choices gave similar results.619

The fact that MCFP-I reaches an equilibrium with fewer function calls than FP-MI is620

evidence that relatively few nodes in the auxiliary tree are ever reached, reaping the benefits621
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of the tree structure without having to process much of its exponential size. Accordingly, this622

numerical performance in Figure 3 is consistent with the polynomial iteration complexity given in623

Proposition 4. The relative performance of MCFP-I, MCFP-M, and MFCP-S to one another is also624

consistent with our theoretical understanding of these algorithms. MCFP-S requires less work in625

each iteration, which is consistent with the numerical finding that it can find equilibria with fewer626

utility function accesses. The intermediate number of function calls demonstrated by MCFP-M is627

also consistent with its construction as a hybrid algorithm. We tried different values of α and M ,628

but only report α= 0.1 since other values of α gave qualitatively similar results.629

Figure 4 captures the performance of these algorithms in discovering a pure NE with optimal630

utility (here a utility of 2). We chose 5,000 as an upper bound on function accesses since this choice631

demonstrated a pattern where the MCFP variants find a high-quality pure NE, on average, faster632

than FP-MI. The figure also illustrates that MCFP-S, MCFP-M, and MCFP-I have quite similar633

performance on this coordination game; all can reach the optimal pure NE with high frequency634

within the allotted 5,000 calls. Our results illustrate a slight edge to MCFP-M, which is consistent635

with the “best-of-both-worlds” design of the algorithm, although the distinctions between the636

performance of each variant appear to be quite minimal. The fact that MCFP-S quickly tracks637

towards the optimal equilibria is also consistent with Proposition 1 that guaranteed the convergence638

of MCFP-O (and thus MCFP-S) to a pure NE.639

6.2. A drone coordination problem640

We apply our algorithms to the UAV (unmanned aerial vehicle or “drone”) target assignment641

problem proposed in (Swenson et al. 2018). The UAVs can communicate with each other using642

short-range radio to negotiate a feasible target assignment, resulting in a game, as follows. Suppose643

there are n UAVs and n target objects. Each UAV is assigned one target and the goal is to cover644

all targets by assigned UAVs. The action space for each UAV is the set of targets {1,2, . . . , n}.645

The utility of assigning UAV i to target k (that is, setting xi = k), given the assignment x−i of the646

other UAVs, is proportional to the distance d(i, k) from the UAV to the target. Precisely,647

ui(xi = k,x−i) = d(i, k)−11

(
n∑

j=1

1(xj = k) = 1

)
, (7)648

where 1 is the indicator function. Observe that the sum
∑n

j=1 1(xj = k) counts the number of drones649

that are assigned to target k, and the outer indicator function (with this sum as an argument)650

means that utility is only assigned when a single drone is assigned to a target.651

Let the positions of the objects be equally spaced on a unit circle centered at the origin of a two652

dimensional plane, i.e., object j, for j = 1, . . . , n is located at coordinate (cos(2πj/n), sin(2πj/n).653

The location of UAV i, for i= 1,3,5, . . . , n− 1, is at coordinate (cos(2πi/n− π/16n), sin(2πi/n−654
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π/16n). The location of UAV i, for i = 2,4,6, . . . , n, is at coordinate cos(2π(i − 1)/n +655

π/2n), sin(2π(i− 1)/n+π/2n).656

From (7), we can see that the drone assignment problem is not an identical interest game since657

each player has a different utility function. However, we can recast the problem as an identical658

interest game with common utility w(x) =
∑n

i=1 ui(x) (see Proposition 5 below) with the overall659

optimization problem being solved as max{w(x) : xi ∈ {1,2, . . . , n}}. Equilibria are the assignments660

of one drone to one object. Each pure NE is an action of the UAV’s to cover all objects. There is661

one global optimum, when UAV i targets object i for i= 1, . . . , n.662

Proposition 5. An assignment of drones to targets x= (x1, x2, . . . , xn) ∈ Zn is an equilibrium663

with respect to the game with the original utility functions (7) if and only if it is an equilibrium664

with respect to the identical interest game with common utility function equal to the welfare w(x) =665 ∑n

i=1 ui(x).666

Proof of Proposition 5. Let x∗ = (x∗
1, . . . , x

∗
n) be an assignment that is an equilibrium for utility667

functions (7). Therefore, x∗ is a permutation of {1, . . . , n}, and, from the definition of the utility668

functions, ui(x
∗)> 0 for all i. Fix i and fix x∗

−i. Let x∗
i be replaced by a different x′

i, forming an669

alternative assignment x′ = (x∗
1, . . . , x

′
i, . . . , x

∗
n). There is a clash in the assignment, i.e., there exists670

j ̸= i such that x∗
j = x′

i. Therefore, ui(x
′) and uj(x

′) become zero, causing w(x′)<w(x∗). Therefore,671

x∗ is also an equilibrium with respect to the welfare function. Conversely, consider an assignment672

x′ = (x′
1, . . . , x

′
n) that is not an equilibrium with respect to the utility functions. Therefore, x′ is not673

a permutation of {1, . . . , n}. Some objects have no assignment, i.e. there exists k in {1, . . . , n} such674

that that x′
i ̸= k for all i, and some object will have more than one assignment, i.e. there exists l675

in {1, . . . , n} such that x′
p = x′

q = l for some p, q in {1, . . . , n}. Therefore, up(x
′) = uq(x

′) = 0. Fixing676

x′
−p, let x′

p = k and form a unilateral reply x′′ = (x′
1, . . . , x

′
p = k, . . . , x′

n) by player p. Object k is677

covered by only player p. By the definition of the utility function, up(x
′′)> 0 = up(x

