16

17
18
19

MINIMUM SPANNING TREES IN INFINITE GRAPHS: THEORY
AND ALGORITHMS*

CHRISTOPHER THOMAS RYANT, ROBERT L. SMITH!, AND MARINA A. EPELMANS

Abstract. We discuss finding minimum-cost spanning trees (MSTs) on connected graphs with
countably many nodes of finite degree. When edge costs are summable and an MST exists (which is
not guaranteed in general), we show that an algorithm that finds MSTs on finite subgraphs (called
layers) converges in objective value to the cost of an MST of the whole graph, as the sizes of the
layers grow to infinity. We call this the layered greedy algorithm since a greedy algorithm is used to
find MSTs on each finite layer. We stress that the overall algorithm is not greedy since edges can
enter and leave iterate spanning trees as larger layers are considered. However, in the setting where
the underlying graph has the finite cycle (FC) property (meaning, every edge is contained in at most
finitely many cycles) and distinct edge costs, we show that a unique MST T™* exists and the layered
greedy algorithm produces iterates that converge to T* by eventually “locking in” edges after finitely
many iterations. Applications to network deployment are discussed.

Key words. minimum spanning trees, infinite graphs, infinite-dimensional optimization

MSC codes. 90C27, 90C35, 90C48

1. Introduction. The problem of finding minimum-cost spanning trees on finite
graphs is a classical combinatorial optimization problem with numerous applications
in practice [11, 13, 14, 20]. The problem is used as a subroutine or heuristic for
solving other graph optimization problems [3, 9, 25]. To our knowledge, an algorithmic
approach to the MST problem on infinite graphs has not been systematically pursued,
despite there being extensive literature on algorithms for infinite graphs in other
contexts (see, for instance, [2, 7, 10, 18]). Several references examine properties of
spanning trees in the limit of finite random graphs (see, for instance, [1, 4, 5, 16]),
but the focus of these papers is not on the questions of existence and performance of
algorithms, topics we emphasize here. The only paper we know of that deliberates on
producing an algorithm for finding MSTSs in infinite graphs is [15] in the more general
context of infinite matroids (we discuss this paper in more detail below).

In a finite graph, an MST always exists and can be found by a greedy algorithm.
The MST problem on infinite graphs does not afford such luxuries. As we will show
through examples, an MST may not even exist in an infinite graph, and when it does,
it may not be reachable by a greedy algorithm.

In response to this, we develop an algorithm to tackle the MST problem (whenever
an MST exists) in any connected graph with countably many nodes of finite degree
and summable edge costs. This algorithm finds MSTs in a growing sequence of finite
subgraphs that, in the limit, converge in cost to that of an MST of the original graph
(see Theorem 3.3). We call this result — i.e., convergence of the total cost of the edges
of iterate trees to the total cost of the edges of an MST — convergence in objective
value.

*Submitted to the editors on 30 May 2023.

Funding: This work was funded by the Natural Sciences and Engineering Research Council of

Canada Discovery Grant RGPIN-2020-06488.

fUniversity of British Columbia, Sauder School of Business, (chris.ryan@sauder.ubc.ca, https:
//www.sauder.ubc.ca/people/christopher-thomas-ryan).

TUniversity of Michigan, Industrial and Operations Engineering, (rlsmith@umich.edu, http://
www-personal.umich.edu/~rlsmith/).

8 University of Michigan, Industrial and Operations Engineering, (mepelman@umich.edu, http:
/ /www-personal.umich.edu/~mepelman/).

This manuscript is for review purposes only.

mailto:chris.ryan@sauder.ubc.ca
https://www.sauder.ubc.ca/people/christopher-thomas-ryan
https://www.sauder.ubc.ca/people/christopher-thomas-ryan
mailto:rlsmith@umich.edu
http://www-personal.umich.edu/~rlsmith/
http://www-personal.umich.edu/~rlsmith/
mailto:mepelman@umich.edu
http://www-personal.umich.edu/~mepelman/
http://www-personal.umich.edu/~mepelman/

11
42
43
44
15
16
47
48
49
50

S S G gt Ot gt ot Ot gt ot ot
= O © 00 3 O Uk W N

62
63
64
65
66

S|

R = TS BT B B N
J O O = W N <

0 =~

3 =

>
©

80

2 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

The sequence of subgraphs considered by our algorithm are called layers, and so
we call our algorithm the layered greedy algorithm since it applies a greedy algorithm
repeatedly in a growing set of layers of the graph. It is important to note that
the layered greedy algorithm (as a whole) is not greedy since the MSTs found at each
iteration must be computed “from scratch” and do not necessarily extend the previous
MSTs from earlier layers in a greedy fashion. We also show, under an assumption akin
to discounting of the edge costs in the graph, that finite termination of the infinite
algorithm provides “good” solutions with bounded error in finite time.

The fact that the layered greedy algorithm guarantees convergence in objective
value on a broad class of infinite graphs is the first important result in our paper.
However, it naturally leads to three additional questions.

(Q1) We have convergence in objective value when an MST is known to exist

in the original graph. How can we guarantee that an MST exists?

(Q2) Convergence in objective value is a nice feature, but we would also like
convergence to an optimal solution. How can we ensure that the finite-
sized iterates of the layered greedy algorithm converge to an MST of the
original, infinite graph?

(Q3) Since the layered greedy algorithm is not greedy (but only locally greedy
within layers), edges may come and go from iterate spanning trees as the
algorithm proceeds. What are some sufficient conditions for an edge of
the iterates to eventually “lock in” to an edge of the MST after finitely
many iterations? Moreover, can these conditions be verified during the
execution of the algorithm?

All three questions rely on careful consideration of the topological properties of
the graph. Here, by “topological” we refer to questions of closedness, compactness,
and convergence in the space of subgraphs of a given graph (and not the common
alternative usage of referring to the arrangement of edges and nodes in a graph as its
“topology”). Regarding (Q1), topology plays an important role because the existence
of optimal solutions is naturally a topological consideration. As in other infinite-
dimension optimization problems, we must argue that the feasible region has some
notion of compactness and the objective function has some notion of continuity to
conclude (using a Weierstrass-type result) that an optimal solution exists.

In (Q2), topology is implicit in the question itself because any notion of conver-
gence requires a specification of topology. At first glance, (Q3) appears unrelated to
topology, but the concept of “lock-in” has a topological flavor. Indeed, convergence
via lock-in is precisely the notion of convergence in discrete topologies (see, for in-
stance, Section 12 of [17]). This motivates our use of the product discrete topology,
where convergence corresponds to lock-in edge by edge (here, the product is taken
across edges).

With this topology, we can develop weak sufficient conditions for positive answers
to the three questions we posed. In particular, we show (in Theorem 5.5) that the
following condition:

(C1) Finite Cycle (FC) property: every edge of the graph is contained in at

most finitely many cycles in the graph
is sufficient to guarantee that an MST always exists, answering (Q1). This follows
by showing compactness of the set of spanning trees in the product discrete topology
under the FC property (see Lemma 5.4).

If, additionally, the following holds:

(C2) Distinct Edge Costs: no two edges have the same cost,
then a unique MST always exists (Theorem 6.3). The uniqueness is useful in estab-

This manuscript is for review purposes only.

126

129
130
131
132
133
134
135
136
137
138

MINIMUM SPANNING TREES IN INFINITE GRAPHS 3

lishing our answer to (Q2): the sequence of iterates of the layered greedy algorithm
converges to the unique MST in the product discrete topology when (C1) and (C2)
hold. Finally, because of the nature of convergence in the product discrete topology,
(C1) and (C2) give conditions for lock-in of the edges, answering the first part of (Q3).
At the end of Section 6, we provide verifiable conditions for discovery of these edges,
that have lock-in in agreement with “early” edges of the MST, addressing the second
part of the last question.

Related work. We add to the growing literature on algorithms for solving prob-
lems on infinite graphs, including recent applications in deep learning (see the review
article [26] for a summary of this work). Our work resembles a stream of work for
solving network flow problems on infinite graphs [12, 18, 19, 21, 22, 24]. An important
distinction between that line of work and what we pursue here is the definition of trees
and connectedness. In the network flow literature, trees can be connected through a
“node at infinity” that acts as a universal sink for flow generated at supply nodes in
the graph. In contrast, our notion of connectivity is more classical, requiring nodes to
be connected by a path of finitely many edges. Another important distinction is that
network flow problems are typically studied as continuous optimization problems,
allowing, for example, duality arguments and generalizations of the max-flow/min-
cut theorem to infinite graphs [2]. By contrast, the MST problem is fundamentally
discrete.

This paper is also related to the literature on infinite matroids (see, for instance,
[8] and references therein). Here, the primary focus is on describing axiom systems
for carefully defining the notion of infinite matroid to allow for a convenient matroid
duality theory. As far as we know, little attention (other than [15]) has been given to
the generality of greedy algorithms in infinite graphs. The workhorse of much of this
infinite matroid theory is using Zorn’s lemma to show the existence of maximal objects
within infinite graphs. By contrast, our theory relies more heavily on topological
arguments, including Tychnoff’s Theorem, Weierstrass’s Theorem, and convergence
proofs. Indeed, our layered greedy MST algorithm does not produce a “chain” of
nested spanning trees that would be necessary to leverage Zorn-like arguments.

