
A greedy algorithm for finding maximum spanning trees in infinite graphs

Christopher Thomas Ryana, Robert L Smithb

aUBC Sauder School of Business, 2053 Main Mall, Vancouver, British Columbia, Canada V6M 3W2,
bUniversity of Michigan, Industrial and Operations Engineering, 1205 Beal Ave., Ann Arbor, Michigan, United States of America 48109-2117,

Abstract

In finite graphs, greedy algorithms are used to find minimum spanning trees (MinST) and maximum spanning trees
(MaxST). In infinite graphs, we illustrate a general class of problems where a greedy approach discovers a MaxST
while a MinST may be unreachable. Our algorithm is a natural extension of Prim’s to infinite graphs with summable
and strictly positive edge weights, producing a sequence of finite trees that converge to a MaxST.

Keywords: spanning trees, infinite graphs, infinite-dimensional optimization

1. Introduction

The minimum weight spanning tree (MinST) problem
on finite graphs is a classic combinatorial optimization
problem. The MinST problem has numerous applications
[15, 17, 18, 22], including as a subroutine in other al-
gorithms on graphs [3] and heuristics [12, 26]. MinST
problems are also popular because they admit simple-to-
implement “greedy algorithms” that solve the problem ef-
ficiently. In this paper, we consider the maximum span-
ning tree (MaxST) problem for countably infinite graphs
which can be viewed as models for underlying problems
with indefinitely large graphs. We will present a greedy
algorithm that arbitrarily well approximates a MaxST
which will be shown to always exist. As we shall see,
both of these claims fail for the MinST case for infinite
graphs.

To an uninitiated researcher, one may be naturally pre-
sented with a maximum weight spanning tree (MaxST)
problem instead of a minimum and search the literature
in vain to find solutions to this problem. The reason is
not that the MaxST problem is difficult or unstudied, in-
stead, it is because it is easily converted to a MinST by
reversing the signs of the edge weights and minimizing.
Unlike the difference between the minimum capacity cut
(MinCut) problem and the maximum capacity cut (Max-
Cut) problem (the minimum cut problem is well known

to be the dual of the maximum flow problem, which is
polynomially solvable in finite graphs, whereas the max-
imum weight problem is NP-hard to both solve and ap-
proximate), the differences between the MinST problem
and the MaxST problem on finite graphs are entirely cos-
metic.

In this paper, we show that the situation can be com-
pletely different in infinite graphs. We consider a class
of graphs with countably many nodes, and each node has
at most finitely many incident edges. Moreover, we as-
sume the edge weights are positive and the sum of weights
is finite. In this setting, a greedy approach can be used
to find a MaxST but a MinST may not even exist. If a
MinST does exist, it may be unreachable by a greedy ap-
proach. Since edge weights are summable, they converge
to zero towards the “outskirts” of the graph. Intuitively, a
MinST may be unreachable by a greedy approach as we
search in these “outskirts” for lighter and lighter edges
and get “indefinitely distracted” without returning to ex-
plore other regions of the graph to form a spanning tree.
By contrast, a MaxST can safely ignore the “outskirts” of
light-weight edges until trees are greedily constructed on
a growing family of finite subgraphs leading, eventually,
to a MaxST.

More concretely, our greedy approach for computing a
MaxST is a straightforward extension of Prim’s algorithm

Preprint submitted to Operations Research Letters July 31, 2023

applied to infinite graphs. When the graph has summable
and strictly positive edge weights, it produces a sequence
of spanning trees on finite subgraphs that converge to a
MaxST in the limit (we make the notion of convergence
precise later in the paper). Such solution convergence is
a rare outcome in infinite-dimensional optimization prob-
lems where convergence to the optimal solution is usually
difficult to guarantee.

To our knowledge, there are only two previous
papers—[23] and [20]—that study the problem of con-
structing MinSTs and MaxSTs in infinite graphs (in fact,
they study the problem in the more general setting of
infinite matroids.) These papers, however, generalize
Kruskal’s algorithm to the infinite setting, whereas we ex-
tend Prim’s algorithm. While their approach can also find
MaxSTs in our setting (we describe how their ideas can
be applied to our setting in Section 4), our approach has
two advantages over Kruskal’s approach.

