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Abstract. We discuss finding minimum-cost spanning trees (MSTs) on connected graphs with4
countably many nodes of finite degree. When edge costs are summable and an MST exists (which is5
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the underlying graph has the finite cycle (FC) property (meaning, every edge is contained in at most11
finitely many cycles) and distinct edge costs, we show that a unique MST T ∗ exists and the layered12
greedy algorithm produces iterates that converge to T ∗ by eventually “locking in” edges after finitely13
many iterations. Applications to network deployment are discussed.14
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1. Introduction. The problem of finding minimum-cost spanning trees on finite17

graphs is a classical combinatorial optimization problem with numerous applications18

in practice [11, 13, 14, 20]. The problem is used as a subroutine or heuristic for19

solving other graph optimization problems [3, 9, 25]. To our knowledge, an algorithmic20

approach to the MST problem on infinite graphs has not been systematically pursued,21

despite there being extensive literature on algorithms for infinite graphs in other22

contexts (see, for instance, [2, 7, 10, 18]). Several references examine properties of23

spanning trees in the limit of finite random graphs (see, for instance, [1, 4, 5, 16]),24

but the focus of these papers is not on the questions of existence and performance of25

algorithms, topics we emphasize here. The only paper we know of that deliberates on26

producing an algorithm for finding MSTs in infinite graphs is [15] in the more general27

context of infinite matroids (we discuss this paper in more detail below).28

In a finite graph, an MST always exists and can be found by a greedy algorithm.29

The MST problem on infinite graphs does not afford such luxuries. As we will show30

through examples, an MST may not even exist in an infinite graph, and when it does,31

it may not be reachable by a greedy algorithm.32

In response to this, we develop an algorithm to tackle the MST problem (whenever33

an MST exists) in any connected graph with countably many nodes of finite degree34

and summable edge costs. This algorithm finds MSTs in a growing sequence of finite35

subgraphs that, in the limit, converge in cost to that of an MST of the original graph36

(see Theorem 3.3). We call this result — i.e., convergence of the total cost of the edges37

of iterate trees to the total cost of the edges of an MST — convergence in objective38

value.39
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2 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

The sequence of subgraphs considered by our algorithm are called layers, and so40

we call our algorithm the layered greedy algorithm since it applies a greedy algorithm41

repeatedly in a growing set of layers of the graph. It is important to note that42

the layered greedy algorithm (as a whole) is not greedy since the MSTs found at each43

iteration must be computed “from scratch” and do not necessarily extend the previous44

MSTs from earlier layers in a greedy fashion. We also show, under an assumption akin45

to discounting of the edge costs in the graph, that finite termination of the infinite46

algorithm provides “good” solutions with bounded error in finite time.47

The fact that the layered greedy algorithm guarantees convergence in objective48

value on a broad class of infinite graphs is the first important result in our paper.49

However, it naturally leads to three additional questions.50

(Q1) We have convergence in objective value when an MST is known to exist51

in the original graph. How can we guarantee that an MST exists?52

(Q2) Convergence in objective value is a nice feature, but we would also like53

convergence to an optimal solution. How can we ensure that the finite-54

sized iterates of the layered greedy algorithm converge to an MST of the55

original, infinite graph?56

(Q3) Since the layered greedy algorithm is not greedy (but only locally greedy57

within layers), edges may come and go from iterate spanning trees as the58

algorithm proceeds. What are some sufficient conditions for an edge of59

the iterates to eventually “lock in” to an edge of the MST after finitely60

many iterations? Moreover, can these conditions be verified during the61

execution of the algorithm?62

All three questions rely on careful consideration of the topological properties of63

the graph. Here, by “topological” we refer to questions of closedness, compactness,64

and convergence in the space of subgraphs of a given graph (and not the common65

alternative usage of referring to the arrangement of edges and nodes in a graph as its66

“topology”). Regarding (Q1), topology plays an important role because the existence67

of optimal solutions is naturally a topological consideration. As in other infinite-68

dimension optimization problems, we must argue that the feasible region has some69

notion of compactness and the objective function has some notion of continuity to70

conclude (using a Weierstrass-type result) that an optimal solution exists.71

In (Q2), topology is implicit in the question itself because any notion of conver-72

gence requires a specification of topology. At first glance, (Q3) appears unrelated to73

topology, but the concept of “lock-in” has a topological flavor. Indeed, convergence74

via lock-in is precisely the notion of convergence in discrete topologies (see, for in-75

stance, Section 12 of [17]). This motivates our use of the product discrete topology,76

where convergence corresponds to lock-in edge by edge (here, the product is taken77

across edges).78

With this topology, we can develop weak sufficient conditions for positive answers79

to the three questions we posed. In particular, we show (in Theorem 5.5) that the80

following condition:81

(C1) Finite Cycle (FC) property: every edge of the graph is contained in at82

most finitely many cycles in the graph83

is sufficient to guarantee that an MST always exists, answering (Q1). This follows84

by showing compactness of the set of spanning trees in the product discrete topology85

under the FC property (see Lemma 5.4).86

If, additionally, the following holds:87

(C2) Distinct Edge Costs: no two edges have the same cost,88

then a unique MST always exists (Theorem 6.3). The uniqueness is useful in estab-89
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MINIMUM SPANNING TREES IN INFINITE GRAPHS 3

lishing our answer to (Q2): the sequence of iterates of the layered greedy algorithm90

converges to the unique MST in the product discrete topology when (C1) and (C2)91

hold. Finally, because of the nature of convergence in the product discrete topology,92

(C1) and (C2) give conditions for lock-in of the edges, answering the first part of (Q3).93

At the end of Section 6, we provide verifiable conditions for discovery of these edges,94

that have lock-in in agreement with “early” edges of the MST, addressing the second95

part of the last question.96

Related work. We add to the growing literature on algorithms for solving prob-97

lems on infinite graphs, including recent applications in deep learning (see the review98

article [26] for a summary of this work). Our work resembles a stream of work for99

solving network flow problems on infinite graphs [12, 18, 19, 21, 22, 24]. An important100

distinction between that line of work and what we pursue here is the definition of trees101

and connectedness. In the network flow literature, trees can be connected through a102

“node at infinity” that acts as a universal sink for flow generated at supply nodes in103

the graph. In contrast, our notion of connectivity is more classical, requiring nodes to104

be connected by a path of finitely many edges. Another important distinction is that105

network flow problems are typically studied as continuous optimization problems,106

allowing, for example, duality arguments and generalizations of the max-flow/min-107

cut theorem to infinite graphs [2]. By contrast, the MST problem is fundamentally108

discrete.109

This paper is also related to the literature on infinite matroids (see, for instance,110

[8] and references therein). Here, the primary focus is on describing axiom systems111

for carefully defining the notion of infinite matroid to allow for a convenient matroid112

duality theory. As far as we know, little attention (other than [15]) has been given to113

the generality of greedy algorithms in infinite graphs. The workhorse of much of this114

infinite matroid theory is using Zorn’s lemma to show the existence of maximal objects115

within infinite graphs. By contrast, our theory relies more heavily on topological116

arguments, including Tychnoff’s Theorem, Weierstrass’s Theorem, and convergence117

proofs. Indeed, our layered greedy MST algorithm does not produce a “chain” of118

nested spanning trees that would be necessary to leverage Zorn-like arguments.119

[15] proposes a “greedy” algorithm for finding bases in finitary infinite matroids120

(corresponding to MSTs in infinite graphs with nodes of finite degree). This algo-121

rithm, however, is shown to find an MST using transfinite induction. Infinite graph122

adaptations of greedy algorithms for finding MSTs in finite graphs may even fail to123

converge to trees or span the nodes of the graph. A greedy algorithm can be “in-124

definitely distracted” by an infinite subset of low-cost edges, never getting around to125

span other parts of the graph. Klee’s algorithm avoids this issue by continuing to126

analyze its execution after an infinite time is exhausted exploring a single subtree of a127

spanning tree. This is why the algorithm is called transfinite. The arguments in this128

paper do not use transfinite induction; we analyze the execution of algorithms using129

standard limiting arguments.130

Of course, one can view the graph as a matroid [10] where the independent subsets131

of the edges of G are its forests. This view would allow to prove some of the results in132

this paper using matroid theory, but other results, such as solution convergence and133

early edge detection are established exploiting the special properties we assume about134

the graphical and cost structures. For this reason, we will use terminology and ideas135

familiar from studying finite graphs as much as possible, only delving into topics that136

are peculiar to infinite graphs when necessary and avoiding the even more general137

language of matroids altogether. We hope that this makes the paper more accessible138
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4 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

to readers with little or no exposure to either matroids or infinite graph theory. It is139

an open direction for future research to examine the implications of our method for140

general infinite matroids.141

Organization of the paper. The paper is organized as follows. In Section 2,142

we describe the general class of infinite graphs that we consider and define the MST143

problem in this class. Section 3 presents the layered greedy algorithm and analyzes144

its convergence in objective value. Section 4 formalizes the finite cycle property (C1).145