[15] proposes a “greedy” algorithm for finding bases in finitary infinite matroids
(corresponding to MSTs in infinite graphs with nodes of finite degree). This algo-
rithm, however, is shown to find an MST using transfinite induction. Infinite graph
adaptations of greedy algorithms for finding MSTSs in finite graphs may even fail to
converge to trees or span the nodes of the graph. A greedy algorithm can be “in-
definitely distracted” by an infinite subset of low-cost edges, never getting around to
span other parts of the graph. Klee’s algorithm avoids this issue by continuing to
analyze its execution after an infinite time is exhausted exploring a single subtree of a
spanning tree. This is why the algorithm is called transfinite. The arguments in this
paper do not use transfinite induction; we analyze the execution of algorithms using
standard limiting arguments.

Of course, one can view the graph as a matroid [10] where the independent subsets
of the edges of G are its forests. This view would allow to prove some of the results in
this paper using matroid theory, but other results, such as solution convergence and
early edge detection are established exploiting the special properties we assume about
the graphical and cost structures. For this reason, we will use terminology and ideas
familiar from studying finite graphs as much as possible, only delving into topics that
are peculiar to infinite graphs when necessary and avoiding the even more general
language of matroids altogether. We hope that this makes the paper more accessible

This manuscript is for review purposes only.

139
140
141

142
143
144
145
146
147
148
149

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

183
184

4 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

to readers with little or no exposure to either matroids or infinite graph theory. It is
an open direction for future research to examine the implications of our method for
general infinite matroids.

Organization of the paper. The paper is organized as follows. In Section 2,
we describe the general class of infinite graphs that we consider and define the MST
problem in this class. Section 3 presents the layered greedy algorithm and analyzes
its convergence in objective value. Section 4 formalizes the finite cycle property (C1).
In Section 5, we establish the existence of MSTs under the FC property. In Section 6,
we establish convergence of iterates of the layered greedy algorithm to an optimal
spanning tree under the FC property and the additional condition (C2) of distinct
edge costs. We also explore conditions that allow for discovery of early edges of the
infinite MST and its implications for applications. Section 8 concludes the paper.

2. The minimum spanning tree problem.

2.1. Basic definitions. Let G = (V,) be an undirected graph with node set
V ={1,2,...} and edge set £. Let ¢ : &€ — R denote an edge-cost functional for
G. We will sometimes use ¢;; to denote the cost c¢({7,7}) of edge {i,j} € £ when
convenient.

The set (i) denotes the nodes that are adjacent to node i, that is, I(i) := {j €
V| {i,j} € £}. The degree of node i is the cardinality of I(:). A graph is locally
finite if every node has finite degree. A path in G is a finite sequence of distinct nodes
i1, @9, ...,in, where {ig, i1} € E for k=1,...,n— 1. A ray is an infinite sequence
of distinct nodes i1, ia, ..., where {ig,ix11} € € for k =1,2,.... Two nodes ¢ and j
are connected in G if there exists a path starting with node ¢ and ending with node j.
The graph G is connected if all pairs of nodes ¢ and j in G are connected. We make
the following assumption throughout the paper:

ASSUMPTION 1. The graph G is locally finite and connected. <

A cycle in G is a finite sequence of nodes i1, 4o, ..., in, i1, where i1, ia,...,0, is a
path and {i1,i,} € €. A bi-ray consists of a node 7 and two distinct rays, that is, rays
(i,41,42...) and (4,1, ja2, ...), where all intermediate nodes iy, and j, are distinct.

Let H be a subgraph of G and let V(H) and £(H) denote the set of nodes and
edges in H, respectively. In this paper, we only consider subgraphs with no isolated
nodes, that is, for every node i € V(H), there exists an edge {i,j} € £(H) for some
node j € V(H). In light of this, we will typically refer to a subgraph H simply by
its set E(H) of edges, since the set of nodes is implicit once the edges are defined.
The cost function will also be defined on the collection P(€) of subsets of edges of £
(corresponding to subgraphs), where c(H) :=) . c(e) for any H € P(E).

A forest I of G is an acyclic subgraph of G i.e., a subgraph of G without cycles.
A connected forest is a tree. If a subgraph of G has node set V, it is said to span G.
A connected spanning forest is called a spanning tree.

One of the nodes in G is called its root node r. (The theory developed below
is indifferent to which node in G is called the root node.) The first layer of nodes,
denoted L1, consists of node r and all nodes that are adjacent to r; that is, L; :=
{r} UI(r). We define other layers recursively:

Lyy1:=L,U{i€I(j) for some j € L,}, n=1,2,...,

and sometimes refer to {r} as layer 0. Since G is locally finite and connected, each
layer contains a finite number of nodes, every node is included in some layer, and once

This manuscript is for review purposes only.

185
186
187

188

189
190
191
192

193
194
195
196
197
198
199

210
211

MINIMUM SPANNING TREES IN INFINITE GRAPHS 5

a node is in layer L, it is in every subsequent layer Ly for k > n. Let G,, := (L, &n)
for n > 1 denote the subgraph of G, where &, := {{i,j} € £|4,j € L,} is the set of
edges in the subgraph induced by the set of nodes L,, (we also use the term “layer n”
to refer to Gp,).

2.2. Formal statement of the minimum spanning tree problem. Recall
that the cost ¢(T") of a spanning tree T' of G is the sum of the costs of the edges of T,
ie, c(T) = Z{i,j}eé’(T) cij. Our problem is to find a minimum-cost spanning tree of
G, i.e., solve

(P) ¢ :=inf{c(T) | T is a spanning tree of G}.

We call any optimal solution 7* of (P) a minimum spanning tree (MST). We say
G possesses an MST if (P) has an optimal solution (that is, the infimum in (P) is
attained).

3. The layered greedy algorithm. We now present the algorithm we analyze
in this paper. The algorithm generates a sequence of spanning trees on finite restric-
tions of the graph. We show that this sequence has nice convergence properties.

Algorithm 3.1 Layered greedy algorithm

1: Input: A locally finite and connected graph G = (V,) with edge costs.
2: Initialize: Set n <— 1 and T to be the empty subgraph of G with empty node set
and empty edge set.
3: while T is not a spanning tree do
4: Find MST on next layer: Find an MST T™ on layer G,, using Prim’s al-
gorithm (for completeness, we give a description of Prim’s algorithm below).

5 Set T < T" and n < n+ 1.

While most of the forthcoming analysis of the layered greedy algorithm is agnostic
to the particular method used to find the MSTs on the layers in Step 4, Prim’s
algorithm is instrumental in the early discovery of edges of an MST on G, which
we discuss in subsection 6.2. It is one of the classical greedy algorithms for finding
MSTs on finite graphs (see [3] for further details). In the usual statement of Prim’s
algorithm, the starting node that initializes the graph is arbitrary. We want ours to
proceed from the root node r.

Algorithm 3.2 Prim’s algorithm (for finding an MST on G,,)

: Input: Graph G,, = (L,,&,) with edge costs.

: Initialize: Initialize a tree F' to be the root node 7.

while F' does not span G,, do
Append an edge: Append to F' the minimum-cost edge of &,, emanating from
F (that is, having one node in F' and one outside of F'), breaking ties arbitrarily.

It is important to note that while Prim’s algorithm can be leveraged to find the
tree iterates T™ on each of the finite graphs G,,, we may remove as well as add edges
as we grow the layers G,,. The next example demonstrates this point.

ExampLE 1. Consider the ladder graph in Figure 1 with labeled nodes and edge
costs written next to the edges. If node 1 is the root node, the nodes in layer 1 are

This manuscript is for review purposes only.

212
213
214
215
216
217

218
219
220

225
226

N
)
3

N
E LR RS S ®

NN NN DN NN NN

W W W w w w w
w

ENECN

N
w
oo

239

240
241
242

243
244

6 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

Fic. 1. Graph for Example 1 illustrating that the layered greedy algorithm is not a greedy
algorithm overall.

nodes 1, 2, and 3. The MST of graph G consists of edges {1,2} and {1,3} for a cost
of 11. The second layer has node set {1,2,3,4,5}. Now we can avoid the expensive
edge {1,3} to construct the MST of Gy consisting of the edges {1,2}, {2,4}, {3,4},
and {3,5}, for a total cost of 4. In other words, the cheapest edges in a given iteration
(in this case, {1,3}) may become too expensive by comparison as the subgraph grows,
and get dropped in later iterations. <

3.1. Some preliminaries. To analyze the performance of the layered greedy
algorithm, we need a few preliminaries. First, we start with a classical result in
infinite graph theory.

PROPOSITION 3.1 (Proposition 8.1.1 in [10]). Any locally finite and connected
graph (Assumption 1) contains a spanning tree.

Second, we need a mechanism for extending iterates of the layered greedy algo-
rithm, which are not spanning trees of the entire graph G, into spanning trees.