These two advantages are (i) a generalized Prim’s ap-
proach requires significantly less data about the graph at
each iteration, and (ii) the iterates of Prim’s algorithm
are trees and therefore constitute optimal solutions of
MaxSTs on finite subgraphs of the original graph. By
contrast, the iterates of a generalized Kruskal’s approach
are typically forests and not trees. This distinction can
be important in applications of spanning tree problems—
like establishing communication links along edges from
a source to nodes—where disconnected partial solutions
lead to links that are not connected to the source. These
two advantages are explored in more detail in Section 4.

It is also worth noting that there is extensive literature
on algorithms on infinite graphs in other contexts (see, for
instance, [2, 5, 13, 21]). Several references examine the
properties of spanning trees in the limit of finite random
graphs (see, for instance, [1, 4]), but these graphs enjoy
special properties conferred by Poisson spatial processes.

The rest of the paper is organized as follows. In Sec-
tion 2, we formally introduce the problem of finding min-
imum and maximum weight spanning trees and state our
key assumptions. In Section 3, we discuss greedy algo-
rithms for solving the minimum-weight and maximum-
weight spanning tree problems, emphasizing the differ-
ences between the two. There we show our main result: a
Prim’s algorithm always finds a MaxST in the limit.

2. The minimum and maximum spanning tree prob-
lems

We begin by introducing the general class of infinite
graphs we consider.

2.1. Basic definitions

Let G = (V,E) denote an undirected graph, with node
setV = {1, 2, . . . } and edge set E, which is a subset of all
possible unordered pairs {i, j}, where i, j ∈ V with i , j.
The graph has an edge-weight function w : E → R where
we denotes the weight of edge e ∈ E.

Let I(i) denote the set of nodes adjacent to node i; that
is, I(i) := { j ∈ V : {i, j} ∈ E}. The degree of node i
in G is the cardinality of I(i). A graph is locally finite if
every node has finite degree. A path in G is a finite se-
quence of distinct nodes i1, i2, . . . , in, where {ik, ik+1} ∈ E

for k = 1, . . . , n − 1. A ray is an infinite sequence of dis-
tinct nodes i1, i2, . . . , where {ik, ik+1} ∈ E for k = 1, 2,
Two nodes i and j are connected in G if there exists a path
starting with node i and ending with node j. The graph G
is connected if all nodes i and j in G are connected. We
make the following assumption throughout the paper.

Assumption 1. The graph G is locally finite and con-
nected. ◁

The results in this paper hold if local finiteness is re-
laxed, but for ease of exposition we stick with this as-
sumption. Indeed, much of infinite graph theory is exam-
ined in the locally finite case, which is easier to visualize
(see, for instance, Chapter 8 in [13]).

A cycle in G is a finite sequence of nodes
i1, i2, . . . , in, i1, where i1, i2, . . . , in is a path and {i1, in} ∈
E. A double ray consists of a node i with two distinct
rays, that is, rays (i, i1, i2 . . .) and (i, j1, j2, . . .), where all
intermediate nodes ik and jℓ are distinct for all k and ℓ.

Let H be a subgraph of G and let V(H) and E(H) de-
note the set of nodes and edges in H, respectively. In
this paper, we restrict our attention to subgraphs with
no isolated nodes; that is, for every node i ∈ V(H)
there exists an edge {i, j} ∈ E(H) for some node j ∈
V(H).Throughout we often refer to a subgraph H by its
set E(H) of edges since the set of nodes is implicit once
the edges are defined due to this restriction on the types
of subgraphs we consider.

2

A forest F of G is an acyclic subgraph of G; i.e., a
subgraph of G without cycles. A connected forest is a tree.
If a subgraph of G has node setV, it is said to span G. A
connected spanning forest of G is called a spanning tree.
The set of all spanning trees of the graph G is denoted T .

Remark 1. Other papers that study infinite graphs may
define trees differently. For instance, the papers [24, 25]
study network flow problems on directed graphs. They
say two nodes i and j are connected at infinity if both lie
on directed rays to infinity, even if there is no finite path
between these nodes. These papers talk about trees as
graphs that do not contain either cycles or double rays,
but allow connectivity “at infinity” between nodes. By
contrast, our trees allow double rays (while disallowing
cycles) but must be (finitely) connected. For a detailed
discussion of the different definitions of spanning trees in
infinite graphs, see [14]. ◁

2.2. On the existence of spanning trees

We now turn to our problems of interest. The weight
w(T) of a spanning tree T of G is the sum of the weights
of the edges of T , i.e.,

w(T) ≜
∑

e∈E(T)

we. (1)

We first define the more commonly stated problem of
finding a minimum-weight spanning tree of G, i.e., solve

wmin ≜ min{w(T) | T ∈ T }. (MinST)

We call any optimal solution of problem (MinST) a mini-
mum spanning tree (MinST). A closely related problem is
solving the maximum-weight spanning tree problem, i.e.,
solve

wmax ≜ max{w(T) | T ∈ T }. (MaxST)

We call any optimal solution of problem (MaxST) a max-
imum spanning tree (MaxST).

