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Abstract. Duality theory is pervasive in finite dimensional optimization. There is growing interest in solving
infinite-dimensional optimization problems and hence a corresponding interest in duality theory in infinite dimensions.
Unfortunately, many of the intuitions and interpretations common to finite dimensions do not extend to infinite
dimensions. In finite dimensions, a dual solution is represented by a vector of “dual prices” that index the primal
constraints and have a natural economic interpretation. In infinite dimensions, we show that this simple dual
structure, and its associated economic interpretation, may fail to hold for a broad class of problems with constraint
vector spaces that are Riesz spaces (ordered vector spaces with a lattice structure) that are either σ-order complete
or satisfy the projection property. In these spaces we show that the existence of interior points required by common
constraint qualifications for zero duality gap (such as Slater’s condition) imply the existence of singular dual solutions
that are difficult to find and interpret. We call this phenomenon the Slater conundrum: interior points ensure
zero duality gap (a desirable property), but interior points also imply the existence of singular dual solutions (an
undesirable property). Riesz spaces are the most parsimonious vector-space structure sufficient to characterize the
Slater conundrum. Finally, we provide sufficient conditions that “resolve” the Slater conundrum; that is, guarantee
that in every solvable dual there exists an optimal dual solution that is not singular.
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1. Introduction. Duality is one of the most useful tools for modeling and solving optimization
problems. Properties of the dual problem are used to characterize the structure of optimal solutions
and design algorithms. The dual may be easier to solve than the primal and there exist well-known
sufficient conditions, such as Slater’s constraint qualification, that imply zero duality gap between
the optimal values of the primal and dual.

Many real world applications are naturally modeled in infinite dimensions, with examples in
revenue management (Gallego and van Ryzin, [15]), procurement (Manelli and Vincent, [25]) in-
ventory management (Adelman and Klabjan [1]), territory division and transportation (Carlsson
[10]) In each case, the authors apply properties of the dual to simplify the problem and develop
structure for optimal solutions.

The focus of our research is on the connection in infinite dimensional convex optimization
between constraint qualifications for zero duality gap and the existence of optimal dual solutions
that are easily characterized and have a meaningful economic interpretation. A precise overview of
our main results is found in Section 1.2.

To motivate our results, we begin with concrete examples. These examples illustrate how
the intuitions and interpretations common in finite dimensions do not necessarily hold in infinite
dimensions. Duality concepts that do extend to infinite dimensional problems are more subtle and
difficult to apply in practice. This development is meant to be accessible to readers with little or
no background in functional analytic approaches to convex optimization.

1.1. Motivation. In finite-dimensional convex optimization, conditions for zero duality gap
(such as Slater’s constraint qualification) are well understood. Moreover, there is a standard form
and economic interpretation of the dual. Researchers in operations research and economics typically
define a vector of dual prices that index the (finitely many) constraints. Each price is interpreted
as the marginal value of the constraining resource of the corresponding constraint. A real vector
of dual prices in finite dimensional convex optimization is a convenient representation of a linear
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functional defined over the constraint space, termed a dual functional. It is this notion of dual
functionals, possibly no longer representable as a real vector, that extends to infinite dimensional
problems and allows us to build a duality theory for convex optimization problems over arbitrary
ordered vector spaces. In the economics literature these dual functionals are called prices (see,
for instance [12]). This is valid terminology since dual funtionals “price” constraints by mapping
vectors in the constraint space to the real numbers. When there is a zero duality gap between an
optimization problem and its Lagrangian dual, this pricing interpretation gives significant insight
into the structure of the primal optimization problem. However, in infinite dimensions the connec-
tion between conditions for zero duality gap and interpretations of the dual are more complex. The
following examples illustrate this complexity.

Example 1.1. Consider the finite dimensional linear program

minx1

x1 ≥ −1,

−x2 ≥ 0,

x1 −
1

i
x2 ≥ 0, i = 3, 4, . . . , 10.

(1.1)

The vector spaces used in this problem are easily characterized. The primal variable space X = R2

contains the feasible region and the constraint space Y = R10 contains the problem data for the
primal constraints and is ordered by the cone R10

+ =
{
y ∈ R10 : yi ≥ 0, i = 1, . . . , 10

}
. The dual

feasible region is a subset of the vector space Y ′ of linear functionals that map Y into R (see
Luenberger [23]). The space Y ′ is called the algebraic dual of Y and elements of Y ′ are called dual
functionals. The dual constraints of (1.1) are

ψ((1, 0, 1, . . . , 1)) = 1,(1.2)

ψ((0,−1,−1/3, . . . ,−1/10)) = 0,(1.3)

ψ ∈ (R10)′+.(1.4)

Consider the dual constraint (1.2) and let ei ∈ R10 be the vector that equals 1 in the ith component
and 0 otherwise. Since every dual functional ψ is linear, we write (1.2) as

ψ((1, 0, 1, . . . , 1)) = ψ(1 · e1 + 0 · e2 + · · ·+ 1 · e10)

= ψ(1 · e1) + ψ(0 · e2) + · · ·+ ψ(1 · e10)

= 1 · ψ(e1) + 0 · ψ(e2) + · · ·+ 1 · ψ(e10).