In Section 5, we establish the existence of MSTs under the FC property. In Section 6,146

we establish convergence of iterates of the layered greedy algorithm to an optimal147

spanning tree under the FC property and the additional condition (C2) of distinct148

edge costs. We also explore conditions that allow for discovery of early edges of the149

infinite MST and its implications for applications. Section 8 concludes the paper.150

2. The minimum spanning tree problem.151

2.1. Basic definitions. Let G = (V, E) be an undirected graph with node set152

V = {1, 2, . . . } and edge set E . Let c : E → ℜ denote an edge-cost functional for153

G. We will sometimes use cij to denote the cost c({i, j}) of edge {i, j} ∈ E when154

convenient.155

The set I(i) denotes the nodes that are adjacent to node i, that is, I(i) := {j ∈156

V | {i, j} ∈ E}. The degree of node i is the cardinality of I(i). A graph is locally157

finite if every node has finite degree. A path in G is a finite sequence of distinct nodes158

i1, i2, . . . , in, where {ik, ik+1} ∈ E for k = 1, . . . , n− 1. A ray is an infinite sequence159

of distinct nodes i1, i2, . . . , where {ik, ik+1} ∈ E for k = 1, 2, . . . . Two nodes i and j160

are connected in G if there exists a path starting with node i and ending with node j.161

The graph G is connected if all pairs of nodes i and j in G are connected. We make162

the following assumption throughout the paper:163

Assumption 1. The graph G is locally finite and connected. ◁164

A cycle in G is a finite sequence of nodes i1, i2, . . . , in, i1, where i1, i2, . . . , in is a165

path and {i1, in} ∈ E . A bi-ray consists of a node i and two distinct rays, that is, rays166

(i, i1, i2 . . . ) and (i, j1, j2, . . . ), where all intermediate nodes ik and jℓ are distinct.167

Let H be a subgraph of G and let V(H) and E(H) denote the set of nodes and168

edges in H, respectively. In this paper, we only consider subgraphs with no isolated169

nodes, that is, for every node i ∈ V(H), there exists an edge {i, j} ∈ E(H) for some170

node j ∈ V(H). In light of this, we will typically refer to a subgraph H simply by171

its set E(H) of edges, since the set of nodes is implicit once the edges are defined.172

The cost function will also be defined on the collection P(E) of subsets of edges of E173

(corresponding to subgraphs), where c(H) :=
∑

e∈H c(e) for any H ∈ P(E).174

A forest F of G is an acyclic subgraph of G; i.e., a subgraph of G without cycles.175

A connected forest is a tree. If a subgraph of G has node set V, it is said to span G.176

A connected spanning forest is called a spanning tree.177

One of the nodes in G is called its root node r. (The theory developed below178

is indifferent to which node in G is called the root node.) The first layer of nodes,179

denoted L1, consists of node r and all nodes that are adjacent to r; that is, L1 :=180

{r} ∪ I(r). We define other layers recursively:181

Ln+1 := Ln ∪ {i ∈ I(j) for some j ∈ Ln} , n = 1, 2, . . . ,182

and sometimes refer to {r} as layer 0. Since G is locally finite and connected, each183

layer contains a finite number of nodes, every node is included in some layer, and once184
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a node is in layer Ln, it is in every subsequent layer Lk for k > n. Let Gn := (Ln, En)185

for n ≥ 1 denote the subgraph of G, where En := {{i, j} ∈ E | i, j ∈ Ln} is the set of186

edges in the subgraph induced by the set of nodes Ln (we also use the term “layer n”187

to refer to Gn).188

2.2. Formal statement of the minimum spanning tree problem. Recall189

that the cost c(T ) of a spanning tree T of G is the sum of the costs of the edges of T ,190

i.e., c(T ) =
∑

{i,j}∈E(T ) cij . Our problem is to find a minimum-cost spanning tree of191

G, i.e., solve192

(P) c⋆ := inf{c(T ) | T is a spanning tree of G}.193

We call any optimal solution T ⋆ of (P) a minimum spanning tree (MST). We say194

G possesses an MST if (P) has an optimal solution (that is, the infimum in (P) is195

attained).196

3. The layered greedy algorithm. We now present the algorithm we analyze197

in this paper. The algorithm generates a sequence of spanning trees on finite restric-198

tions of the graph. We show that this sequence has nice convergence properties.199

Algorithm 3.1 Layered greedy algorithm

1: Input: A locally finite and connected graph G = (V, E) with edge costs.
2: Initialize: Set n← 1 and T to be the empty subgraph of G with empty node set

and empty edge set.
3: while T is not a spanning tree do
4: Find MST on next layer: Find an MST Tn on layer Gn using Prim’s al-

gorithm (for completeness, we give a description of Prim’s algorithm below).

5: Set T ← Tn and n← n+ 1.

While most of the forthcoming analysis of the layered greedy algorithm is agnostic200

to the particular method used to find the MSTs on the layers in Step 4, Prim’s201

algorithm is instrumental in the early discovery of edges of an MST on G, which202

we discuss in subsection 6.2. It is one of the classical greedy algorithms for finding203

MSTs on finite graphs (see [3] for further details). In the usual statement of Prim’s204

algorithm, the starting node that initializes the graph is arbitrary. We want ours to205

proceed from the root node r.206

Algorithm 3.2 Prim’s algorithm (for finding an MST on Gn)

1: Input: Graph Gn = (Ln, En) with edge costs.
2: Initialize: Initialize a tree F to be the root node r.
3: while F does not span Gn do
4: Append an edge: Append to F the minimum-cost edge of En emanating from

F (that is, having one node in F and one outside of F ), breaking ties arbitrarily.

It is important to note that while Prim’s algorithm can be leveraged to find the207

tree iterates Tn on each of the finite graphs Gn, we may remove as well as add edges208

as we grow the layers Gn. The next example demonstrates this point.209

Example 1. Consider the ladder graph in Figure 1 with labeled nodes and edge210

costs written next to the edges. If node 1 is the root node, the nodes in layer 1 are211
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1 3

2 4

5

6

10

1 1

1

1

1

1

Fig. 1. Graph for Example 1 illustrating that the layered greedy algorithm is not a greedy
algorithm overall.

nodes 1, 2, and 3. The MST of graph G1 consists of edges {1, 2} and {1, 3} for a cost212

of 11. The second layer has node set {1, 2, 3, 4, 5}. Now we can avoid the expensive213

edge {1, 3} to construct the MST of G2 consisting of the edges {1, 2}, {2, 4}, {3, 4},214

and {3, 5}, for a total cost of 4. In other words, the cheapest edges in a given iteration215

(in this case, {1, 3}) may become too expensive by comparison as the subgraph grows,216

and get dropped in later iterations. ◁217

3.1. Some preliminaries. To analyze the performance of the layered greedy218

algorithm, we need a few preliminaries. First, we start with a classical result in219

infinite graph theory.220

Proposition 3.1 (Proposition 8.1.1 in [10]). Any locally finite and connected221

graph (Assumption 1) contains a spanning tree.222

Second, we need a mechanism for extending iterates of the layered greedy algo-223

rithm, which are not spanning trees of the entire graph G, into spanning trees.224

Proposition 3.2. Suppose Tn = (Ln, E(Tn)) is a spanning tree on the connected225

subgraph corresponding to the n-th layer graph Gn = (Ln, En). Then there exists a set226

of edges Ē ⊆ E \ En such that (V, E(Tn) ∪ Ē) is a spanning tree on G.227

Proof. Let Ḡ be the graph obtained by removing from G nodes Ln and all edges228

incident to them (including both edges En within the n-th layer and the edges con-229

necting nodes in Ln to nodes in Ln+1 \Ln). Each connected component of Ḡ satisfies230

Assumption 1, and therefore contains a spanning tree (Proposition 3.1). Moreover,231

each connected component of Ḡ contains at least one node that belongs to Ln+1 \Ln232