′). As a result,678

w(x′′)>w(x′). Therefore, this unilateral reply by player p can improve the welfare function. The679

assignment x′ is not an equilibrium with respect to the welfare function. □680

We study the performance of our MCFP variants and FP-MI. We set the fading memory681

parameter to 0.2 and the inertia parameter to λ= 0.2, the same parameter set found in (Swenson682

et al. 2018). For MFCP-M, we consider mixing parameter and α= 0.1. We consider the case with683

10 drones.684

We measure the performance of each algorithm by the relative welfare achieved by each of them685

against the number of accesses to the utility function (in this case, the welfare function). We apply686

all of the algorithms until 100,000 welfare function accesses. We perform 30 replications for each687

algorithm and average the results. Figure 5 shows the number of average welfare function accesses688
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Figure 5 Av. no. of welfare function accesses to

first pure NE.
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to obtain the first pure NE of the four algorithms we study. Figure 6 shows the relative welfare689

found up to each welfare function access.690

The fact that FP-MI needs many more calls to the welfare function to reach a pure NE (see691

Figure 5) underscores the speed-up due to a single sampling from history at each iteration that is692

characteristic of MCFP variants. Among the MCFP variants, Figure 5 also confirms our intuition693

that MCFP-S can reach a pure NE faster than MCFP-I and the mixed algorithm MCFP-M694

modulates their performance. Theorem 2 guarantees that MCFP-M eventually uncovers a pure695

NE with maximal welfare, and this is reflected in the fact that the MFCP-M curve overtakes696

the MCFP-S curve in terms of average percent of welfare in Figure 6 around halfway through697

the simulation. We should note that FP-MI appears to outperform MCFP-I in terms of progress698

towards finding an optimal equilibrium given the iteration count (as seen in Figure 6); however,699

this simulation tracks the utilities of the best performing iterates, and these iterates need not be700

equilibria. As we can see in Figure 5, FP-MI progresses slowly towards equilibria.701

Finally, the action profiles from the initial iterations of the MCFP algorithms (MCFP-I, MCFP-702

S, MCFP-M) can sometimes serve as estimates for NE (Nash Equilibrium). At specific stages of703

each algorithm, namely Step I5 of MCFP-I, Step S4 of MCFP-S, and Step M4.2 and M5.2 of MCFP-704

M, the algorithms verify the stopping criteria. If these criteria are met, the corresponding action705

profiles are indeed NE’s. In the case of the drone coordination problem, from the 30 simulations, the706

first NE can be identified as early as the 7-th iteration for MCFP-M (α= 0.1), the 21-st iteration707

for MCFP-S, and the 27-th iteration for MCFP-I. However, when the stopping criteria are not708

satisfied, the action profile at the end of each iteration from any of these algorithms cannot be709

considered an estimate for NE. Nevertheless, in these non-NE scenarios, the so-far best common710

interest utility can be seen as the lower bound of the globally optimal NE. Figure 7 illustrates the711

so-far best common interest utility (welfares), averaged over 30 simulations, up to 100 iterations712

for the drone coordination problem.713



Kiatsupaibul et al.: Monte Carlo fictitious play
28

Figure 7 Best relative welfare, averaged over 30 simulations, up to 100 iterations.
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7. Conclusion714

In this paper, we have developed several variants of a fictitious-play algorithm that sample history in715

determining how players best reply as the algorithm proceeds. These algorithms (MCFP-O, MCFP-716

C, MFCP-I, MCFP-S, and MCFP-M) each have their advantages and disadvantages. MCFP-O717

(equivalent to MCFP-S) focuses on likely equilibria in the underlying game, giving rise to rapid718

convergence empirically, but may not converge to a pure NE as the algorithm proceeds. MCFP-C719

is easy to work with theoretically and can identify a pure NE with probability one, but suffers from720

operating on the whole tree (V∪W,A) at each iteration. MCFP-I enjoys the theoretical convergence721

properties of MCFP-C but with less of a computational burden. The mixed algorithm MCFP-M722

balances the benefits of MCFP-S (lower computational burden) with MCFP-I (nice convergence723

properties). An open question is whether the MCFP-O algorithm applied to the original game724

converges to a pure NE in a general identical interest game.725

There remain several unanswered questions about these MCFP algorithms that could be the726

subject of further investigation. First, although we can show that MCFP-C identifies a pure NE with727

probability one, one may theoretically ask how many iterations are expected before “absorption”728

into a pure NE. There seems some hope that an analysis using Markov chains with absorbing729

states might provide some insight, possibly on subclasses of identical interest games (for example,730

coordination games). Second, one could ask whether other classes of games, beyond identical731

interest and potential games, are amenable to MCFP-methods for finding pure NE. An extension732

to other games where fictitious play is known to converge (say the 2 by n games of (Berger 2005))733

seems plausible, although other classes may be possible. Third, one may search for special classes734

of identical interest games where MCFP methods perform particularly well in comparison to other735

known algorithms.736
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