Therefore, ψ can be represented by a real vector ψi := ψ(ei) for i = 1, . . . , 10. Using this notation,
the dual of (1.1) is

max−ψ1

ψ1 + ψ3 + ψ4 + · · ·+ ψ10 =1,

−ψ2 − (ψ3/3)− (ψ4/4)− · · · − (ψ10/10) =0,

ψi ≥0 i = 1, 2, . . . 10.

(1.5)

Representing the dual functional ψ as the real vector (ψ1, . . . , ψ10) is standard practice in finite
dimensional optimization. Problem (1.5) is a finite dimensional linear program with a simple
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structure: the constraint matrix of the dual program is the transpose of the constraint matrix of
the primal. This property may not hold in infinite dimensional problems, as seen in Example 1.2
below.

If the primal is feasible and bounded, then there is an optimal primal and dual solution with
zero duality gap. An optimal primal solution is (x∗1, x

∗
2) = (−1,−10) and an optimal dual solution

is (ψ∗1 , . . . , ψ
∗
10) = (1, 0, . . . , 0), each with an objective value of −1.

The representation of the dual functional ψ as the real vector (ψ1, . . . , ψ10) is convenient for
interpreting the dual. The optimal value of ψi is the increase in the primal objective value resulting
from one unit increase in the right-hand side of the ith primal constraint. Therefore, when the
value of the primal and dual are equal, optimal dual prices are the marginal prices a decision maker
is willing to pay to relax each primal constraint. This relationship between dual functionals and
the pricing of constraints is a key modeling feature behind the success of duality theory of finite
dimensional optimization. /

The next example demonstrates that many of the nice properties of finite dimensional opti-
mization in Example 1.1 may fail to hold in infinite dimensions.

Example 1.2 (Karney [21], Example 1). Consider the extension of Example 1.1 to infinitely
many constraints but still finitely many variables.

inf x1

x1 ≥ −1,

−x2 ≥ 0,

x1 −
1

i
x2 ≥ 0, i = 3, 4, . . . .

(1.6)

The left-hand-side column vectors (1, 0, 1, 1, . . . ) and (0,−1,−1/3,−1/4, . . . ) and right-hand-side
vector (−1, 0, . . .) belong to many choices of constraint space. This is typical in infinite dimensions
where multiple nonisomorphic vector spaces are consistent with the constraint data. By contrast,
in finite dimensions all finite dimensional vector spaces of dimension m are isomorphic to Rm.

A natural choice for the constraint space of (1.6) is the vector space RN of all real sequences.
A naive approach to formulating the dual of (1.6) when the constraint space is RN is to mimic
the logic of Example 1.1: assign a real number ψi to each constraint i = 1, 2, . . . , and then take
the transpose of the primal constraint matrix. Assuming this representation is valid, define a dual
functional ψ on the constraint space of (1.6) by an infinite sequence {ψi}∞i=1 where ψi := ψ(ei)
with ei, again having 1 in the ith component and 0 elsewhere. However, this representation of
an arbitrary dual functional ψ is not valid unless the following condition holds. Let {ai}∞i=1 be
an arbitrary vector in the constraint space. We say a dual functional ψ is countably additive if
ψ ({ai}∞i=1) =

∑∞
i=1 aiψi. Fortunately, when the constraint space vector space is RN, all positive

dual functionals are countably additive. Indeed, Basu, Martin and Ryan [7] prove that positive dual
functionals in the algebraic dual of RN can be expressed as positive sequences with finite support;
that is, ψi > 0 for only finitely many i ∈ N. Clearly, such dual functionals are countably additive.



4 Martin, Ryan and Stern

The dual program derived by taking the transpose of the constraint matrix in (1.6) is

sup−ψ1

ψ1 + ψ3 + ψ4 + · · · =1,

−ψ2 − (ψ3/3)− (ψ4/4)− · · · =0,

ψi ≥0, i = 1, 2, . . .

ψi >0, for at most finitely many i.

(1.7)

Notice that (1.7) closely resembles its finite dimensional analogue (1.5). The justification for this
dual formulation is based on countable additivity and is formalized in Section 3.1 (see (3.5)). Unlike
the finite case, a duality gap exists between (1.6) and (1.7). The optimal solution to the primal
program (1.6) is (x∗1, x

∗
2) = (0, 0) with a value of 0. Since every feasible solution to the dual program

(1.7) is nonnegative, the second constraint implies ψi is zero for all i ∈ {2, 3, . . .}. Therefore, the
optimal dual solution is (1, 0, 0, . . .) with a value of -1.