— select one of these nodes in each connected component and select one of the edges233

connecting it to layer n. Then the union of Tn, the aforementioned spanning trees on234

the connected components of Ḡ, and the selected edges that connect these connected235

components to Ln (and thus Tn) is a spanning tree on G.236

Third, we must impose an additional assumption on the cost functional.237

Assumption 2. The edge cost functional c : E → ℜ is such that
∑

e∈E |c(e)| <∞.238

◁239

If we label the costs of the countably many edges in E by cℓ for ℓ = 1, 2, . . . , then240

Assumption 2 becomes c = (c1, c2, . . . ) ∈ ℓ1 (where ℓ1 is the vector space of absolutely241

summable sequences).242

3.2. Convergence in objective value. We are now ready to prove a main243

result of the paper.244
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Theorem 3.3. Suppose G is a locally finite and connected graph (Assumption 1)245

whose edge cost functional is absolutely summable (Assumption 2). If G possesses an246

MST of cost c⋆ then the layered greedy algorithm converges in objective value; that is,247

the sequence Tn of iterates satisfies c(Tn)→ c⋆.248

Proof. Let T ⋆ be an MST of a locally finite connected graph G, and let T ⋆
n denote249

the restriction of T ⋆ to Gn. By construction, c(T ⋆
n) → c(T ⋆) = c⋆ as n → ∞. Note250

that T ⋆
n is a forest on Gn, although not necessarily a spanning tree. It can be extended251

to a spanning tree on Gn with the addition of a finite number of edges (since Gn is a252

finite graph). Let T̄ ⋆
n be the cheapest such extension and define253

ϵ′n := c(T̄ ⋆
n)− c(T ⋆

n).254

Since Tn is an MST on Gn, we have255

(3.1) c(Tn) ≤ c(T̄ ⋆
n) = c(T ⋆

n) + ϵ′n.256

Since T ⋆ is a spanning tree of G, for every pair of nodes i and j in G, there is a unique257

finite path Pij connecting them in T ⋆. Moreover, path Pij must be wholly contained258

in layer Gnij
for nij = maxk∈Pij

ℓ(k), where ℓ(k) is the number of the smallest layer259

containing node k. Let260

(3.2) m(n) := max{m | nij ≤ n for all i, j ∈ Gm}.261

In other words, given n, m(n) is the number of the largest layer such that all pairs of262

nodes in this layer are connected in T ⋆ by paths wholly contained in Gn.263

Note that none of the edges added to T ⋆
n to construct T̄ ⋆

n are in Gm(n), since264

every pair of nodes in Gm(n) is already connected by a path in T ⋆
n . Hence, ϵ′n =265

c(T̄ ⋆
n)− c(T ⋆

n) ≤ ϵm(n), where266

(3.3) ϵm(n) :=
∑

e∈E\Em(n)

|c(e)|267

is the sum of the absolute values of costs of edges outside of layer Gm(n).268

Observe that m(n)→∞ as n→∞, which follows from the finiteness of the path269

Pij between any two nodes i and j and local finiteness and connectedness of G. Hence270

ϵm(n) → 0 as n→∞ since c ∈ ℓ1 by Assumption 2.271

By Proposition 3.2, Tn can be extended to span G. Let Sn denote one such272

extended spanning tree, with additional edges E(Sn) \ E(Tn) ⊆ G \Gn, and let273

∆n := c(Sn)− c(Tn).274

Observe that, by construction, ∆n → 0 as n→∞. Now,275

(3.4) c⋆ ≤ c(Sn) = c(Tn) + ∆n ≤ c(T ⋆
n) + ϵ′n +∆n,276

where the first inequality holds since c⋆ is the cost of an MST on G and the second277

inequality holds by (3.1). Since, as n → ∞, ∆n → 0, ϵ′n ≤ ϵm(n) → 0, and c(T ⋆
n) →278

c(T ⋆) = c⋆, (3.4) implies c(Sn) → c⋆ and c(Tn) → c⋆ as n → ∞, establishing the279

result.280
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8 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

3.3. Error bound after finite termination. We are also interested in the281

question of how fast the costs c(Tn) of the iterates Tn approach the optimal value c⋆.282

To provide a partial answer, we need the following additional assumption (which is283

only made in this subsection and not in the rest of the paper).284

Assumption 3. The graph G = (V, E) and the cost function c : E → ℜ satisfy285

the following: (i) there exist β ∈ (0, 1) and γ ∈ (0,+∞) such that for every edge286

{i, j} ∈ E, 0 ≤ cij ≤ γβmin{ℓ(i),ℓ(j)}, where ℓ(i) is the number of the smallest layer287

containing node i, and (ii) there exists a uniform bound M on the cardinality of node288

degrees in G, with M < 1/β. ◁289

Under this assumption, we can prove the following.290

Proposition 3.4. Let Sn denote the extensions to spanning trees (via Propo-291

sition 3.2) of the iterates Tn produced by the layered greedy algorithm. Under as-292

sumptions of Theorem 3.3 and Assumption 3, the errors in cost satisfy the following293

bound:294

(3.5) 0 ≤ c(Sn)− c(T ⋆) ≤ Mγ

(1− δ)
(δn + δm(n)),295

where m(n) is defined in (3.2) and δ = Mβ < 1.296

Proof. This proof refers to several bounds established in the course of the proof297

of Theorem 3.3. We can bound298

(3.6) 0 ≤ c(Sn)− c(T ⋆) ≤ c(T ⋆
n)− c(T ⋆) + ϵ′n +∆n ≤ ϵ′n +∆n,299

where the first inequality follows by optimality of T ⋆, the second inequality reproduces300

(3.4), and the last inequality follows because T ⋆
n is a subgraph of T ⋆, and the edge301

costs are nonnegative by Assumption 3(i).302

Recall that, by definition, Ln is the set of all nodes that are at most n edges303

“away” from the root node r, i.e., for every node in Ln, there exists a path between304

that node and r that is at most n edges long.305

Let ϵn :=
∑

e∈E\En
c(e) be the sum of the costs of all edges in E \ En.1 From306

Assumption 3(ii), the number of edges joining layer n to layer n+1 is bounded above307

by Mn+1. This follows by induction on the layer number, noticing that the maximum308

number of nodes in Ln is M times the number of nodes in Ln−1. Moreover, the cost309

of each edge joining layer n to n + 1 is bounded above by γβn, by Assumption 3(i).310

Combining these observations, we establish311

∆n ≤ ϵn =
∑

e∈E\En

c(e) ≤
∞∑

m=n

Mm+1γβm
312

= Mγ(Mβ)n
∞∑

m=0

(Mβ)m = Mγδn
∞∑

m=0

δn = Mγ(δn/(1− δ)).313

314

As part of the proof of Theorem 3.3, we showed that ϵ′n can be bounded above315

by ϵm(n), and so316

ϵ′n ≤ ϵm(n) ≤Mγ(δm(n)/(1− δ)).317

1We introduced similar notation in equation (3.3) in the proof of Theorem 3.3; here, it is no
longer necessary to take absolute values since the costs are assumed to be nonnegative.
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Substituting these bounds into (3.6), we derive318

0 ≤ c(Sn)− c(T ⋆) = Mγ(δn/(1− δ)) +Mγ(δm(n)/(1− δ)) =
Mγ

(1− δ)

(
δn + δm(n)

)
,319

as required.320

From the proof of Theorem 3.3, we know m(n)→∞ as n→∞ and so the error321

bound in (3.5) converges to 0 as n grows. Of course, there remains the question of322

assessing the rate at which the sequence m(n) grows with n to further analyze the323

convergence rate of the algorithm. The growth rate of m(n) depends on the structure324

of the graph, and different MSTs can give rise to different functions m(n).325

Let L(m) be the maximum number of edges over all paths Pij in the tree T ⋆326

connecting nodes i and j in layer Gm. Note that L(m) < ∞ since Gm is finite. For327

i, j ∈ Gm, we have nij = maxk∈Pij
ℓ(k) ≤ m + L(m). Moreover, {m | nij ≤ n for all328

i, j ∈ Gm} ⊇ {m | m + L(m) ≤ n}. Hence, m(n) = max{m | nij ≤ n for all i, j ∈329

Gm} ≥ max{m | m+L(m) ≤ n} = max{m | L(m) ≤ n−m}. Now, note that L(x) is330

increasing in positive real numbers x so that max{x | L(x) ≤ n− x} is attained at a331

unique positive real solution x(n) to the equation L(x) = n−x. Thus m(n) = ⌊x(n)⌋;332

that is, m(n) is the largest integer less than or equal to x(n). This concrete formula333

can be used to assess the growth of the bound in (3.5), if one has an understanding of334

the function L(m) and its connection to the structure of an optimal tree T ⋆ in specific335

applications.336

Remark 1. Since we employ Prim’s Algorithm to find an MST in layer Gn, the337

computational time in iteration n of the layered greedy algorithm is O(|Ln|2). This,338

together with (3.5), yields a bound on the computational time to find a spanning tree339

achieving a cost error within a pre-specified error from optimal. ◁340

4. The finite cycle property. In Theorem 3.3, we showed that the layered341

greedy algorithm satisfies convergence in objective value (under Assumptions 1 and 2)342

whenever the graph possesses an MST. This naturally leads to the question of what343

graphs possess MSTs (question (Q1) in the introduction). In this section, we describe344

an elegant sufficient condition (and prove it suffices for existence in the next section).345