These problems may not be well-defined if either the
graph has no spanning trees or spanning trees of mini-
mum or maximum weight do not exist. Regarding the
existence of spanning trees, the following classical result
shows they always exist in our setting.

Proposition 1 (Proposition 8.1.1 in [13]). Any graph that
is locally finite and connected (Assumption 1) contains a
spanning tree.

Although spanning trees exist, there may be no lower
bound on their weight. It is straightforward to construct an
infinite graph with an infinite sequence of spanning trees
with strictly decreasing weights when the graph admits
edges with negative cost. Another worrying setting is one
where all spanning trees have infinite weight, which hap-
pens when the weights of edges are not “controlled” in
some way. In this case, all spanning trees are degener-
ately both “minimal” and “maximal”, making the MinST
and MaxST problems uninteresting. We make the follow-
ing assumption throughout to avoid these exceptions.

Assumption 2. The weight function w : E → R has we >
0 for all e ∈ E and

∑
e∈E we < ∞. ◁

If we label the countably many edges in E by wℓ for ℓ =
1, 2, . . . , then Assumption 2 becomes w = (w1,w2, . . .) ∈
ℓ1 (where ℓ1 is the vector space of absolutely summable
sequences) with w > 0.

Later, we show that this assumption (combined with
Assumption 1) suffices to establish the existence of a
MaxST. However, the following example illustrates that
a MinST may not exist.

Example 1. Consider the infinite ladder graph in Fig-
ure 1, with top and bottom rays of decreasing weight
edges connected by infinitely many rungs with decreasing
weights. The MaxST has weight 3, consisting of the left-
most rung of weight 1 connecting the top and bottom rays
of the ladder (each of which has weight 1). A spanning
tree of weight 2 1/4 is drawn in non-dashed edges in the fig-
ure. One can similarly construct spanning trees of weight
2 1/8, 2 1/16, etc. Thus, there is a sequence of spanning trees
whose weights converge to 2. However, no spanning tree
has weight 2 or less. Therefore, a MinST does not exist.
◁

3. Greedy algorithms

We just provided an example where a MinST may not
exist in a graph that satisfies Assumptions 1 and 2. In Sec-
tion 3.1, we show that even when a MinST does exist, it
may not be discoverable by an infinite extension of Prim’s

3

1
21 1

4
1
8

1
2

1
2

1
4

1
4

1
8

1
8

Figure 1: A graph with a MaxST but no MinST (see Example 1).

algorithm. Later in Section 3.2, we show that a MaxST al-
ways exists and can be found using Prim’s algorithm.

3.1. Greedy algorithms for minimum spanning trees

There are multiple greedy approaches to finding Min-
STs in finite graphs, including algorithms attributed to
Prim, Kruskal, and Sollin (see, for instance, Chapter 13
of [3]). In the infinite case, these algorithms perform
differently. For instance, Kruskal’s algorithm seeks a
minimum-weight edge in the entire graph in the first iter-
ation. Not only does identifying a minimum-weight edge
in an infinite graph require infinite work, but the operation
may not even be well defined since the minimum of edge
weights need not exist. By contrast, each iteration of the
natural extension of Prim’s algorithm to infinite graphs is
finitely implementable since it always considers finitely-
many edges in each iteration, as we detail now.

Algorithm 1 Prim’s algorithm for MaxST (resp. MinST)
in spanning trees in infinite graphs

1: Input: A locally finite and connected graph G =

(V,E) with edge weights.
2: Initialize: Initialize a tree T with one node, chosen

arbitrarily from G.
3: while T is not spanning do
4: Append an edge: Append to T the maximum-

weight (resp minimum-weight) edge emanating
from T (that is, having one node in T and one out-
side of T).