PROPOSITION 3.2. Suppose T™ = (L, E(T™)) is a spanning tree on the connected
subgraph corresponding to the n-th layer graph G,, = (Ly,Ey,). Then there exists a set
of edges € C E\ &, such that (V,E(T™)UE) is a spanning tree on G.

Proof. Let G be the graph obtained by removing from G nodes L,, and all edges
incident to them (including both edges &, within the n-th layer and the edges con-
necting nodes in L,, to nodes in L, 11\ L,,). Each connected component of G satisfies
Assumption 1, and therefore contains a spanning tree (Proposition 3.1). Moreover,
each connected component of G contains at least one node that belongs to L, \ Ly,
— select one of these nodes in each connected component and select one of the edges
connecting it to layer n. Then the union of 7", the aforementioned spanning trees on
the connected components of G, and the selected edges that connect these connected
components to L, (and thus T") is a spanning tree on G. |

Third, we must impose an additional assumption on the cost functional.

ASSUMPTION 2. The edge cost functional ¢ : € — R is such that Y~ |c(e)| < oo.

If we label the costs of the countably many edges in £ by ¢, for £ =1,2,..., then
Assumption 2 becomes ¢ = (¢, ¢a, ...) € 1 (where ¢; is the vector space of absolutely
summable sequences).

3.2. Convergence in objective value. We are now ready to prove a main
result of the paper.

This manuscript is for review purposes only.

245
246
247
248

249
250

262
263
264
265

266

267

268
269
270
271
272
273

MINIMUM SPANNING TREES IN INFINITE GRAPHS 7

THEOREM 3.3. Suppose G is a locally finite and connected graph (Assumption 1)
whose edge cost functional is absolutely summable (Assumption 2). If G possesses an
MST of cost ¢* then the layered greedy algorithm converges in objective value; that is,
the sequence T™ of iterates satisfies ¢(T™) — c*.

Proof. Let T* be an MST of a locally finite connected graph G, and let T} denote
the restriction of T* to G,,. By construction, ¢(T¥) — ¢(T*) = ¢* as n — oo. Note
that T)¥ is a forest on G,,, although not necessarily a spanning tree. It can be extended
to a spanning tree on G,, with the addition of a finite number of edges (since G,, is a
finite graph). Let T* be the cheapest such extension and define

&, = o(Ty) - o(T).
Since T™ is an MST on G,,, we have
(3.1) o(T) < e(Tyy) = e(Ty) + €,

Since T* is a spanning tree of G, for every pair of nodes ¢ and j in G, there is a unique
finite path P;; connecting them in 7. Moreover, path P;; must be wholly contained
in layer G,,,; for n;; = maxgep,; £(k), where £(k) is the number of the smallest layer
containing node k. Let

(3.2) m(n) = max{m | n;; <nforalli,je G}

In other words, given n, m(n) is the number of the largest layer such that all pairs of
nodes in this layer are connected in T™* by paths wholly contained in G,,.

Note that none of the edges added to T* to construct T* are in Gm(n), since
every pair of nodes in G,y is already connected by a path in T;. Hence, e, =
c(Ty) — c(T}y) < €mn), Where

(3.3) €m(n) = Z |c(e)]

e€E\Em(n)

is the sum of the absolute values of costs of edges outside of layer G, (y)-

Observe that m(n) — oo as n — oo, which follows from the finiteness of the path
P;; between any two nodes ¢ and j and local finiteness and connectedness of G'. Hence
€m(n) — 0 as n — oo since ¢ € {1 by Assumption 2.

By Proposition 3.2, T™ can be extended to span G. Let S™ denote one such
extended spanning tree, with additional edges £(S™) \ £(T™) C G \ G, and let

Ay i=c(S™) —e(TT).
Observe that, by construction, A, — 0 as n — co. Now,
(3.4) < c(S™)=c(T)+ An < c(T)) + €, + Ay,
where the first inequality holds since ¢* is the cost of an MST on G and the second
inequality holds by (3.1). Since, as n — 00, Ap, — 0, €, < €,n) — 0, and ¢(T};) —

c(T*) = ¢*, (3.4) implies ¢(S™) — ¢* and ¢(T") — ¢* as n — o0, establishing the
result. O

This manuscript is for review purposes only.

281
282
283
284
285
286
287
288
289

290

291
292
293
294

295

296

297
298

8 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

3.3. Error bound after finite termination. We are also interested in the
question of how fast the costs ¢(T™) of the iterates T™ approach the optimal value c¢*.
To provide a partial answer, we need the following additional assumption (which is
only made in this subsection and not in the rest of the paper).

ASSUMPTION 3. The graph G = (V,€) and the cost function ¢ : € — R satisfy
the following: (i) there exist § € (0,1) and v € (0,4+00) such that for every edge
{i,j} €&, 0<¢; < ypminte@LGY where €(i) is the number of the smallest layer
containing node i, and (i) there exists a uniform bound M on the cardinality of node
degrees in G, with M <1/5. <«

Under this assumption, we can prove the following.

PROPOSITION 3.4. Let S™ denote the extensions to spanning trees (via Propo-
sition 3.2) of the iterates T™ produced by the layered greedy algorithm. Under as-
sumptions of Theorem 3.3 and Assumption 3, the errors in cost satisfy the following
bound:

(35) 0% c(8") —elI”) £ ("4 57,

where m(n) is defined in (3.2) and 6 = MB < 1.

Proof. This proof refers to several bounds established in the course of the proof
of Theorem 3.3. We can bound

(3.6) 0<c(S™) —c(T*) < c(TF) —e(T*) + e, + Ap <€, + Ay,

where the first inequality follows by optimality of T, the second inequality reproduces
(3.4), and the last inequality follows because T) is a subgraph of T™*, and the edge
costs are nonnegative by Assumption 3(i).

Recall that, by definition, L,, is the set of all nodes that are at most n edges
“away” from the root node r, i.e., for every node in L,,, there exists a path between
that node and r that is at most n edges long.

Let €, := > .ce\g, c(e) be the sum of the costs of all edges in €\ &yt From
Assumption 3(ii), the number of edges joining layer n to layer n+ 1 is bounded above
by M™*1. This follows by induction on the layer number, noticing that the maximum
number of nodes in L,, is M times the number of nodes in L,,_1. Moreover, the cost
of each edge joining layer n to n + 1 is bounded above by 5™, by Assumption 3(i).
Combining these observations, we establish

o0

A, <e,= Z cle) < Z MMy pm
e€E\E, m=n
= My(MB)" Y (MB)™ = MA6™ Y 6™ = MA(6"/(1 - 6)).
m=0 m=0

As part of the proof of Theorem 3.3, we showed that €/, can be bounded above
by €m(n), and so

I'We introduced similar notation in equation (3.3) in the proof of Theorem 3.3; here, it is no

longer necessary to take absolute values since the costs are assumed to be nonnegative.

This manuscript is for review purposes only.

318

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

w
ot
W N

w W

360

361

MINIMUM SPANNING TREES IN INFINITE GRAPHS 9

Substituting these bounds into (3.6), we derive

0 < 6(S™) = eT") = M (" /(1= 8)) + M (™) /(1= 6)) = s (37457,

as required.]

From the proof of Theorem 3.3, we know m(n) — oo as n — oo and so the error
bound in (3.5) converges to 0 as n grows. Of course, there remains the question of
assessing the rate at which the sequence m(n) grows with n to further analyze the
convergence rate of the algorithm. The growth rate of m(n) depends on the structure
of the graph, and different MSTs can give rise to different functions m(n).

Let L(m) be the maximum number of edges over all paths P;; in the tree T
connecting nodes ¢ and j in layer G,,. Note that L(m) < oo since G, is finite. For
i,j € G, we have n;; = maxpep,; £(k) < m + L(m). Moreover, {m | n;; < n for all
i,j € G} 2 {m | m+ L(m) < n}. Hence, m(n) = max{m | n;; < nforallije
G} > max{m | m+ L(m) < n} =max{m | L(m) < n—m}. Now, note that L(z) is
increasing in positive real numbers z so that max{z | L(z) < n — z} is attained at a
unique positive real solution z(n) to the equation L(z) = n—x. Thus m(n) = |z(n)];
that is, m(n) is the largest integer less than or equal to z(n). This concrete formula
can be used to assess the growth of the bound in (3.5), if one has an understanding of
the function L(m) and its connection to the structure of an optimal tree T* in specific
applications.

REMARK 1. Since we employ Prim’s Algorithm to find an MST in layer G, the
computational time in iteration n of the layered greedy algorithm is O(|L,|?). This,
together with (3.5), yields a bound on the computational time to find a spanning tree
achieving a cost error within a pre-specified error from optimal. <

4. The finite cycle property. In Theorem 3.3, we showed that the layered
greedy algorithm satisfies convergence in objective value (under Assumptions 1 and 2)
whenever the graph possesses an MST. This naturally leads to the question of what
graphs possess MSTs (question (Q1) in the introduction). In this section, we describe
an elegant sufficient condition (and prove it suffices for existence in the next section).

We say that a graph satisfies the finite cycle (FC) property if every edge is con-
tained in at most finitely many cycles of G. The graph in Figure 1 fails the FC
property because the edge {1,2} is in infinitely many cycles in the graph. The next
example satisfies the FC property.