We say that a graph satisfies the finite cycle (FC) property if every edge is con-346

tained in at most finitely many cycles of G. The graph in Figure 1 fails the FC347

property because the edge {1, 2} is in infinitely many cycles in the graph. The next348

example satisfies the FC property.349

Example 2. Consider the graph in Figure 2. Observe that every edge lies in a350

unique cycle in the graph, and thus satisfies the FC property. ◁351

We capture the FC property in the following assumption, and refer to this as-352

sumption whenever the FC property is invoked later in the paper:353

Assumption 4. The graph G satisfies the FC property.354

Before moving on to studying the implications of the FC property for the MST355

problem, we take a brief detour to discuss the simple sufficient condition of absence356

of bi-rays for a graph to satisfy the FC property. Because the proof of this result will357

take us off the main path of our development, we put it in an appendix. The reader358

should be aware, however, that the proof relies on the contents of Section 5.359

Proposition 4.1. If G contains no bi-rays, then G satisfies the FC property.360

Proof. See Appendix A.361
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Fig. 2. A graph where FC holds (see Example 2).

0

1
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8

Fig. 3. A graph with no minimum spanning tree (see Example 3).

Clearly, the converse of Proposition 4.1 is not true. Consider again the graph in362

Figure 2. The bottom path connecting all of the “triangle” pieces is a bi-ray, but the363

graph nonetheless satisfies the FC property.364

5. Existence of a minimum spanning tree. Proposition 3.1 shows that a365

spanning tree always exists, but this does not ensure that an optimal solution to the366

MST problem (P) exists. Consider the following example.367

Example 3. Consider the one-way-infinite ladder graph in Figure 3, with top368

and bottom rays of 0-cost edges connected by infinitely many rungs with decreasing369

costs. The most expensive spanning tree has cost 1, consisting of the left-most rung370

of cost 1 connecting the top and bottom rays. A spanning tree of cost 1/4 is drawn in371

non-dashed edges in the figure. One can similarly construct spanning trees of cost 1/8,372

1/16, etc. Thus, a sequence of spanning trees whose costs converge to 0 can be found373

in the graph. However, no spanning tree has cost 0 since all edges have nonnegative374

cost and the 0-cost edges do not form a connected graph. Therefore, a minimum-cost375

spanning tree does not exist. ◁376

To establish existence, we will use Weierstrass’s standard optimization result (see,377

for instance, Theorem 2.35 in [6]) that minimizing a continuous function over a com-378

pact set always yields a minimizer. The challenge here is to develop the appropriate379

notion of topology to define continuity and compactness.380

5.1. The product discrete topology. Our desire to apply Weierstrass’s The-381

orem to (P) motivates the following notion of convergence.2382

Definition 5.1. A sequence of subgraphs Sk of graph G converges to a subgraph383

S in G in the product discrete topology if there is a positive integer Ke for each edge384

e ∈ E such that for all k ≥ Ke, e ∈ Sk if and only if e ∈ S. We call this the lock-in385

2Others use different notions of convergence, mostly based on the fact that they study random
graphs and so are interested in probabilistic notions of convergence. See, for instance, [4].
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property of edges of the sequence of subgraphs to the edges of the limiting subgraph.386

◁387

We can understand the use of the terminology “product” and “discrete” better in388

light of the following construction. For each edge e ∈ E , define a set Be := {0, 1} and389

endow that set with the discrete metric de(x, y) = 0 if x = y and 1 if x ̸= y. That is,390

de(0, 1) = de(1, 0) = 1 and de(0, 0) = de(1, 1) = 0. Then, clearly, Be is a metric space391

under metric de. There is a bijection between P(E) and the product
∏

e∈E Be, where392

P(E) is the power set of E . Indeed, any subset H of E corresponds to an element χH393

of
∏

e∈E Be where χH(e) = 1 if e ∈ H and 0 otherwise (and vice versa). We call χH394

the characteristic function of the subset of edges H.395

The product
∏

e∈E Be can be endowed with the product topology τ of the discrete396

topologies on Be for every e ∈ E . By Theorem 3.36 in [6], the topology τ is metrizable.397

The significance of this for our purposes is that it suffices to consider subsequences398

(as opposed to nets) to establish topological properties involving τ . In particular, a399

set B in
∏

e∈E Be is closed if every convergent (in τ) sequence χk of elements in B400

has a limit χ ∈ B. Here, convergence in τ means that for every e, there exists a Ke401

such that χk(e) = χ(e) for k ≥ Ke. Moreover, compactness of a set in B is equivalent402

to sequential compactness (see Theorem 3.28 in [6]).403

Returning to the product discrete topology on P(E), it can be seen as correspond-404

ing to the topology τ on
∏

e∈E Be under the bijection H ↔ χH . More precisely, a405

subset H of P(E) is open in the product discrete topology if and only if the subset406

{χh | h ∈ H} of
∏

e∈E Be is open in τ . This notion defines a product discrete topology407

on the collection of all subgraphs on G, as defined in Definition 5.1. In particular, if408

Sk converges to S in the product discrete topology then, for any finite subset of E ,409

the Sk’s agree with S on this set of edges for sufficiently large k.410

5.2. Cost continuity in the product discrete topology. Having set our411

topology, we now want to establish the continuity and compactness needed for Weier-412

strass’s Theorem. We start with establishing continuity of the objective function.413

Lemma 5.2. Suppose the edge cost functional c : E → ℜ is absolutely summable414

(Assumption 2). Then c(·) is continuous in the product discrete topology.415

Proof. To establish continuity of c(·), it suffices to show that if a sequence Hk of416

elements of P(E) converges to H in the product discrete topology, then c(Hk)→ c(H)417

in the usual topology on the reals. That is, for an arbitrary ϵ > 0, we want to show that418

there exists a Kϵ such that |c(Hk)− c(H)| < ϵ for all k ≥ Kϵ. Under Assumption 2,419

there exists a subset E of E such that E′ = E \ E is finite and
∑

e∈E |c(e)| < ϵ/2.420

Since E′ is a finite subset of E , there exists a Kϵ such that Hk agrees with H on all421

edges in E′ for k ≥ Kϵ by the lock-in property. That is, for all k ≥ Kϵ we have422

|c(Hk)− c(H)| =
∣∣∣∣ ∑
e∈Hk∩E

c(e) +
∑

e∈Hk∩E′

c(e)−
∑

e∈H∩E

c(e)−
∑

e∈H∩E′

c(e)

∣∣∣∣423

=

∣∣∣∣ ∑
e∈Hk∩E

c(e)−
∑

e∈H∩E

c(e)

∣∣∣∣424

≤ 2
∑
e∈E

|c(e)| < ϵ.425

426

This establishes the result.427
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5.3. Compactness in the product discrete topology. The final ingredient428

in our existence proof is establishing the compactness of the set of spanning trees.429