Prim’s algorithm (stated in Algorithm 1) produces a se-
quence of non-spanning finite trees {T n}, one for each pass
of the while loop, where T 1 is the initial single-node tree,
T 2 is the tree at the end of the first iteration of the while
loop, etc. The algorithm is finitely implementable since

1
2

1
3

1 1
4

1
8

1
9

1
27

Figure 2: A graph satisfying Assumptions 1 and 2 where a MinST exists
that cannot be found by Prim’s algorithm (see Example 2).

each iterate has finitely many nodes, and so because each
node has finite degree, only finitely many edges need to
be considered when finding the maximum or minimum
weight edge.

The challenge with Prim’s algorithm is that the limiting
tree it creates may not be spanning.

Example 2. Consider the graph in Figure 2. The graph
itself is a spanning tree with total weight (1+ 1/2+ 1/4+
· · ·) + (1/3 + 1/9 + · · ·) = 2 1/2. Hence, the minimum-
weight spanning tree is unique with weight 2 1/2. However,
if Prim’s algorithm is started with, for example, the lower-
left node, it fails to span all nodes in the graph. Indeed, at
every iteration, it adds the next horizontal edge available,
and never adds any of the vertical edges. ◁

3.2. A greedy algorithm for maximum spanning trees
We now show that Prim’s algorithm always finds a

MaxST in any graph satisfying Assumptions 1 and 2.

Theorem 1. Let G be an infinite graph that is locally fi-
nite and connected (Assumption 1) and has positive and
summable weights (Assumption 2). Let T n be the nth
tree generated by Prim’s algorithm for a maximum weight
spanning tree and let

T ∗ =
∞⋃

n=1

T n, (2)

where the operator ∪ merges nodes and edges. The sub-
graph T ∗ is a MaxST. In particular, the graph G has a
MaxST.

Proof. First, we claim that T ∗ is a forest. Observe that
T ∗ has no finite cycles since any finite cycle of T ∗ would
eventually be contained in T n while T n being a tree is
acyclic. This implies that T ∗ is a forest.

4

Second, it is straightforward to see that T ∗ is connected.
Let i and j be two arbitrary nodes in T ∗. Let ni be the
smallest value of n such that i is in T n. Define n j simi-
larly. Without loss, assume ni < n j. At iterations n j, there
is a node k in tree T n j−1 so that {k, j} ∈ T n j . If k = i then
we are done. Otherwise, since the iterates of Prim’s algo-
rithm are a growing sequence of trees, i is a node in T n j−1.
Moreover, since T n j−1 is connected, there is a path P from
i to k in T n−1. Then P∪ {k, j} is a path connecting i and j.

Third, we observe that T ∗ is a spanning tree by arguing
that every node i in G is in T n for some n. Suppose not
for node i; i.e., i is not in T n for any n. Let Pi be a finite
path in G from node 1 to node i. Let i∗(i) be the last node
along this path that lies in T ∗. The weight of the edge
out of node i∗(i) along the path to i is strictly greater than
0 by assumption and was eligible to be added to T n for
sufficiently large n but was not. However, the weights
of edges added to T n decrease to 0. This contradicts the
requirement to add the largest weight edge to T n in step 4
of Prim’s algorithm.

Fourth, we show that T ∗ has maximum weight. Let S
be any spanning tree of G. Let Gn be the subgraph of G
spanned by the nodes of T n. Note that T n is a MaxST
for Gn since Prim’s algorithm produces a MaxST on the
finite graph Gn. This follows from the classical properties
of Prim’s algorithm on finite graphs. Let Fn be the forest
of edges consisting of the edges of S that are contained in
Gn. Since edges can always be added from Gn to extend
Fn to a spanning tree S n of Gn, we have

w(Fn) ≤ w(S n) ≤ w(T n)

for all n, where w(H) is the total weight associated with
the edges of subgraph H as defined in (1). Since every
node in G is eventually in T n, we have G = ∪∞n=1Gn and
S = ∪∞n=1Fn. Then, since edge weights associated with G
are summable, we have

w(S) = lim
n→∞

w(Fn) ≤ lim
n→∞

w(T n) = w(T ∗). (3)

Since S was an arbitrary spanning tree of G, we conclude
that T ∗ is a MaxST of G.

It is immediate from (3) that we have optimal value
convergence of the iterates of Prim’s algorithm, namely
that w(T n) → w(T ∗) as n → ∞ and in fact w(T n) mono-
tonically converges to w(T ∗). The sequence of trees T n

converges to the tree T ∗ in the following sense: a sequence
of subgraphs S k of a graph G converges to a subgraph S
in G if there is a positive integer Ke for each edge e ∈ E
so that for all k ≥ Ke we have e ∈ S k if e ∈ S while
e < S k if e < S . Indeed, for every edge e ∈ T ∗, Ke is the
minimum value of n such that e ∈ T n. That is, an edge e
enters T n for some n only when e lies in T ∗ and this edge
stays in all remaining iterates. For additional discussion
of topologies on infinite graphs see [16].