ExaMpLE 2. Consider the graph in Figure 2. Observe that every edge lies in a
unique cycle in the graph, and thus satisfies the FC property. <

We capture the FC property in the following assumption, and refer to this as-
sumption whenever the FC property is invoked later in the paper:

ASSUMPTION 4. The graph G satisfies the FC property.

Before moving on to studying the implications of the FC property for the MST
problem, we take a brief detour to discuss the simple sufficient condition of absence
of bi-rays for a graph to satisfy the FC property. Because the proof of this result will
take us off the main path of our development, we put it in an appendix. The reader
should be aware, however, that the proof relies on the contents of Section 5.

ProOPOSITION 4.1. If G contains no bi-rays, then G satisfies the FC property.
Proof. See Appendix A.]

This manuscript is for review purposes only.

381

383
384
385

10 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

FiG. 2. A graph where FC holds (see Example 2).

0 (/N _ 0

=0

¢
o

(.

0 ~/ 0

F1G. 3. A graph with no minimum spanning tree (see Example 3).

Clearly, the converse of Proposition 4.1 is not true. Consider again the graph in
Figure 2. The bottom path connecting all of the “triangle” pieces is a bi-ray, but the
graph nonetheless satisfies the FC property.

5. Existence of a minimum spanning tree. Proposition 3.1 shows that a
spanning tree always exists, but this does not ensure that an optimal solution to the
MST problem (P) exists. Consider the following example.

ExampLE 3. Consider the one-way-infinite ladder graph in Figure 3, with top
and bottom rays of 0-cost edges connected by infinitely many rungs with decreasing
costs. The most expensive spanning tree has cost 1, consisting of the left-most rung
of cost 1 connecting the top and bottom rays. A spanning tree of cost 1/4 is drawn in
non-dashed edges in the figure. One can similarly construct spanning trees of cost 1/8,
1/16, etc. Thus, a sequence of spanning trees whose costs converge to 0 can be found
in the graph. However, no spanning tree has cost 0 since all edges have nonnegative
cost and the 0-cost edges do not form a connected graph. Therefore, a minimum-cost
spanning tree does not exist. <

To establish existence, we will use Weierstrass’s standard optimization result (see,
for instance, Theorem 2.35 in [6]) that minimizing a continuous function over a com-
pact set always yields a minimizer. The challenge here is to develop the appropriate
notion of topology to define continuity and compactness.

5.1. The product discrete topology. Our desire to apply Weierstrass’s The-
orem to (P) motivates the following notion of convergence.?

DEFINITION 5.1. A sequence of subgraphs S* of graph G converges to a subgraph
S in G in the product discrete topology if there is a positive integer K. for each edge
e € & such that for all k > K., e € S* if and only if e € S. We call this the lock-in

20thers use different notions of convergence, mostly based on the fact that they study random

graphs and so are interested in probabilistic notions of convergence. See, for instance, [4].

This manuscript is for review purposes only.

386

387

388
389
390
391
392
393
394
395
396
397
398
399
100
401
402
403
404
105
106
407
408
409
410

411
412
413
414
415
116
417
418
419
420
421
422

423

124

425

126

127

()

MINIMUM SPANNING TREES IN INFINITE GRAPHS 11

property of edges of the sequence of subgraphs to the edges of the limiting subgraph.
<

We can understand the use of the terminology “product” and “discrete” better in
light of the following construction. For each edge e € £, define a set B, := {0,1} and
endow that set with the discrete metric d(z,y) =0 if z =y and 1 if # y. That is,
de(0,1) = d.(1,0) = 1 and d.(0,0) = d.(1,1) = 0. Then, clearly, B, is a metric space
under metric d.. There is a bijection between P(£) and the product [],.¢ Be, where
P(&) is the power set of £. Indeed, any subset H of £ corresponds to an element y g
of [[.cp Be where xp(e) = 1if e € H and 0 otherwise (and vice versa). We call x g
the characteristic function of the subset of edges H.

The product [], .o B. can be endowed with the product topology 7 of the discrete
topologies on B, for every e € £. By Theorem 3.36 in [6], the topology 7 is metrizable.
The significance of this for our purposes is that it suffices to consider subsequences
(as opposed to nets) to establish topological properties involving 7. In particular, a
set B in [].cg Be is closed if every convergent (in 7) sequence xj. of elements in B
has a limit xy € B. Here, convergence in 7 means that for every e, there exists a K,
such that yx(e) = x(e) for k > K.. Moreover, compactness of a set in B is equivalent
to sequential compactness (see Theorem 3.28 in [6]).

Returning to the product discrete topology on P(E), it can be seen as correspond-
ing to the topology 7 on [] . Be under the bijection H <+ xp. More precisely, a
subset H of P(E) is open in the product discrete topology if and only if the subset
{Xn | h € H} of [] ¢ Be is open in 7. This notion defines a product discrete topology
on the collection of all subgraphs on G, as defined in Definition 5.1. In particular, if
S* converges to S in the product discrete topology then, for any finite subset of &,
the S*’s agree with S on this set of edges for sufficiently large k.

5.2. Cost continuity in the product discrete topology. Having set our
topology, we now want to establish the continuity and compactness needed for Weier-
strass’s Theorem. We start with establishing continuity of the objective function.

LEMMA 5.2. Suppose the edge cost functional ¢ : € — R is absolutely summable
ssumption 2). Then c(+) is continuous in the product discrete topology.
A tion 2). Th ' ti in th duct discrete topol

Proof. To establish continuity of ¢(-), it suffices to show that if a sequence H* of
elements of P(£) converges to H in the product discrete topology, then c(H*) — ¢(H)
in the usual topology on the reals. That is, for an arbitrary e > 0, we want to show that
there exists a K, such that |c(H*) — ¢(H)| < € for all k > K.. Under Assumption 2,
there exists a subset E of £ such that B’ = £\ E is finite and)z [c(e)] < €/2.
Since E’ is a finite subset of £, there exists a K, such that H* agrees with H on all
edges in E’ for k > K, by the lock-in property. That is, for all k¥ > K, we have

c(HY) —c(H)|=| Y cle)+ > cle)= Y ele)= > cle)
ecHFNE ecHkNE' e€eHNE e€cHNE'
= Z c(e) — Z c(e)
ecHFNE ecHNE
< 22 le(e)] < e.
ecEl
This establishes the result. O

This manuscript is for review purposes only.

428
429
430
431

12 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

5.3. Compactness in the product discrete topology. The final ingredient
in our existence proof is establishing the compactness of the set of spanning trees.
The FC property is crucial to this argument. First, we state a preliminary lemma to
establish the compactness of a superset.

LEMMA 5.3. Let G be a locally finite and connected graph (Assumption 1). The
space of all subgraphs of G is compact in the product discrete topology T.

Proof. Immediate from Tychonoff’s theorem (Theorem 2.61 in [6]). |

LEMMA 5.4. Let G be a locally finite and connected graph (Assumption 1) that
satisfies the FC property (Assumption 4). Then, the set of all spanning trees is com-
pact in the product discrete topology.

Proof. In light of Lemma 5.3, it suffices to show that the set of all spanning trees
is closed in the product discrete topology.

Let Sk k = 1,2,..., be a sequence of spanning trees in G that converges in the
product discrete topology to a subgraph S of G. It then suffices to show that S is,
itself, a spanning tree. This is achieved in three parts: (i) show S is spanning, (ii)
show S is acyclic, and (iii) show S is connected.

To establish (i), observe that if a node ¢ is disconnected from S then each of the
edges incident to i can only lie in finitely many of the iterates S*. Then this means
that node 4 is isolated in S* for n sufficiently large, a contradiction of the fact that
all S* are connected.

To establish (ii), suppose that S contains a cycle C. Then, since C contains finitely
many edges, the lock-in property of convergence in the product discrete topology
implies that C' is in each S* for k sufficiently large. This contradicts the fact that
each S* is acyclic.

We now establish (iii). We will show that there is a path from 7 to j in S for any
pair of nodes i and j. By connectedness of each S*, there are paths P* connecting i
and j in S* for all k. Consider an arbitrary “reference” path P;; in G connecting ¢
and j. Path P;; contains finitely many edges, and by the FC property, each edge is in
at most finitely many cycles in G. Let us collect all these cycles into a finite collection
of cycles C, and let C := {C'\ P;; | C € C}. That is, for every cycle C € C, the subset
of edges of C that are not in the reference path F;; is an element of C. Again by the
FC property, C is a finite collection of subsets of edges in G.

Observe that each P* arises by taking some edges from P;; and some subsets of
edges from C (in the degenerate cases, P¥ can exactly equal P;; or just be composed
of subsets of edges taken from C). Thus, there are only finitely many possibilities
for the structure of P" since C is a finite collection and P;; has finitely many edges.
According to the pigeonhole principle, infinitely many of the P* are thus equal and
so a subsequence of them converges in the product discrete topology to a path P that
connects i and j. Since we have assumed that the S* converge to S in the product
discrete topology, this implies that P is in .S and so 7 and j are connected in S. This
implies that S is connected. 0

THEOREM b5.5. Consider the minimum-cost spanning tree problem (P) and sup-
pose G is a locally finite and connected graph (Assumption 1) with the FC property
(Assumption 4) and with costs that are absolutely convergent (Assumption 2). Then,
an MST (i.e., an optimal solution to (P)) exists.