The FC property is crucial to this argument. First, we state a preliminary lemma to430

establish the compactness of a superset.431

Lemma 5.3. Let G be a locally finite and connected graph (Assumption 1). The432

space of all subgraphs of G is compact in the product discrete topology τ .433

Proof. Immediate from Tychonoff’s theorem (Theorem 2.61 in [6]).434

Lemma 5.4. Let G be a locally finite and connected graph (Assumption 1) that435

satisfies the FC property (Assumption 4). Then, the set of all spanning trees is com-436

pact in the product discrete topology.437

Proof. In light of Lemma 5.3, it suffices to show that the set of all spanning trees438

is closed in the product discrete topology.439

Let Sk, k = 1, 2, . . ., be a sequence of spanning trees in G that converges in the440

product discrete topology to a subgraph S of G. It then suffices to show that S is,441

itself, a spanning tree. This is achieved in three parts: (i) show S is spanning, (ii)442

show S is acyclic, and (iii) show S is connected.443

To establish (i), observe that if a node i is disconnected from S then each of the444

edges incident to i can only lie in finitely many of the iterates Sk. Then this means445

that node i is isolated in Sk for n sufficiently large, a contradiction of the fact that446

all Sk are connected.447

To establish (ii), suppose that S contains a cycle C. Then, since C contains finitely448

many edges, the lock-in property of convergence in the product discrete topology449

implies that C is in each Sk for k sufficiently large. This contradicts the fact that450

each Sk is acyclic.451

We now establish (iii). We will show that there is a path from i to j in S for any452

pair of nodes i and j. By connectedness of each Sk, there are paths P k connecting i453

and j in Sk for all k. Consider an arbitrary “reference” path Pij in G connecting i454

and j. Path Pij contains finitely many edges, and by the FC property, each edge is in455

at most finitely many cycles in G. Let us collect all these cycles into a finite collection456

of cycles C̃, and let C := {C \ Pij | C ∈ C̃}. That is, for every cycle C ∈ C̃, the subset457

of edges of C that are not in the reference path Pij is an element of C. Again by the458

FC property, C is a finite collection of subsets of edges in G.459

Observe that each P k arises by taking some edges from Pij and some subsets of460

edges from C (in the degenerate cases, P k can exactly equal Pij or just be composed461

of subsets of edges taken from C). Thus, there are only finitely many possibilities462

for the structure of Pn since C is a finite collection and Pij has finitely many edges.463

According to the pigeonhole principle, infinitely many of the P k are thus equal and464

so a subsequence of them converges in the product discrete topology to a path P that465

connects i and j. Since we have assumed that the Sk converge to S in the product466

discrete topology, this implies that P is in S and so i and j are connected in S. This467

implies that S is connected.468

Theorem 5.5. Consider the minimum-cost spanning tree problem (P) and sup-469

pose G is a locally finite and connected graph (Assumption 1) with the FC property470

(Assumption 4) and with costs that are absolutely convergent (Assumption 2). Then,471

an MST (i.e., an optimal solution to (P)) exists.472

Proof. Note that (i) the objective function of (P) is continuous in the product473

discrete topology by Lemma 5.2, and (ii) the feasible region is compact in the product474

discrete topology by Lemma 5.4. The result then follows by Weierstrass’s theorem475
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Fig. 4. Graph for Example 4 illustrating that the layered greedy algorithm fails to find an
optimal MST even when one exists.

(Theorem 2.35 in [6]).476

The above result implies that if the graph G has the FC property, then the477

layered greedy algorithm can be used to find a sequence of trees in G that converges478

to optimality in objective value (combining Theorems 3.3 and 5.5).479

6. Solution convergence. In the previous section, we showed that if a graph is480

locally finite, connected, and satisfies the FC property with summable costs (Assup-481

tions 1, 2, and 4) then the layered greedy algorithm always achieves convergence in482

objective value. However, this does not imply that the iterates of the graph converge483

to an MST. Consider the following example.484

Example 4. Consider the graph in Figure 4, which satisfies Assuptions 1, 2, and485

4. If we apply the layered greedy algorithm, there is a tie between the two identical-cost486

vertical edges within each four-node cycle contained in the layer. Suppose for Tn with487

n odd, the algorithm chooses the “left” edges (shown as the dotted (purple) edges in488

Figure 4), and for Tn with n even, the algorithm chooses the “right” edges (shown as489

the dashed (green) edges in Figure 4). Then the sequence Tn does not converge in the490

product discrete topology at all, let alone to an MST. Thus, the iterates of the layered491

greedy algorithm can fail to converge. ◁492

6.1. Solution convergence when there is a unique MST. One sufficient493

condition to avoid pathological behavior illustrated in Example 4 is having a unique494

MST in the graph.495

Theorem 6.1. Suppose G is a locally finite and connected graph (Assumption 1)496

that satisfies the FC property (Assumption 4) and whose edge cost functional is abso-497

lutely summable (Assumption 2). If G possesses a unique MST T ∗ then the iterates498

of the layered greedy algorithm converge to T ∗ in the product discrete topology.499

Proof. Let Tn be the n-th iterate of the layered greedy algorithm. By Proposi-500

tion 3.2 each iterate can be extended to a spanning tree Sn of G. Suppose, by way of501

contradiction, that the sequence Sn does not converge to T ∗ in the product discrete502

topology. By the compactness of the set of spanning trees (Lemma 5.4), a subsequence503

Snk , k = 1, 2, . . . , converges to a spanning tree T ′ where T ′ ̸= T ∗. By convergence504

in objective value (Theorem 3.3) and continuity (Lemma 5.2), we conclude that T ′ is505

also an MST. Since T ∗ is the unique MST, this is a contradiction.506

The following simple assumption is sufficient to ensure that a graph has at most507

one MST:508
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Assumption 5. The graph G has distinct edge costs; that is, for every two dis-509

tinct edges {i, j} and {i′, j′} we have cij ̸= ci′j′ . ◁510

To prove uniqueness under Assumption 5, we need the following generalization of511

a well-known condition in finite graphs (see, for instance, Theorem 13.1 in [3]).512

Proposition 6.2 (Cut optimality condition). If T ⋆ in an MST of a locally finite513

and connected (Assumption 1) graph G then for all {i, j} ∈ T ⋆, cij ≤ ckℓ for any edge514

{k, ℓ} crossing the cut formed by deleting edge {i, j} from T ⋆.515

Proof. Suppose the condition is not satisfied for some {i, j} ∈ T ⋆, and edge {k, ℓ}516

with cij > ckℓ crosses the cut formed by deleting {i, j} from T ⋆. Then, replacing517

{i, j} by {k, ℓ} in T ⋆ creates a spanning tree that is cheaper, implying that T ⋆ is not518

an MST.519

Theorem 6.3. Let G be a locally finite and connected graph (Assumption 1) with520

distinct arc costs (Assumption 5). If an MST exists for G then this MST is unique.521

Proof. To show uniqueness, suppose S and T are two distinct MSTs (at least522

one is guaranteed to exist by assumption), and let {i, j} ∈ S \ T . Furthermore, let523

{k, ℓ} ∈ T be in the cut created in G by removing {i, j} from S. Since S and T524

are both MSTs, they both satisfy the cut optimality condition (Proposition 6.2), i.e.,525

cij ≤ ckℓ and ckℓ ≤ cij , implying that cij = ckℓ. This is a contradiction, establishing526

that S = T .527

This result (via Theorem 6.1) shows that when we apply the layered greedy al-528

gorithm to a locally finite, connected graph with the FC property and absolutely529

summable distinct edge costs, then the algorithm’s iterates converge to an MST, i.e.,530

it provides an affirmative answer to question (Q2). Moreover, for each edge, we get531

lock-in after finitely many iterations via convergence in the product discrete topology.532

6.2. Discovery of early edges of an MST. Of course, we would like a stronger533

convergence result than Theorem 6.1 in the following sense. Convergence in product534

discrete topology tells us that every edge eventually locks into an edge of an MST of535

G, but it would be better if we had a verifiable sufficient condition for when an edge536

has locked in. As we will see, the layered view of the graph and the nature of Prim’s537

algorithm allow us to provide some partial results in this area.538

In what follows, we adopt Assumption 5 that the graph has distinct edge costs.539

By Theorem 13.1 in [3], which is the finite-graph version of Theorem 6.3, this implies540

that for every n, Tn is the unique MST of the graph Gn and moreover, there will be541

no tie-breaking in Step 4 of Prim’s algorithm.542

With this assumption, we can make the following simple, yet powerful, obser-543

vation. Since in each iteration of the layered greedy algorithm the iterate Tn is544

constructed via Prim’s algorithm, and because Prim’s algorithm always starts with545

the root node and grows the tree Tn from there, the uniqueness in the choice of Tn546

greatly restricts the possibility of deviation in the “early” edges among the iterates547