We can say more about this value Ke. Without loss of
optimality, let node 1 be the initial node of G for Prim’s
Algorithm. Let T ∗ be the MaxST delivered in the limit by
Prim’s Algorithm (as defined in (2) above). For any edge
e ∈ T ∗, let p∗(e) be the unique path in T ∗ from node 1 up
to (and including) edge e. Let w∗(e) = mine′∈p∗(e) we′ > 0
be the minimum weight of an edge in the path p∗(e). For
every positive real number γ, let E(γ) be the set of edges
in G with weights greater than or equal γ. By Assump-
tion 2 the set E(γ) is finite. Let N(γ) denote the (finite)
cardinality of E(γ).

Lemma 1. Let e ∈ T ∗. Then e ∈ T n for all n ≥ N(w∗(e)).
That is, Ke ≤ N(w∗(e)).

Proof. Consider the set of edges E(w∗(e)). Since every
edge along the MaxST path p∗(e) to edge e ∈ T ∗ has
weight at least w∗(e) and one of these edges in p∗(e) is
a candidate for adding in every step n of Prim’s Algo-
rithm before all of p∗(e) has been formed in T n, Prim’s
algorithm only adds edges from E(w∗(e)) while p∗(e) is
being formed. Since there are at most N(w∗(e)) edges in
E(w∗(e)), the path p∗(e) (and, in particular, the edge e)
must be added in the first N(w∗(e)) steps of Prim’s al-
gorithm. That is, e ∈ T N(w∗(e)). Since edges are only
added to the iterates T n (and never removed) in the ex-
ecution of Prim’s algorithm, we conclude that e ∈ T n for
all n ≥ N(w∗(e)).

The following example helps illuminate the result in
Lemma 1 in a context where the weights of the edges of
the graph decay geometrically.

Example 3. Suppose G is a locally finite and connected
graph with edges labeled ℓ = 1, 2, Suppose, in addi-
tion, that the edge weights are disciplined by a discounted
upper bound as follows: for some b > 0 and 0 < δ < 1 we
have

wℓ < bδℓ (4)

5

for all ℓ = 1, 2, Clearly, this graph satisfies Assump-
tion 2 and so by Theorem 1, a MaxST T ∗ (given by (2))
exists and can be found by Prim’s algorithm. We now
show that we can determine whether a given edge e is in
T ∗ by only considering a finite subgraph whose size is a
function of w∗(e), b, and δ.

Let γ be a positive real number and let L(γ) be the L
satisfying bδL = γ. Note that wℓ ≤ bδℓ ≤ bδL(γ) = γ
for all ℓ ≥ L(γ), where the first inequality follows from
(4). Observe that E(γ) ⊆ {1, 2, . . . , L(γ)} since only those
edges ℓ with ℓ ≤ L(γ) are candidates to be in E(γ). Recall
that E(γ) is the set of edges of G with weights greater than
or equal γ. Hence, we can conclude that N(γ) ≤ L(γ).

Note that we have δL(γ) = γ/b or L(γ) = logδ(γ/b). By
Lemma 1, we know that if e ∈ T ∗ then e ∈ T n for n ≥
N(w∗(e)) where N(w∗(e)) ≤ L(w∗(e)) = logδ(w

∗(e)/b).
That is, e ∈ T n for n ≥ logδ(w

∗(e)/b).
The quantity logδ(w

∗(e)/b) is computable in finite time
for every edge e as a function of w∗(e). ◁

Note that edge e ∈ T n at step n for every n is based
on the topology and weights associated with the finitely
many edges emanating from the tree T n. This data, to-
gether with that contained in T n itself, serves as a type of
forecast horizon prominent in planning horizon research
[6, 11, 7, 8, 9]. That is, edge e is guaranteed to be a part of
a MaxST independently of any unforecasted data beyond
the tree T n and the edges emanating from it. Thus, for
example, MaxST can be implemented sequentially as we
forecast demand and supply data without the necessity of
reworking previous builds of trees.