Proof. Note that (i) the objective function of (P) is continuous in the product
discrete topology by Lemma 5.2, and (ii) the feasible region is compact in the product
discrete topology by Lemma 5.4. The result then follows by Weierstrass’s theorem

This manuscript is for review purposes only.

476
77
478
479

MINIMUM SPANNING TREES IN INFINITE GRAPHS 13

Fic. 4. Graph for Example 4 illustrating that the layered greedy algorithm fails to find an
optimal MST even when one exists.

(Theorem 2.35 in [6]). O

The above result implies that if the graph G has the FC property, then the
layered greedy algorithm can be used to find a sequence of trees in G that converges
to optimality in objective value (combining Theorems 3.3 and 5.5).

6. Solution convergence. In the previous section, we showed that if a graph is
locally finite, connected, and satisfies the FC property with summable costs (Assup-
tions 1, 2, and 4) then the layered greedy algorithm always achieves convergence in
objective value. However, this does not imply that the iterates of the graph converge
to an MST. Consider the following example.

ExaMPLE 4. Consider the graph in Figure 4, which satisfies Assuptions 1, 2, and
4. If we apply the layered greedy algorithm, there is a tie between the two identical-cost
vertical edges within each four-node cycle contained in the layer. Suppose for T™ with
n odd, the algorithm chooses the “left” edges (shown as the dotted (purple) edges in
Figure 4), and for T™ with n even, the algorithm chooses the “right” edges (shown as
the dashed (green) edges in Figure 4). Then the sequence T™ does not converge in the
product discrete topology at all, let alone to an MST. Thus, the iterates of the layered
greedy algorithm can fail to converge. <

6.1. Solution convergence when there is a unique MST. One sufficient
condition to avoid pathological behavior illustrated in Example 4 is having a unique
MST in the graph.

THEOREM 6.1. Suppose G is a locally finite and connected graph (Assumption 1)
that satisfies the FC property (Assumption 4) and whose edge cost functional is abso-
lutely summable (Assumption 2). If G possesses a unique MST T* then the iterates
of the layered greedy algorithm converge to T* in the product discrete topology.

Proof. Let T™ be the n-th iterate of the layered greedy algorithm. By Proposi-
tion 3.2 each iterate can be extended to a spanning tree S™ of G. Suppose, by way of
contradiction, that the sequence S™ does not converge to T™ in the product discrete
topology. By the compactness of the set of spanning trees (Lemma 5.4), a subsequence

S™ k =1,2,..., converges to a spanning tree 7’ where T’ # T*. By convergence
in objective value (Theorem 3.3) and continuity (Lemma 5.2), we conclude that 7" is
also an MST. Since T is the unique MST, this is a contradiction. 0

The following simple assumption is sufficient to ensure that a graph has at most
one MST:

This manuscript is for review purposes only.

NN
=W N

N

ot

&

o Ot Ot Ot Ot Ot
(=3}

[)
<o 00 BN

©

(S, 0N; BV} G, B |

W W W N N
N =

(&7 IS JV)

[«

J

W W W W W W w
co

Nel

=

Tt = W N =

e

3

o
©

ot
N o= O

ot Ot Ot

ot Ot ot Ot gt Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot ot Ot Ot
ot

Tt o= W

ot

14 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

ASSUMPTION 5. The graph G has distinct edge costs; that is, for every two dis-
tinct edges {1, j} and {i',j'} we have ¢;; # cyrjr. <

To prove uniqueness under Assumption 5, we need the following generalization of
a well-known condition in finite graphs (see, for instance, Theorem 13.1 in [3]).

PROPOSITION 6.2 (Cut optimality condition). IfT™ in an MST of a locally finite
and connected (Assumption 1) graph G then for all {i,j} € T*, ¢;; < cre for any edge
{k, L} crossing the cut formed by deleting edge {i,j} from T*.

Proof. Suppose the condition is not satisfied for some {i, j} € T*, and edge {k, £}
with ¢;; > cge crosses the cut formed by deleting {i,j} from T*. Then, replacing
{i,7} by {k, £} in T™* creates a spanning tree that is cheaper, implying that T* is not
an MST. 0

THEOREM 6.3. Let G be a locally finite and connected graph (Assumption 1) with
distinct arc costs (Assumption 5). If an MST exists for G then this MST is unique.

Proof. To show uniqueness, suppose S and T are two distinct MSTs (at least
one is guaranteed to exist by assumption), and let {i,j} € S\ T. Furthermore, let
{k,£} € T be in the cut created in G by removing {i,j} from S. Since S and T
are both MSTs, they both satisfy the cut optimality condition (Proposition 6.2), i.e.,
cij < cge and cpp < ¢4, implying that c;; = cge. This is a contradiction, establishing
that S =1T. d

This result (via Theorem 6.1) shows that when we apply the layered greedy al-
gorithm to a locally finite, connected graph with the FC property and absolutely
summable distinct edge costs, then the algorithm’s iterates converge to an MST, i.e.,
it provides an affirmative answer to question (Q2). Moreover, for each edge, we get
lock-in after finitely many iterations via convergence in the product discrete topology.

6.2. Discovery of early edges of an MST. Of course, we would like a stronger
convergence result than Theorem 6.1 in the following sense. Convergence in product
discrete topology tells us that every edge eventually locks into an edge of an MST of
G, but it would be better if we had a verifiable sufficient condition for when an edge
has locked in. As we will see, the layered view of the graph and the nature of Prim’s
algorithm allow us to provide some partial results in this area.

In what follows, we adopt Assumption 5 that the graph has distinct edge costs.
By Theorem 13.1 in [3], which is the finite-graph version of Theorem 6.3, this implies
that for every n, T"™ is the unique MST of the graph G,, and moreover, there will be
no tie-breaking in Step 4 of Prim’s algorithm.

With this assumption, we can make the following simple, yet powerful, obser-
vation. Since in each iteration of the layered greedy algorithm the iterate T™ is
constructed via Prim’s algorithm, and because Prim’s algorithm always starts with
the root node and grows the tree T™ from there, the uniqueness in the choice of T
greatly restricts the possibility of deviation in the “early” edges among the iterates
T™. The next result formalizes this idea.

Let e} be the k-th edge added by Prim’s Algorithm applied to G, initialized with
the root node r, where k = 1,2,...,|L,| — 1. We add a little more interpretation
here for clarity. We are executing the layered greedy algorithm and are on its n-th
iteration; that is, we are constructing 7™ on the graph G,, of layer n. In Step 4 of the
layered greedy algorithm, there is a call to Prim’s algorithm to construct T™. The
subscript k in e} refers to the k-th iteration of Prim’s algorithm within Step 4 of the
layered greedy algorithm.

This manuscript is for review purposes only.

(&)

(S NG BEG) BN
[S B, B |
oo

UL W N = O

oo

b e B A B e B BN B B |

v Ot Ot Ot Ot Ot Ot Ot Ot Ot C

580
581
582
583
584

585

586
587

588

589
590
591
592
593

594

595
596
597
598
599
600
601

MINIMUM SPANNING TREES IN INFINITE GRAPHS 15

Let ky, = maxi<p<|r,|-1{k | €} € En1,0 = 1,2,...,k}, ie., the last iteration
of Prim’s algorithm applied to G,, before an edge that is not contained in G,,_; is
selected. Since Prim’s algorithm is initialized with the root node, 1 < k¥ < |L,| —1
for n > 1 (we let k¥ = 0). Furthermore, let

(6.1) Fr={e}, 6=1,2,... ki +1}.

In other words, F}¥ is the set of edges added by Prim’s algorithm applied to G,, up to
and including the first edge that connects a node in L,,_; and a node in L, \ L,_1,
namely ep. ., € &p.

PROPOSITION 6.4. Suppose G is a locally finite and connected graph (Assump-
tion 1) with distinct edge costs (Assumption 5). Then F C T™, for m > n and
n=12,..., where F} is defined in (6.1).

Proof. Consider an arbitrary n > 1 and arbitrary m > n. For n = 1, the result
is trivially true, since in this case F;; will include only the cheapest edge incident to
the root node, and this edge will be added as the first iterate of each application of
Prim’s algorithm. Consider now n > 1 and m > n. We will show that e}* = e}
for all £ = 1,2,...,k} + 1, which implies that F¥ C T™. We will prove this by
mathematical induction on ¢. The claim is clearly true for £ = 1 since the minimum-
cost edge emanating from node r is the same for all graphs G,, with m > 1. Adopt
the inductive hypothesis that ej* = e} for all £ = 1,2,...,k for some k < k. Then
Prim’s Algorithm, before its k 4 1-st iteration, has created trees identical to Fj :=
{e}, ¢t=1,2,...,k} C G,,—1 when applied to graphs G, and G,, for m > n. Then the
k + 1-st iteration of Prim’s algorithm for both graphs finds the same minimum-cost
edge e, out of Fj, since all edges emanating from Fj in G, are in &, for all m > n,
thus restoring the inductive hypothesis. a

REMARK 2. The distinct arc costs assumption (Assumption 5) is important to
the above result as it ensures that different calls to Prim’s algorithm do not need to
make tie-breaking decisions and potentially select different edges on earlier layers of
the graph. <

If the graph possesses an MST T*, we can further demonstrate that all edges of
E are guaranteed to be in the set £* of edges of T™*.