Tn. The next result formalizes this idea.548

Let enk be the k-th edge added by Prim’s Algorithm applied to Gn initialized with549

the root node r, where k = 1, 2, . . . , |Ln| − 1. We add a little more interpretation550

here for clarity. We are executing the layered greedy algorithm and are on its n-th551

iteration; that is, we are constructing Tn on the graph Gn of layer n. In Step 4 of the552

layered greedy algorithm, there is a call to Prim’s algorithm to construct Tn. The553

subscript k in enk refers to the k-th iteration of Prim’s algorithm within Step 4 of the554

layered greedy algorithm.555
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Let k∗n = max1≤k≤|Ln|−1{k | enℓ ∈ En−1, ℓ = 1, 2, . . . , k}, i.e., the last iteration556

of Prim’s algorithm applied to Gn before an edge that is not contained in Gn−1 is557

selected. Since Prim’s algorithm is initialized with the root node, 1 ≤ k∗n < |Ln| − 1558

for n > 1 (we let k∗1 = 0). Furthermore, let559

(6.1) F ∗
n = {enℓ , ℓ = 1, 2, . . . , k∗n + 1}.560

In other words, F ∗
n is the set of edges added by Prim’s algorithm applied to Gn up to561

and including the first edge that connects a node in Ln−1 and a node in Ln \ Ln−1,562

namely enk∗
n+1 ∈ En.563

Proposition 6.4. Suppose G is a locally finite and connected graph (Assump-564

tion 1) with distinct edge costs (Assumption 5). Then F ∗
n ⊆ Tm, for m ≥ n and565

n = 1, 2, . . ., where F ∗
n is defined in (6.1).566

Proof. Consider an arbitrary n ≥ 1 and arbitrary m ≥ n. For n = 1, the result567

is trivially true, since in this case F ∗
n will include only the cheapest edge incident to568

the root node, and this edge will be added as the first iterate of each application of569

Prim’s algorithm. Consider now n > 1 and m ≥ n. We will show that emℓ = enℓ570

for all ℓ = 1, 2, . . . , k∗n + 1, which implies that F ∗
n ⊆ Tm. We will prove this by571

mathematical induction on ℓ. The claim is clearly true for ℓ = 1 since the minimum-572

cost edge emanating from node r is the same for all graphs Gm with m ≥ 1. Adopt573

the inductive hypothesis that emℓ = enℓ for all ℓ = 1, 2, . . . , k for some k ≤ k∗n. Then574

Prim’s Algorithm, before its k + 1-st iteration, has created trees identical to Fk :=575

{enℓ , ℓ = 1, 2, . . . , k} ⊆ Gn−1 when applied to graphs Gn and Gm for m ≥ n. Then the576

k + 1-st iteration of Prim’s algorithm for both graphs finds the same minimum-cost577

edge enk+1 out of Fk since all edges emanating from Fk in Gm are in En for all m ≥ n,578

thus restoring the inductive hypothesis.579

Remark 2. The distinct arc costs assumption (Assumption 5) is important to580

the above result as it ensures that different calls to Prim’s algorithm do not need to581

make tie-breaking decisions and potentially select different edges on earlier layers of582

the graph. ◁583

If the graph possesses an MST T ∗, we can further demonstrate that all edges of584

F ∗
n are guaranteed to be in the set E∗ of edges of T ∗.585

Corollary 6.5. Suppose G is a locally finite and connected graph (Assump-586

tion 1) with distinct edge costs (Assumption 5) and (a unique) MST T ∗ = {V, E∗}587

exists. Then F ∗
n ⊆ E∗, n = 1, 2, . . ., where F ∗

n is defined in (6.1).588

Proof. Let T ∗(n) be the smallest connected finite subtree of T ∗ that contains all589

nodes of layer n, and let G∗(n) be the subgraph of G spanned by T ∗(n). It is easy to590

show (e.g., by contradiction) that T ∗(n) is an MST of G∗(n); moreover, it is a unique591

MST due to Assumption 5. Applying Prim’s algorithm to G∗(n) starting with the592

root node, we will generate F ∗
n on the way to generating T ∗(n), since Gn ⊆ G∗(n).593

Hence F ∗
n ⊆ T ∗(n) ⊆ E∗.594

Corollary 6.5 provides a basic sufficient condition for an edge e to lie in an MST595

under appropriate assumptions: if e ∈ F ∗
n for some n, then e is an edge of an MST.596

This condition can be readily verified by running Prim’s algorithm until it first reaches597

outside the layer that contains e and checking whether e has been added to Tn by598

this point. Therefore, we have a partial answer to question (Q3).599

It is important to stress that this condition is only sufficient. If an edge e does not600

lie in F ∗
n for any n, this does not mean that e is not an edge of any MST. A simple601

This manuscript is for review purposes only.



16 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

1
2

1
4

1
8

1
16

− 1
2

− 1
4

− 1
8 − 1

16

Fig. 5. A graph with some minimum spanning tree edges that do not satisfy the sufficient
condition in Corollary 6.5 (see Example 5).

example illustrates this point.602

Example 5. Consider the graph in Figure 5 and let the node in the bottom left603

corner be the root node. Clearly, this graph satisfies the assumptions of Corollary 6.5,604

and its single minimum spanning tree is the whole graph itself. In the n-th iteration605

of the layered greedy algorithm, Prim’s algorithm selects every available negative-cost606

edge before selecting any positive-cost edge. This implies that edge count K∗
n is reached607

before a single positive-cost edge is reached. This implies that the positive-cost edges608

do not lie in F ∗
n , even though they are part of the minimum spanning tree. This609

implies that the sufficient condition in Corollary 6.5 cannot identify the positive-cost610

edges of this graph as belonging to the minimum spanning tree. ◁611

In the next set of results, we build on Proposition 6.4 and Corollary 6.5 to identify612

scenarios where we can tell that an entire iterate Tn of the layered greedy algorithm613

lies in T ∗.614

Corollary 6.6. Suppose G is a locally finite and connected graph (Assump-615

tion 1) with distinct edge costs (Assumption 5) and (a unique) MST T ∗ = {V, E∗}616

exists. Suppose617

(6.2) min
e∈Kn̄

c(e) > max
e∈En̄

c(e)618

for some n̄ > 1, where Kn̄ := {{i, j} : i ∈ Ln̄ and j ∈ Ln̄+1 \ Ln̄}. Then all edges of619

layered greedy iterate T n̄ lie in every subsequent iterate Tn, n ≥ n̄, and therefore, T n̄620

is contained in T ∗.621

Proof. Observe that (6.2) ensures that all edges of T n̄ lie in F ∗
n̄+1, since this622

condition implies that, when Prim’s algorithm is applied to layer n̄ + 1 and beyond,623

all nodes within layer n̄ get spanned before any node outside of this layer is reached.624

The rest of the argument follows by Proposition 6.4 and Corollary 6.5.625

It is straightforward to see that condition (6.2) fails in the graph in Figure 5. The626

next example provides a case where condition (6.2) holds.627

Example 6. To illustrate condition (6.2), consider the graph in Figure 6 that is628

adapted from Figure 16.7 in [3]. We can see that condition (6.2) holds for n̄ = 2 since629

min{45, 50, 60} > max{35, 40, 25, 10, 20, 15, 30}. Thus, the layered greedy algorithm630

locks in the edges of T 2 starting with iteration 3. In this case, these edges have costs631
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Fig. 6. An example that satisfies condition (6.2) in Corollary 6.6.

35, 10, 20, and 15, and they are guaranteed to be in T ∗ independently of the structure632

and costs of G after layer 3 (aside from ensuring that assumptions of Corollary 6.6633

hold). ◁634

Condition (6.2) can be interpreted as follows: the edges in Kn̄ create a “mountain635

range” or a “ridge” of costs, while all edges within the subgraph Gn̄ form a cost636

“valley”; as a result, all the nodes in the valley should be spanned before the MST637

ventures across the ridge.638

Note that in a graph with positive edge costs, this condition cannot hold for all n,639

or even for an infinite subsequence of n, and satisfy the other assumptions imposed on640

our graphs. Indeed, for (6.2) to hold on an infinite subsequence nk, k = 1, 2, . . ., we641

must have a subsequence of edges with costs that are increasing. But this condition642

violates Assumption 2, which may be needed to establish existence of an MST, since643

it requires the sequence of edge costs to converge to 0 for them to be summable.644

Luckily, we can provide a modification of condition (6.2) that can hold on a sub-645

sequence of layers without contradicting Assumption 2 while providing a workable646

approach to identifying early edges in T ∗. The new condition is discussed in Corol-647

lary 6.7 and illustrated in Figure 7.648

Corollary 6.7. Suppose G is a locally finite and connected graph (Assump-649

tion 1) with distinct edge costs (Assumption 5), and (a unique) MST T ∗ = {V, E∗}650

exists. Suppose further that there is an increasing sequence nk, k = 1, 2, . . ., with651

n1 > 1, that satisfies the following conditions:652

(6.3) min
e∈Kn1

c(e) > max
e∈En1

c(e), and min
e∈Knk

c(e) > max
e∈E(n(k−1),nk)

c(e) for k > 1,653

where E(n,m) = Em \(En∪Kn) for n < m, i.e., it is the set of all edges of G with both654

endpoints in layer m, but outside layer n (thus extending notation Em = E(0,m)).655

Furthermore, assume that whenever the set Lnk
\ Ln(k−1)

contains more than one656

node, this node set is connected in the graph induced by E(n(k−1), nk). Then, for all657

k = 1, 2, . . ., all edges of layered greedy iterate Tnk lie in every subsequent iterate Tn,658

n ≥ nk, and therefore, Tnk is contained in T ∗.659

Example 7. Consider the graph in Figure 7. We have n1 = 1, since660

max

{
1

2
, 1

}
< min

{
1 +

1

2
, 1 +

1

4
, 1 +

1

8

}
,661

and T 1 consists of the two edges emanating from the root node. It is easy to see that662
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Fig. 7. Graph for Example 7 illustrating the notation defined in Corollary 6.7. Here, n1 = 1
and n2 = 3. The edges in Kn2 are dashed. The edges in E(n1, n2) are in bold. It is easy to see that
(6.3) is satisfied for n1 and n2.