4. Comparison with existing work

In the introduction, we briefly mentioned two closely
related papers to our work: [23] and [20]. These papers
develop algorithms to find the equivalent of MinSTs and
MaxSTs in infinite matroids. These algorithms find these
objects only under certain conditions, as specified in these
papers. For brevity, we will not introduce the matroid
framework in this paper to make these conditions precise.
However, in order to compare their results to ours, we
will briefly describe their results in the language of infi-
nite graphs used in this paper.

[23] and [20] develop a generalized version of
Kruskal’s algorithm for finding spanning trees. The idea

of Kruskal’s algorithm is roughly as follows: find the
maximum (resp. minimum) weight edge in the graph, and
add it to a growing forest, ensuring that no cycles are in-
troduced as we proceed. For the algorithm to be finitely
implementable, the task of finding edges with maximum
(resp. minimum) weight in the graph needs to be achiev-
able in finite time. In the case of finding MinSTs, it’s
possible that no such minimum weight edge exists.

For the MaxST problem under our assumptions, a max-
imum weight edge can always be found. Let’s briefly ex-
plore why this is. Let ℓ be the label of an arbitrary edge
not added yet to the growing forest (using the labeling of
edges defined in the paragraph after Assumption 2). Since
the edge weights are positive and summable, there exists
an edge labeled ℓ′ such that wm ≤ wℓ for all m ≥ ℓ′. Then,
the maximum weight edge not in F can be chosen among
the edges in the finite set {1, . . . , ℓ−1, ℓ, ℓ+1, . . . , ℓ′−1, ℓ′}.
In other words, a maximum weight edge can be found in
finite time.

Let’s now compare this with what happens in our gen-
eralization of Prim’s algorithm. First, the information re-
quired to compute iterates is much less in Prim’s algo-
rithm than in Kruskal’s. Observe that line 4 of Prim’s
algorithm can be executed by only searching the finitely
many edges emanating from the tree iterate T . Given
knowledge T , the number of edges that need to be consid-
ered is known—at most the sum of degrees of the nodes
in T . By contrast, although finding an edge to add in
Kruskal’s algorithm can be achieved in finite time, with-
out further assumptions on the weights (as we did in Ex-
ample 3) we cannot give a clear bound on how far into
the graph we need to explore. Thus, while both Prim and
Kruskal are greedy, Prim is greedy in a myopic way by
finding heavy edges early in the graph.

This raises a question of how input is provided to the
two algorithms. Since the graph is infinite, it is not possi-
ble to input all of the data in the graph in finite time. A fi-
nite subset of the data must be “streamed” to the algorithm
as it proceeds. This raises the consideration of a stream-
ing model of computation [19, 10]. We will not go into
the fine details of streaming complexity here, except to
say that the informational differences between Prim’s and
Kruskal’s algorithms imply that Prim’s can work when a
much smaller amount of finite data is streamed to the al-
gorithm (the data on edges incident with the current tree
iterate). Alternatively, Kruskal’s algorithm requires fore-

6

casting data without an a priori upper bound for recursive
determination of maximal weight edges.

This brings us to a separate point. Whereas the iter-
ate forests of Kruskal’s algorithm can be disconnected,
the iterates of Prim’s algorithm are always trees. Thus, if
our infinite extension of Prim’s algorithm is finitely termi-
nated, the result is a spanning tree on the finite graph so far
explored by the algorithm. This serves as a partial optimal
solution that can be implemented as it is constructed. This
distinction may be important in rolling horizon applica-
tions of spanning tree problems—like establishing com-
munication links along edges from a source to nodes—
where disconnected partial solutions recommend making
links that are not connected to the source.

Acknowledgements

We thank the associate editor and two reviewers for
their help on improving this paper. In particular, one re-
viewer alerted us to the work of [23] on Kruskal’s algo-
rithm for infinite graphs. This helped us refine the posi-
tioning of the paper. Christopher Thomas Ryan is sup-
ported by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant RGPIN-2020-06488
and the UBC Sauder Exploratory Grants Program.

References

[1] Louigi Addario-Berry, Nicolas Broutin, Christina
Goldschmidt, and Grégory Miermont. The scaling
limit of the minimum spanning tree of the complete
graph. The Annals of Probability, 45(5):3075–3144,
2017.

[2] R. Aharoni, E. Berger, A. Georgakopoulos, A. Perl-
stein, and P. Sprüssel. The max-flow min-cut theo-
rem for countable networks. Journal of Combinato-
rial Theory Series B, 101(1):1–17, 2011.