COROLLARY 6.5. Suppose G is a locally finite and connected graph (Assump-
tion 1) with distinct edge costs (Assumption 5) and (a unique) MST T* = {V,E*}
exists. Then Ff CE* n=1,2,..., where F) is defined in (6.1).

Proof. Let T*(n) be the smallest connected finite subtree of T that contains all
nodes of layer n, and let G*(n) be the subgraph of G spanned by T*(n). It is easy to
show (e.g., by contradiction) that T*(n) is an MST of G*(n); moreover, it is a unique
MST due to Assumption 5. Applying Prim’s algorithm to G*(n) starting with the
root node, we will generate F* on the way to generating T*(n), since G,, C G*(n).
Hence Ff C T*(n) C £*. d

Corollary 6.5 provides a basic sufficient condition for an edge e to lie in an MST
under appropriate assumptions: if e € F)¥ for some n, then e is an edge of an MST.
This condition can be readily verified by running Prim’s algorithm until it first reaches
outside the layer that contains e and checking whether e has been added to T™ by
this point. Therefore, we have a partial answer to question (Q3).

It is important to stress that this condition is only sufficient. If an edge e does not
lie in F} for any n, this does not mean that e is not an edge of any MST. A simple

This manuscript is for review purposes only.

619
620
621
622
623
624
625
626
627
628
629
630
631

16 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

N

()
/

N|—=
N
oo|—=
5l

Fic. 5. A graph with some minimum spanning tree edges that do not satisfy the sufficient
condition in Corollary 6.5 (see Example 5).

example illustrates this point.

EXAMPLE 5. Consider the graph in Figure 5 and let the node in the bottom left
corner be the root node. Clearly, this graph satisfies the assumptions of Corollary 6.5,
and its single minimum spanning tree is the whole graph itself. In the n-th iteration
of the layered greedy algorithm, Prim’s algorithm selects every available negative-cost
edge before selecting any positive-cost edge. This implies that edge count K is reached
before a single positive-cost edge is reached. This implies that the positive-cost edges
do not lie in F), even though they are part of the minimum spanning tree. This
implies that the sufficient condition in Corollary 6.5 cannot identify the positive-cost
edges of this graph as belonging to the minimum spanning tree. <

In the next set of results, we build on Proposition 6.4 and Corollary 6.5 to identify
scenarios where we can tell that an entire iterate T™ of the layered greedy algorithm
lies in T*.

COROLLARY 6.6. Suppose G is a locally finite and connected graph (Assump-
tion 1) with distinct edge costs (Assumption 5) and (a unique) MST T* = {V,E*}
exists. Suppose

2 i
(02 B) > el
for some i > 1, where Ky := {{i,j} :4 € Ly and j € Lz41 \ La}. Then all edges of
layered greedy iterate T™ lie in every subsequent iterate T™, n > n, and therefore, T™
is contained in T*.

Proof. Observe that (6.2) ensures that all edges of T™ lie in F,,, since this
condition implies that, when Prim’s algorithm is applied to layer n + 1 and beyond,
all nodes within layer n get spanned before any node outside of this layer is reached.
The rest of the argument follows by Proposition 6.4 and Corollary 6.5.]

It is straightforward to see that condition (6.2) fails in the graph in Figure 5. The
next example provides a case where condition (6.2) holds.

EXAMPLE 6. To illustrate condition (6.2), consider the graph in Figure 6 that is
adapted from Figure 16.7 in [3]. We can see that condition (6.2) holds for i = 2 since
min{45,50,60} > max{35,40,25,10,20,15,30}. Thus, the layered greedy algorithm
locks in the edges of T? starting with iteration 3. In this case, these edges have costs

This manuscript is for review purposes only.

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

652

661

662

MINIMUM SPANNING TREES IN INFINITE GRAPHS 17

Layer 0 1 2 3

F1G. 6. An example that satisfies condition (6.2) in Corollary 6.6.

35, 10, 20, and 15, and they are guaranteed to be in T independently of the structure
and costs of G after layer 8 (aside from ensuring that assumptions of Corollary 6.6
hold). <

Condition (6.2) can be interpreted as follows: the edges in K5 create a “mountain
range” or a “ridge” of costs, while all edges within the subgraph G5 form a cost
“valley”; as a result, all the nodes in the valley should be spanned before the MST
ventures across the ridge.

Note that in a graph with positive edge costs, this condition cannot hold for all n,
or even for an infinite subsequence of n, and satisfy the other assumptions imposed on
our graphs. Indeed, for (6.2) to hold on an infinite subsequence ny, k = 1,2,..., we
must have a subsequence of edges with costs that are increasing. But this condition
violates Assumption 2, which may be needed to establish existence of an MST, since
it requires the sequence of edge costs to converge to 0 for them to be summable.

Luckily, we can provide a modification of condition (6.2) that can hold on a sub-
sequence of layers without contradicting Assumption 2 while providing a workable
approach to identifying early edges in T*. The new condition is discussed in Corol-
lary 6.7 and illustrated in Figure 7.

COROLLARY 6.7. Suppose G is a locally finite and connected graph (Assump-
tion 1) with distinct edge costs (Assumption 5), and (a unique) MST T* = {V,E*}
exists. Suppose further that there is an increasing sequence ng, k = 1,2,..., with
ny > 1, that satisfies the following conditions:

6.3 min c(e) > max c(e), and min c(e) > ma; cle) fork >1
(6:3) c€Kn, (e) ee.sj(1 (e), c€Ky, (e) eEE(n(kji),nk) (e) f ’

where E(n,m) = £, \ (E,UK,,) for n < m, i.e., it is the set of all edges of G with both
endpoints in layer m, but outside layer n (thus extending notation &, = £(0,m)).
Furthermore, assume that whenever the set Ly, \ Ln _,, contains more than one
node, this node set is connected in the graph induced by &(ng,_1y,nx). Then, for all
k=1,2,..., all edges of layered greedy iterate T™ lie in every subsequent iterate T,
n > ng, and therefore, T™ is contained in T™.

ExampLE 7. Consider the graph in Figure 7. We have ny = 1, since

1 1 1 1
-1 inqdl+-,14+—-,14+—
max{2, }<m1n{ —|—2, +4, —|—8},

and T consists of the two edges emanating from the root node. It is easy to see that

This manuscript is for review purposes only.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684

685
686
687
688
689
690
691
692
693
694

18 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

128

Fic. 7. Graph for Example 7 illustrating the notation defined in Corollary 6.7. Here, n1 =1
and na = 3. The edges in Kpn, are dashed. The edges in E(n1,n2) are in bold. It is easy to see that
(6.3) is satisfied for n1 and na.

Prim’s algorithm applied to any G, with n > 1 in this example will begin by adding
these two edges, which are therefore locked in.

Furthermore, ny = 3 satisfies (6.3), since the most expensive of the bold edges has
cost i, and the cheapest of the dashed edges has cost %—l— é. T3 consists of edges with
costs %, 1, 1+ %, %, ﬁ, 5%, 3—12, and 1—16 (listed here in the order they are added
by Prim’s algorithm). The application of Prim’s algorithm to construct T* will also
begin by adding these edges.

Notice, however, that T? contains the edge with cost %, which is not included in
the subsequent iterates, illustrating that the result in Corollary 6.7 is only guaranteed

to hold on the specified subsequence.

Proof of Corollary 6.7. We will prove, by induction on k, that T"* C F; ., for
k =1,2,.... For k = 1, condition (6.3) coincides with (6.2), and this conclusion
follows by Corollary 6.6. For k > 1, let us adopt the inductive hypothesis that
T"e=n C Fy o) 41, and show that T C F7 .

If the set Ln, \ Ln,_,, consists of a single node (say, v), the claim is trivially
true, since then ng = n_1) + 1, T™* consists of T"®*-1 combined with the cheapest
edge connecting Ly, , with v, and F};, |, consist of T"* combined with the cheapest
edge connecting v with a node in L, +;. We will therefore consider the case when
L., \L contains multiple nodes.

N(k-1)
As before, let €]!, be the edge added by the m-th iteration of Prim’s algorithm
applied to G,,. To prove our claim, we need to show that, for m =1,...,|L,,| — 1,
(6.4) emetl — e,

By the inductive hypothesis, (6.4) is true for all m <|[Ly,_,,|—1 (while both Prim’s
algorithms are constructing 7"*-1) and for m = [L,,, _,,| (when they both add the
cheapest edge from K, _, to reach Ly _yy+1, thus completing ;(k71)+1).