Prim’s algorithm applied to any Gn with n ≥ 1 in this example will begin by adding663

these two edges, which are therefore locked in.664

Furthermore, n2 = 3 satisfies (6.3), since the most expensive of the bold edges has665

cost 1
4 , and the cheapest of the dashed edges has cost 1

4 +
1
64 . T 3 consists of edges with666

costs 1
2 , 1, 1 + 1

8 ,
1

128 ,
1

256 ,
1

512 ,
1
32 , and

1
16 (listed here in the order they are added667

by Prim’s algorithm). The application of Prim’s algorithm to construct T 4 will also668

begin by adding these edges.669

Notice, however, that T 2 contains the edge with cost 1
8 , which is not included in670

the subsequent iterates, illustrating that the result in Corollary 6.7 is only guaranteed671

to hold on the specified subsequence.672

Proof of Corollary 6.7. We will prove, by induction on k, that Tnk ⊂ F ∗
nk+1 for673

k = 1, 2, . . .. For k = 1, condition (6.3) coincides with (6.2), and this conclusion674

follows by Corollary 6.6. For k > 1, let us adopt the inductive hypothesis that675

Tn(k−1) ⊂ F ∗
n(k−1)+1, and show that Tnk ⊂ F ∗

nk+1.676

If the set Lnk
\ Ln(k−1)

consists of a single node (say, v), the claim is trivially677

true, since then nk = n(k−1) + 1, Tnk consists of Tn(k−1) combined with the cheapest678

edge connecting Ln(k−1)
with v, and F ∗

nk+1 consist of Tnk combined with the cheapest679

edge connecting v with a node in Lnk+1. We will therefore consider the case when680

Lnk
\ Ln(k−1)

contains multiple nodes.681

As before, let enm be the edge added by the m-th iteration of Prim’s algorithm682

applied to Gn. To prove our claim, we need to show that, for m = 1, . . . , |Lnk
| − 1,683

(6.4) enk+1
m = enk

m .684

By the inductive hypothesis, (6.4) is true for all m ≤ |Ln(k−1)
| − 1 (while both Prim’s685

algorithms are constructing Tn(k−1)) and for m = |Ln(k−1)
| (when they both add the686

cheapest edge from Kn(k−1)
to reach Ln(k−1)+1, thus completing F ∗

n(k−1)+1).687

We now construct an induction on ℓ where we suppose (6.4) is true for all m ≤ ℓ,688

where |Ln(k−1)
| ≤ ℓ < |Lnk

| − 1, and consider the edges each algorithm chooses689

from in iteration ℓ + 1. During the first ℓ iterations, the algorithms have spanned,690

using the same edges, all of Ln(k−1)
and a strict subset Vℓ of Lnk

\ Ln(k−1)
. Let691

V ′ = (Lnk
\ Ln(k−1)

) \ Vℓ — these are precisely the nodes of Lnk
that have not yet692

been spanned.693

We now prove the inductive step in iteration ℓ + 1. In that iteration, Prim’s694
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algorithm applied to Gnk
is comparing the costs of edges in Kn(k−1)

incident to nodes695

in V ′ and edges connecting nodes in Vℓ to nodes in V ′, while the algorithm applied696

to Gnk+1 is comparing the costs of all the aforementioned edges as well as any edges697

in Knk
incident to nodes in Vℓ. Due to the assumption that node set Lnk

\ Ln(k−1)
is698

connected in E(n(k−1), nk), at least one of the edges from this edge set is considered699

in the cost comparison by both algorithms and by (6.3), it will be cheaper than any700

edge in Knk
. Therefore, Prim’s algorithm applied to Gnk+1 will not choose an edge701

from Knk
until all nodes in Lnk

have been spanned, i.e., until it constructs the MST702

Tnk . This establishes (6.4) for ℓ+ 1 and completes our induction on ℓ, which in turn703

closes the outer induction on k.704

The rest of the argument follows by Proposition 6.4 and Corollary 6.5.705

This last corollary shows that the MST T ∗ can be constructed by building the706

smaller finite trees Tnk where later iterations do not add or remove edges from the707

layer of G spanned by the Tnk uncovered so far.708

It is worth noting that assumptions of Corollary 6.7 and Assumption 2 can be met709

simultaneously in graphs with positive costs. Roughly speaking, condition (6.3) only710

requires that, occasionally, costs of edges connecting to a new layer form a “ridge,” but711

only relative to the costs of edges in the previous valley. However, the heights of the712

subsequent ridges Knk
can get smaller as long as the subsequent valleys E(n(k−1), nk)713

also get more shallow.714

Corollaries 6.6 and 6.7 provide additional partial answers to question (Q3).715

7. An application: High-speed information channels. In this subsection,716

we illustrate how the results in this section can be used to solve a minimum spanning717

tree problem on an infinite graph that arises from an application. The infinite graph718

models an underlying indefinite but large finite graph whose nodes we expect to719

ultimately connect via a spanning tree of telecommunication links.720

Suppose in particular a telecommunications company is building high-speed in-721

formation channels (e.g., via laying fiber-optic cables) to connect a large number of722

locations to a single service provider at minimum cost. The collection of these loca-723

tions is modeled as countably infinite since the goal is to connect discrete locations724

over a long but uncertain life of the project. For more discussion of using infinite725

graphs to study infinite-horizon optimization problems see [21]. The cost of an edge726

{i, j} is the cost of building an information channel that directly connects location i727

and location j.728

We view the layers of the graph as nodes reached by edges over time. The first729

layer consists of locations that can be connected to the root node (the service provider730

location) in a certain interval of time, say, 1 year. The second layer consists of locations731

that can be connected to the root node (via a node in layer 1) in two time periods,732

say 2 years. Under this time interpretation of layering, it follows that each node has733

finite degree, since in finite time a location can only be connected to finitely many734

other locations. This supports Assumption 1. As for Assumption 2, it is natural to735

assume that future costs are discounted by a discount factor that assures summable736

costs. These two assumptions then assure that the layered greedy algorithm will find737

a sequence of spanning-tree iterates that converge in value to optimality.738

The nature of the layered greedy algorithm, however, is that the edges in the739

tree iterates will shift around, as we saw in Example 1. For an application like740

laying fiber-optic cable, such “shifting around” can lead to very expensive reworking741

requiring removal of previously added edges. We would prefer to be able to apply742

a rolling horizon approach to this problem. In particular, we would like to be able743
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Fig. 8. A graph with an MST that fails the FC property.

to finalize our decisions of which potential edges within a few initial layers will and744

will not be built based on whether they are included in Tn1 for some small n1 (and745

proceed to lay cable along the chosen edges during the first few years of construction);746

then finalize the decisions regarding the edges in the next few layers based on Tn2
, for747

some n2 > n1, etc., without sacrificing optimality of the overall spanning tree that is748

being constructed.749

If we assume more about the underlying graph, we can get stronger convergence750

results. These assumptions are in fact quite natural in our setting. The condition751

of distinct edge costs (Assumption 5) is easy to guarantee since it is unlikely that752

two projects to connect two different pairs of locations have exactly the same costs.753

The recursive ridges and valleys condition (6.3) is natural in this application, with754

“valleys” and “mountain ranges” representing either the actual topography of the755

area or the difference in difficulty and costs of laying cable with and without pre-756

existing underground conduits. We may assume the costs are summable if we take757

time discounting into consideration, so even though “far off” mountains may be high,758

their costs will be sufficiently discounted. Finally, the connectedness assumption of759