[3] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, 1993.

[4] David Aldous and J Michael Steele. Asymptotics for
Euclidean minimal spanning trees on random points.
Probability Theory and Related Fields, 92(2):247–
258, 1992.

[5] Edward J Anderson and Andrew B Philpott. A
continuous-time network simplex algorithm. Net-
works, 19(4):395–425, 1989.

[6] James C. Bean and Robert L. Smith. Conditions for
the existence of planning horizons. Mathematics of
Operations Research, 9(3):391–401, 1984.

[7] James C Bean and Robert L Smith. Conditions for
the discovery of solution horizons. Mathematical
Programming, 59(1):215–229, 1993.

[8] Christian Bès and Suresh P. Sethi. Concepts of fore-
cast and decision horizons: Applications to dynamic
stochastic optimization problems. Mathematics of
Operations Research, 13(2):295–310, 1988.

[9] Suresh Chand, Vernon Ning Hsu, and Suresh Sethi.
Forecast, solution, and rolling horizons in operations
management problems: A classified bibliography.
Manufacturing & Service Operations Management,
4(1):25–43, 2002.

[10] Yi-Jun Chang, Martı́n Farach-Colton, Tsan-Sheng
Hsu, and Meng-Tsung Tsai. Streaming complex-
ity of spanning tree computation. arXiv preprint
arXiv:2001.07672, 2020.

[11] Torpong Cheevaprawatdomrong, Irwin E Schochet-
man, Robert L Smith, and Alfredo Garcia. Solution
and forecast horizons for infinite-horizon nonhomo-
geneous markov decision processes. Mathematics of
Operations Research, 32(1):51–72, 2007.

[12] Nicos Christofides. Worst-case analysis of a new
heuristic for the travelling salesman problem. Tech-
nical report, Carnegie-Mellon University Technical
Report, 1976.

[13] R. Diestel. Graph Theory. Springer, 4th edition,
2010.

[14] Reinhard Diestel and Daniela Kühn. Topological
paths, cycles and spanning trees in infinite graphs.
European Journal of Combinatorics, 25(6):835–
862, 2004.

[15] Maman Abdurachman Djauhari and Siew Lee Gan.
Optimality problem of network topology in stock

7

market analysis. Physica A: Statistical Mechanics
and Its Applications, 419:108–114, 2015.

[16] Agelos Georgakopoulos. Graph topologies in-
duced by edge lengths. Discrete mathematics,
311(15):1523–1542, 2011.

[17] Ronald L Graham and Pavol Hell. On the history of
the minimum spanning tree problem. Annals of the
History of Computing, 7(1):43–57, 1985.

[18] Daniel Granot and Gur Huberman. Minimum cost
spanning tree games. Mathematical Programming,
21(1):1–18, 1981.

[19] Monika Rauch Henzinger, Prabhakar Raghavan, and
Sridhar Rajagopalan. Computing on data streams.
External memory algorithms, 50:107–118, 1998.

[20] Victor Klee. The greedy algorithm for finitary and
cofinitary matroids. In Theodore S. Motzkin, editor,
Combinatorics: Proceedings of Symposia in Pure
Mathematics, pages 137–152. 1971.

[21] Sevnaz Nourollahi and Archis Ghate. Duality in
convex minimum cost flow problems on infinite net-
works and hypernetworks. Networks, 70(2):98–115,
2017.

[22] Alice Paul, Daniel Freund, Aaron Ferber, David B
Shmoys, and David P Williamson. Budgeted prize-
collecting traveling salesman and minimum span-
ning tree problems. Mathematics of Operations Re-
search (articles in advance), 2019.

[23] Richard Rado. Note on independence functions.
Proceedings of the London Mathematical Society,
3(1):300–320, 1957.

[24] Christopher Thomas Ryan, Robert L. Smith, and
Marina A. Epelman. A simplex method for uncapac-
itated pure-supply infinite network flow problems.
SIAM Journal on Optimization, 28(3):2022–2048,
2018.

[25] Thomas C. Sharkey and H. Edwin Romeijn. A
simplex algorithm for minimum-cost network-flow
problems in infinite networks. Networks, 52(1):14–
31, 2008.

[26] Kenneth J Supowit, David A Plaisted, and Ed-
ward M Reingold. Heuristics for weighted perfect
matching. In ACM STOC Symposium on Theory of
Computing, pages 398–419, 1980.

8