We now construct an induction on ¢ where we suppose (6.4) is true for all m < ¢,
where |Lp,_,,| < € < |Ly,| — 1, and consider the edges each algorithm chooses
from in iteration ¢ + 1. During the first ¢ iterations, the algorithms have spanned,
using the same edges, all of Ly, _,, and a strict subset Vy of Ly, \ Ly, _,,. Let
V= (Ln, \ Lng_,y) \ Ve — these are precisely the nodes of L,, that have not yet
been spanned.

We now prove the inductive step in iteration ¢ 4+ 1. In that iteration, Prim’s

This manuscript is for review purposes only.

MINIMUM SPANNING TREES IN INFINITE GRAPHS 19

algorithm applied to G, is comparing the costs of edges in K, _,, incident to nodes
in V' and edges connecting nodes in V; to nodes in V', while the algorithm applied
to G, 41 is comparing the costs of all the aforementioned edges as well as any edges
in K, incident to nodes in V,. Due to the assumption that node set L,, \Ln(k—l) is
connected in &(n(y—1),nk), at least one of the edges from this edge set is considered
in the cost comparison by both algorithms and by (6.3), it will be cheaper than any
edge in), . Therefore, Prim’s algorithm applied to G,,,+1 will not choose an edge
from /C,,, until all nodes in L,,, have been spanned, i.e., until it constructs the MST
T™. This establishes (6.4) for £+ 1 and completes our induction on ¢, which in turn
closes the outer induction on k.

The rest of the argument follows by Proposition 6.4 and Corollary 6.5.]

This last corollary shows that the MST T can be constructed by building the
smaller finite trees T™* where later iterations do not add or remove edges from the
layer of G spanned by the T™* uncovered so far.

It is worth noting that assumptions of Corollary 6.7 and Assumption 2 can be met
simultaneously in graphs with positive costs. Roughly speaking, condition (6.3) only
requires that, occasionally, costs of edges connecting to a new layer form a “ridge,” but
only relative to the costs of edges in the previous valley. However, the heights of the
subsequent ridges K, can get smaller as long as the subsequent valleys &(n—1), nx)
also get more shallow.

Corollaries 6.6 and 6.7 provide additional partial answers to question (Q3).

7. An application: High-speed information channels. In this subsection,
we illustrate how the results in this section can be used to solve a minimum spanning
tree problem on an infinite graph that arises from an application. The infinite graph
models an underlying indefinite but large finite graph whose nodes we expect to
ultimately connect via a spanning tree of telecommunication links.

Suppose in particular a telecommunications company is building high-speed in-
formation channels (e.g., via laying fiber-optic cables) to connect a large number of
locations to a single service provider at minimum cost. The collection of these loca-
tions is modeled as countably infinite since the goal is to connect discrete locations
over a long but uncertain life of the project. For more discussion of using infinite
graphs to study infinite-horizon optimization problems see [21]. The cost of an edge
{i,j} is the cost of building an information channel that directly connects location i
and location j.

We view the layers of the graph as nodes reached by edges over time. The first
layer consists of locations that can be connected to the root node (the service provider
location) in a certain interval of time, say, 1 year. The second layer consists of locations
that can be connected to the root node (via a node in layer 1) in two time periods,
say 2 years. Under this time interpretation of layering, it follows that each node has
finite degree, since in finite time a location can only be connected to finitely many
other locations. This supports Assumption 1. As for Assumption 2, it is natural to
assume that future costs are discounted by a discount factor that assures summable
costs. These two assumptions then assure that the layered greedy algorithm will find
a sequence of spanning-tree iterates that converge in value to optimality.

The nature of the layered greedy algorithm, however, is that the edges in the
tree iterates will shift around, as we saw in Example 1. For an application like
laying fiber-optic cable, such “shifting around” can lead to very expensive reworking
requiring removal of previously added edges. We would prefer to be able to apply
a rolling horizon approach to this problem. In particular, we would like to be able

This manuscript is for review purposes only.

744
745
746
747

-
ot (S NG S I S N
TR WY RO O

3

1 9 9 7 9~ 9~
ot ot Ot C ot - o C z -
%

20 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

1
O

po—
oo|—

Fic. 8. A graph with an MST that fails the FC property.

to finalize our decisions of which potential edges within a few initial layers will and
will not be built based on whether they are included in T;,, for some small n; (and
proceed to lay cable along the chosen edges during the first few years of construction);
then finalize the decisions regarding the edges in the next few layers based on T,,, for
some ny > ni, etc., without sacrificing optimality of the overall spanning tree that is
being constructed.

If we assume more about the underlying graph, we can get stronger convergence
results. These assumptions are in fact quite natural in our setting. The condition
of distinct edge costs (Assumption 5) is easy to guarantee since it is unlikely that
two projects to connect two different pairs of locations have exactly the same costs.
The recursive ridges and valleys condition (6.3) is natural in this application, with
“valleys” and “mountain ranges” representing either the actual topography of the
area or the difference in difficulty and costs of laying cable with and without pre-
existing underground conduits. We may assume the costs are summable if we take
time discounting into consideration, so even though “far off” mountains may be high,
their costs will be sufficiently discounted. Finally, the connectedness assumption of
Corollary 6.7 is natural if the population of the valleys is dense enough to allow it to
be connected by cheap local infrastructure. Accordingly, we can apply the result of
Corollary 6.7 ensuring that we can construct the MST recursively in finite subtrees
whose edges become stable at finite intervals (the associated sequence {ny}) without
edges entering or leaving the MST.

8. Conclusion. In this paper, we gave an algorithm that yields convergence in
objective value for a broad class of infinite graphs (locally finite and connected) that
works as long as an MST is known to exist (Theorem 3.3). We offer the combina-
tion of the FC property on the graph and absolute summability of the costs as a
sufficient condition for existence, but acknowledge that these are not necessary condi-
tions. Indeed, consider the graph in Figure 8. It satisfies the properties of absolutely
summable and distinct edge costs but fails the FC property. Nonetheless, an MST
exists, as indicated in dashed (green) edges. An interesting open question is whether
there is a meaningful characterization of when an MST exists in a locally finite and
connected graph that is weaker than the FC property, or substantially different from
it.

In this paper, we also showed convergence of the layered greedy iterates in the
scenario where there exists a unique MST (Theorem 6.1). Unlike in many other
optimization problems, where the uniqueness of the optimal solution is hard to verify,
this problem has the simple sufficient condition of unique edge costs. We also showed
in Example 4 that if there is more than one MST then the iterates of the layered greedy

This manuscript is for review purposes only.

MINIMUM SPANNING TREES IN INFINITE GRAPHS 21

algorithm may fail to converge to an MST. The convergence issue arose because of an
“unfortunate” selection of edges of equal cost as the algorithm proceeds. We believe
that this “selection” issue could potentially be resolved, using an approach similar in
spirit to [23]. We will leave this for future work.

Finally, we explored a verifiable sufficient conditions that allow us to confirm
whether an iterate of the layered greedy algorithm has “locked in,” i.e., verify that all
its edges will be contained in all of the future iterates (and thus the optimal MST if
it exists).

Appendix A. Appendix: Proof of Proposition 4.1.
We start with the following preliminary lemma.

LeMMA A.1. If a locally finite and connected graph G contains no bi-rays, then
every pair of rays must have infinitely many nodes in common.

Proof. Let (i1,i2,...) and (j1, jo, .. .) be two rays in the graph, and suppose they
have at most finitely many nodes in common. If they have no nodes in common,
then a bi-ray is produced by connecting nodes i; and j;. Otherwise, let k =i, = j,
for some m and n be the last node they share, so that rays (k,ém+1,m+2,...) and
(ky Jn+1, Jnt2, - -.) are distinct except for node k. Then the union of these rays is a
bi-ray, a contradiction.]

LEMMA A.2. The collection of all paths and rays in a locally finite and connected
graph that contains no bi-rays is compact in the product discrete topology.

Proof. Observe that a subgraph is a path or a ray if and only if it is a connected
and acyclic subgraph where each node has degree at most two. (Bi-rays also have these
properties, but we are assuming that our graph has no bi-rays.) Let P*, k=1,2,...,
be a sequence of paths and rays that converges in the product discrete topology to
some subgraph P. We claim that P has no cycles, is connected, and each node in P
has degree at most 2, i.e., P is either a path or a ray.

The proof that P is acyclic follows the same logic as claim (ii) in Lemma 5.4 using
the lock-in property of convergence.

Next, suppose P has a node of degree 3 or greater. Again, by lock-in, this implies
that infinitely many of the P* also have a node of degree 3 or greater, contradicting
the fact they are paths or rays.

Finally, we establish by contradiction that P is connected. Suppose there are two
nodes i, j € P that are not connected in P. Since these two nodes are in P, P contains
at least one edge incident to 7 and at least one edge incident to j. This means that,
for sufficiently large k, each P* contains those edges and thus contains both nodes i
and j; we can pass to a subsequence to make this claim for all k. Let PZIE be the path
that connects i and j in P¥.

Let i} € I(i) be such that {i,i{} € PJ;. By the pigeonhole principle, one of these
edges locks in, so that for some i; € I(i), {i,i1} € PZ-’} for k sufficiently large, and
thus {i,41} € P. Note that i; # j by our assumption. Let us pass to a subsequence
so that {i,i,} € P} for all k.