Corollary 6.7 is natural if the population of the valleys is dense enough to allow it to760

be connected by cheap local infrastructure. Accordingly, we can apply the result of761

Corollary 6.7 ensuring that we can construct the MST recursively in finite subtrees762

whose edges become stable at finite intervals (the associated sequence {nk}) without763

edges entering or leaving the MST.764

8. Conclusion. In this paper, we gave an algorithm that yields convergence in765

objective value for a broad class of infinite graphs (locally finite and connected) that766

works as long as an MST is known to exist (Theorem 3.3). We offer the combina-767

tion of the FC property on the graph and absolute summability of the costs as a768

sufficient condition for existence, but acknowledge that these are not necessary condi-769

tions. Indeed, consider the graph in Figure 8. It satisfies the properties of absolutely770

summable and distinct edge costs but fails the FC property. Nonetheless, an MST771

exists, as indicated in dashed (green) edges. An interesting open question is whether772

there is a meaningful characterization of when an MST exists in a locally finite and773

connected graph that is weaker than the FC property, or substantially different from774

it.775

In this paper, we also showed convergence of the layered greedy iterates in the776

scenario where there exists a unique MST (Theorem 6.1). Unlike in many other777

optimization problems, where the uniqueness of the optimal solution is hard to verify,778

this problem has the simple sufficient condition of unique edge costs. We also showed779

in Example 4 that if there is more than one MST then the iterates of the layered greedy780
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algorithm may fail to converge to an MST. The convergence issue arose because of an781

“unfortunate” selection of edges of equal cost as the algorithm proceeds. We believe782

that this “selection” issue could potentially be resolved, using an approach similar in783

spirit to [23]. We will leave this for future work.784

Finally, we explored a verifiable sufficient conditions that allow us to confirm785

whether an iterate of the layered greedy algorithm has “locked in,” i.e., verify that all786

its edges will be contained in all of the future iterates (and thus the optimal MST if787

it exists).788

Appendix A. Appendix: Proof of Proposition 4.1.789

We start with the following preliminary lemma.790

Lemma A.1. If a locally finite and connected graph G contains no bi-rays, then791

every pair of rays must have infinitely many nodes in common.792

Proof. Let (i1, i2, . . .) and (j1, j2, . . .) be two rays in the graph, and suppose they793

have at most finitely many nodes in common. If they have no nodes in common,794

then a bi-ray is produced by connecting nodes i1 and j1. Otherwise, let k = im = jn795

for some m and n be the last node they share, so that rays (k, im+1, im+2, . . .) and796

(k, jn+1, jn+2, . . .) are distinct except for node k. Then the union of these rays is a797

bi-ray, a contradiction.798

Lemma A.2. The collection of all paths and rays in a locally finite and connected799

graph that contains no bi-rays is compact in the product discrete topology.800

Proof. Observe that a subgraph is a path or a ray if and only if it is a connected801

and acyclic subgraph where each node has degree at most two. (Bi-rays also have these802

properties, but we are assuming that our graph has no bi-rays.) Let P k, k = 1, 2, . . . ,803

be a sequence of paths and rays that converges in the product discrete topology to804

some subgraph P . We claim that P has no cycles, is connected, and each node in P805

has degree at most 2, i.e., P is either a path or a ray.806

The proof that P is acyclic follows the same logic as claim (ii) in Lemma 5.4 using807

the lock-in property of convergence.808

Next, suppose P has a node of degree 3 or greater. Again, by lock-in, this implies809

that infinitely many of the P k also have a node of degree 3 or greater, contradicting810

the fact they are paths or rays.811

Finally, we establish by contradiction that P is connected. Suppose there are two812

nodes i, j ∈ P that are not connected in P . Since these two nodes are in P , P contains813

at least one edge incident to i and at least one edge incident to j. This means that,814

for sufficiently large k, each P k contains those edges and thus contains both nodes i815

and j; we can pass to a subsequence to make this claim for all k. Let P k
ij be the path816

that connects i and j in P k.817

Let ik1 ∈ I(i) be such that {i, ik1} ∈ P k
ij . By the pigeonhole principle, one of these818

edges locks in, so that for some i1 ∈ I(i), {i, i1} ∈ P k
ij for k sufficiently large, and819

thus {i, i1} ∈ P . Note that i1 ̸= j by our assumption. Let us pass to a subsequence820

so that {i, i1} ∈ P k
ij for all k.821

We continue following each of the paths P k
ij from i1 towards j. Consider nodes822

ik2 ∈ I(i1) such that ik2 ̸= i and {i1, ik2} ∈ P k
ij . Following the same logic, one of these823

edges, denoted {i1, i2}, is contained in all paths P k
ij for sufficiently large k, and thus824

is contained in P . Note that i2 ̸= j and, since P is acyclic, i2 ̸= i.825

We will repeat the above process iteratively. At each step, we will continue fol-826

lowing the paths P k
ij towards j from the most-recently identified node im, and adding827
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a node im+1 such that the edge sequence ({i, i1}, {i1, i2}, . . . , {im−1, im}, {im, im+1})828

is in P k
ij for all (sufficiently large) k, and thus is in P . Since im+1 is different from im829

by construction, and from every other identified node since P k
ij is acyclic, this process830

will create a ray Ri = ({i, i1}, {i1, i2}, . . .) ⊂ P that does not include node j.831

Using the same process starting from j, we can create a ray832

Rj = ({j, j1}, {j1, j2}, . . .) ⊂ P833

that does not include node i. Moreover, this ray has no nodes in common with Ri,834

since otherwise there is a path connecting i and j in P . This, however, contradicts835

Lemma A.1 in a graph with no bi-rays, thus establishing that P is connected.836

Proof of Proposition 4.1. Suppose G is a locally finite and connected graph with837

no bi-rays. By way of contradiction, suppose there exists an edge {i, j} ∈ E that is838

contained in infinitely many cycles. Deleting the edge from those cycles, we conclude839

that there are infinitely many distinct paths Pn
ij , n = 1, 2, . . ., connecting i and j.840

Observe that there must be an infinite subsequence Pnk
ij , k = 1, 2, . . ., such that841

P
nk+1

ij contains strictly more edges than Pnk
ij , for all k. Suppose otherwise, that842

there is a maximum number N of edges in all paths between nodes i and j. By843

local finiteness, there are finitely many potential paths of length N leaving node i.844

However, we have supposed there are infinitely many paths of length N leaving node845

i and reaching node j. Hence, such a sequence Pnk
ij , k = 1, 2, . . ., exists.846

Let Nk, k = 1, 2, . . ., denote the increasing sequence of cardinalities of the edge847

sets of paths Pnk
ij , and let mk be the ⌊Nk/2⌋-th node in the path Pnk

ij . Break each848

Pnk
ij into two subpaths, Pnk

i and Pnk
j , where Pnk

i connects node i and node mk, and849

Pnk
j connects node j and node mk; i.e., P

nk
i and Pnk

j have only node mk in common.850

Passing to subsequences if necessary and using Lemma A.2, sequences Pnk
i and Pnk

j851

each have a limit Pi and Pj , respectively, that are either paths or rays. Moreover, by852

the construction of Pnk
i and Pnk

j , they cannot converge to limits with finitely many853

nodes, and so Pi and Pj must be rays.854

Our contradiction comes from the properties of rays Pi and Pj . We argue that Pi855

and Pj have at most one node in common. Suppose otherwise that Pi and Pj have at856

least two nodes in common, say, u and v. Then Pi contains a finite path pi between857

u and v and Pj contains a finite path pj between u and v. There are two cases to858

consider. The first is where pi and pj share an edge. In this case, by the lock-in859

property, Pnk
i and Pnk

j both contain that edge for large enough k, contradicting the860

fact that Pnk
i and Pnk

j do not have any edges in common by construction.861

On the order hand, if pi and pj do not share edges, then their union contains a862

cycle C in Pi ∪ Pj . Recall that P
nk
ij is equal to the union of Pnk

i and Pnk
j , and since863

Pnk
i converges to Pi and Pnk

j converges to Pj , we must have that Pnk
ij converges to864

Pi ∪ Pj . This implies that infinitely many elements in the sequence Pnk
ij contain the865

cycle C by the lock-in property. This contradicts the fact that each Pnk
ij is a path.866

This establishes that the rays Pi and Pj intersect in at most one node. On the867

other hand, since Pi and Pj are rays in a graph with no bi-rays, by Lemma A.1 they868

must have infinitely many nodes in common. We have arrived at a contradiction, and869

thus every edge of G is contained in at most finitely many cycles.870
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