We continue following each of the paths PZ; from iy towards j. Consider nodes
if € I(iy) such that i§ # i and {iy,i5} € PJ;. Following the same logic, one of these
edges, denoted {i1,i2}, is contained in all paths Pilz- for sufficiently large k, and thus
is contained in P. Note that i # j and, since P is acyclic, iy # i.

We will repeat the above process iteratively. At each step, we will continue fol-
lowing the paths PZ} towards j from the most-recently identified node 4,,, and adding

This manuscript is for review purposes only.

22 C.T. RYAN, R.L. SMITH, AND M.A. EPELMAN

a node i,,+1 such that the edge sequence ({,41}, {91,792}, -+, {tm—1,%m t> {lmstm+1})
is in Pilj- for all (sufficiently large) k, and thus is in P. Since 4,41 is different from i,,
by construction, and from every other identified node since Pi’} is acyclic, this process
will create a ray R; = ({4,491}, {¢1,42},...) C P that does not include node j.

Using the same process starting from j, we can create a ray

Rj = ({j, i} {j1,j2},..) C P

that does not include node i. Moreover, this ray has no nodes in common with R;,
since otherwise there is a path connecting ¢ and j in P. This, however, contradicts
Lemma A.1 in a graph with no bi-rays, thus establishing that P is connected. |

Proof of Proposition 4.1. Suppose G is a locally finite and connected graph with
no bi-rays. By way of contradiction, suppose there exists an edge {i,j} € £ that is
contained in infinitely many cycles. Deleting the edge from those cycles, we conclude

that there are infinitely many distinct paths P/}, n =1,2,..., connecting i and j.
Observe that there must be an infinite subsequence PZ-T;-‘“, k=1,2,..., such that
Pg’““ contains strictly more edges than P[*, for all k. Suppose otherwise, that

there is a maximum number N of edges in all paths between nodes i and j. By
local finiteness, there are finitely many potential paths of length N leaving node i.
However, we have supposed there are infinitely many paths of length N leaving node
1 and reaching node j. Hence, such a sequence PZ}’C, k=1,2,..., exists.

Let Ni, k = 1,2,..., denote the increasing sequence of cardinalities of the edge
sets of paths P[}*, and let my, be the | Ny/2]-th node in the path P[}*. Break each
Pij’“ into two subpaths, P/"* and Pj"’“, where P/"* connects node i and node my, and
Pj?““ connects node j and node my; i.e., P"* and P].”k have only node my in common.
Passing to subsequences if necessary and using Lemma A.2, sequences P;"* and Pj”’“
each have a limit P; and P;, respectively, that are either paths or rays. Moreover, by
the construction of P/"* and P;”“, they cannot converge to limits with finitely many
nodes, and so P; and P; must be rays.

Our contradiction comes from the properties of rays P; and P;. We argue that P;
and P; have at most one node in common. Suppose otherwise that P; and P; have at
least two nodes in common, say, v and v. Then P; contains a finite path p; between
u and v and P; contains a finite path p; between u and v. There are two cases to
consider. The first is where p; and p; share an edge. In this case, by the lock-in
property, P and P"* both contain that edge for large enough k, contradicting the
fact that P"* and P} do not have any edges in common by construction.

On the order hand, if p; and p; do not share edges, then their union contains a
cycle C in P; U P;. Recall that Pg’“ is equal to the union of P/"* and P;““, and since
P converges to P; and P]T”f converges to P;, we must have that PZZ”“ converges to
P; U P;. This implies that infinitely many elements in the sequence P** contain the
cycle C by the lock-in property. This contradicts the fact that each F;;* is a path.

This establishes that the rays P; and P; intersect in at most one node. On the
other hand, since P; and P; are rays in a graph with no bi-rays, by Lemma A.1 they
must have infinitely many nodes in common. We have arrived at a contradiction, and
thus every edge of G is contained in at most finitely many cycles. |

REFERENCES

[1] L. ADDARIO-BERRY, N. BROUTIN, C. GOLDSCHMIDT, AND G. MIERMONT, The scaling limit of
the minimum spanning tree of the complete graph, The Annals of Probability, 45 (2017),
pp. 3075-3144.

This manuscript is for review purposes only.

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

MINIMUM SPANNING TREES IN INFINITE GRAPHS 23

R. AaARONI, E. BERGER, A. GEORGAKOPOULOS, A. PERLSTEIN, AND P. SPRUSSEL, The maz-
flow min-cut theorem for countable networks, Journal of Combinatorial Theory Series B,
101 (2011), pp. 1-17.

R. K. AHuJA, T. L. MAGNANTI, AND J. B. ORLIN, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

D. ALDOoUS AND J. M. STEELE, Asymptotics for Fuclidean minimal spanning trees on random
points, Probability Theory and Related Fields, 92 (1992), pp. 247-258.

K. S. ALEXANDER, Percolation and minimal spanning forests in infinite graphs, The Annals of
Probability, (1995), pp. 87-104.

C. D. ALIPRANTIS AND K. C. BORDER, Infinite Dimensional Analysis: A Hitchhiker’s Guide,
Springer, 3rd ed., 2006.

E. J. ANDERSON AND A. B. PHILPOTT, A continuous-time network simplex algorithm, Networks,
19 (1989), pp. 395-425.

H. Brunn, R. DIEsTEL, M. KRIESELL, R. PENDAVINGH, AND P. WOLLAN, Azioms for infinite
matroids, Advances in Mathematics, 239 (2013), pp. 18-46.

N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the travelling salesman problem,
tech. report, Carnegie-Mellon University Technical Report, 1976.

R. DIESTEL, Graph Theory, Springer, 4th ed., 2010.

M. A. DJAUHARI AND S. L. GAN, Optimality problem of network topology in stock market
analysis, Physica A: Statistical Mechanics and Its Applications, 419 (2015), pp. 108-114.

A. GHATE, Duality in countably infinite monotropic programs, SIAM Opt., 27 (2017), pp. 2010—
2033.

R. L. GRAHAM AND P. HELL, On the history of the minimum spanning tree problem, Annals
of the History of Computing, 7 (1985), pp. 43-57.

D. GRANOT AND G. HUBERMAN, Minimum cost spanning tree games, Mathematical Program-
ming, 21 (1981), pp. 1-18.

V. KLEE, The greedy algorithm for finitary and cofinitary matroids, in Combinatorics: Pro-
ceedings of Symposia in Pure Mathematics, T. S. Motzkin, ed., 1971, pp. 137-152.

R. Lyons, Y. PERES, AND O. SCHRAMM, Minimal spanning forests, The Annals of Probability,

34 (2006), pp. 1665-1692.
. MUNKRES, Topology, Prentice Hall, 2000.
NOUROLLAHI AND A. GHATE, Duality in convex minimum cost flow problems on infinite
networks and hypernetworks, Networks, 70 (2017), pp. 98-115.

S. NOUROLLAHI AND A. GHATE, Inverse optimization in minimum cost flow problems on count-
ably infinite networks, Networks, 73 (2019), pp. 292-305.

A. PauL, D. FREUND, A. FERBER, D. B. SHMOYS, AND D. P. WILLIAMSON, Budgeted prize-
collecting traveling salesman and minimum spanning tree problems, Mathematics of Op-
erations Research, 45 (2019), pp. 576-590.

H. E. ROMEIN, D. SHARMA, AND R. L. SMITH, Eztreme point characterizations for infinite
network flow problems, Networks, 48 (2006), pp. 209-22.

C. T. Ryan, R. L. SmITH, AND M. A. EPELMAN, A simplex method for uncapacitated pure-
supply infinite network flow problems, SIAM Journal on Optimization, 28 (2018), pp. 2022—
2048.

I. E. SCHOCHETMAN AND R. L. SMITH, Convergence of selections with applications in optimiza-
tion, Journal of Mathematical Analysis and Applications, 155 (1991), pp. 278-292.

T. C. SHARKEY AND H. E. ROMEUN, A simplex algorithm for minimum-cost network-flow
problems in infinite networks, Networks, 52 (2008), pp. 14-31.

K. J. SupowiT, D. A. PLAISTED, AND E. M. REINGOLD, Heuristics for weighted perfect match-
ing, in ACM STOC Symposium on Theory of Computing, 1980, pp. 398-419.

S. ZHANG, H. TongG, J. Xu, AND R. MACIEJEWSKI, Graph convolutional networks: A compre-
hensive review, Computational Social Networks, 6 (2019), p. 11.

This manuscript is for review purposes only.

	Introduction
	The minimum spanning tree problem
	Basic definitions
	Formal statement of the minimum spanning tree problem

	The layered greedy algorithm
	Some preliminaries
	Convergence in objective value
	Error bound after finite termination

	The finite cycle property
	Existence of a minimum spanning tree
	The product discrete topology
	Cost continuity in the product discrete topology
	Compactness in the product discrete topology

	Solution convergence
	Solution convergence when there is a unique MST
	Discovery of early edges of an MST

	An application: High-speed information channels
	Conclusion
	Appendix A. Appendix: Proof of prop:beanstalk-implies-FC
	References