The existence of a duality gap may be surprising to readers familiar with Slater’s constraint
qualification in finite dimensions. Slater’s result states that if there exists a primal solution x such
that each constraint is strictly satisfied, then there is a zero duality gap. There are feasible points
of (1.6) (x̄ = (1,−1) for instance) that strictly satisfy each constraint and the existence of a duality
gap appears to contradict Slater’s constraint qualification. How can this be? In infinite dimensions,
feasible points that strictly satisfy each constraint are not necessarily interior points of the positive
cone of the constraint space, the condition required by infinite dimensional versions of Slater’s result
(see Theorem 2.1). Indeed, the positive cone of the vector space RN has an empty interior under
every linear topology (Aliprantis and Border [2]).

Alternatively, choose the constraint space of (1.6) to be the vector space `∞ of bounded se-
quences. This is a valid constraint space because the columns and the right-hand side of (1.6) lie
in `∞. The resulting dual program is

supψ({−1, 0, . . .})
ψ({1, 0, 1, 1, . . .}) = 1,

ψ({0,−1,−1

3
,−1

4
, . . .}) = 0,

ψ ∈ (`∞)′+.

(1.8)

When the vector space `∞ is equipped with its norm topology, its positive cone has a non-empty
interior The infinite dimensional version of Slater’s constraint qualification (Theorem 2.1) applies
and there is zero duality gap with the primal program. However, dual functionals feasible to (1.8)
may no longer be countably additive. Let ψ̄ be a dual functional over `∞ that satisfies ψ̄({ai}∞i=1) :=
limi→∞ ai for every convergent sequence {ai}∞i=1. Such a dual functional is guaranteed to exist (for
details, see Lemmas 16.29 and 16.30 in Aliprantis and Border [2]). Observe also that ψ̄ is feasible
to (1.8) and its dual objective value, ψ̄({−1, 0, 0, . . .}) = 0, is equal to the optimal value of the
primal. Thus, ψ̄ is an optimal dual functional and there is zero duality gap. /

The optimality of ψ̄ in the previous example highlights three serious issues that are not present
in finite dimensions. First, ψ̄ is difficult to characterize precisely. The only structure we have
specified is that it is linear and acts like a “limit evaluator” on elements of `∞ that converge.
Outside of the subspace of convergent sequences, little is known about how ψ̄ operates.

Second, ψ̄ fails countable additivity. Consider the sequence (1, 1, . . . ) and observe that 1 =
ψ̄((1, 1, . . . )) 6=

∑∞
i=1 1 · ψ̄(ei) = 0. This implies that we lose the familiar interpretation from finite
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dimensions that there exists a dual price ψ̄(ei) = ψ̄i on the ith constraint so that if each constraint
i is perturbed by sufficiently small εi, then the change in objective is

∑
i∈N ψ̄iεi.

Third, the dual (1.8) is not analogous to the finite linear programming dual. The constraints
are not defined using the “transpose” of the original constraint matrix and instead are expressed
in terms of dual functionals that are not necessarily countably additive.

Moreover, Example 1.2 illustrates how the choice of the vector space for the primal constraint
space affects the structure and interpretation of the dual. The dual price vectors for (1.7) are easily
characterized – they are finite support vectors. However, the interior of the positive cone of the
constraint space is empty and there is a duality gap. Alternatively, choosing a constraint space with
a positive cone that has a nonempty interior generates the dual program (1.8) with zero duality
gap. However, the resulting structure of the dual problem and the structure of the optimal dual
functionals are “undesirable.”

In the finite case, dual functionals can always be interpreted as a price on each constraint;
however Example 1.2 demonstrates this does not generalize to infinite dimensions. If countable
additivity holds then this nice interpretation does carry over. In the general setting of Riesz spaces
such “undesirable” dual functionals fail to satisfy the key property of σ-order continuity, which is
equivalent to a generalized notion of countable additivity.

1.2. Our Contributions. Our main results show that the interplay between the existence
of interior points and singular dual functionals observed in Example 1.2 is not an accident. Our
results apply to constraint spaces that are infinite dimensional Riesz spaces. We make no topological
assumptions and work with the algebraic notion of core points (defined in Section 2) rather than
interior points. We show that if the positive cone of the constraint space has a core point then there
is zero duality gap with the algebraic dual. Moreover, in a broad class of spaces – Riesz spaces that
satisfy either σ-order completeness or the projection property – if the positive cone of the constraint
space has a core point then singular dual functionals exist. We call this phenomenon the Slater
conundrum. On the one hand, the existence of a core point ensures a zero duality gap (a desirable
property), but on the other hand, existence of a core point implies the existence of singular dual
functionals (an undesirable property).

This approach borrows concepts from geometric functional analysis (see for instance, Holmes
[20]) and connects them to concepts in Riesz space theory (see for instance, Aliprantis and Border
[2]). Proposition 2.5 unites the concept of a core point from geometric functional analysis to the
concept of an order unit in Riesz spaces. This provides a bridge between two streams of literature
that, to the authors’ knowledge, produces a novel approach to the study of infinite dimensional
optimization problems.

Corollary 2.2 provides a constraint qualification that relies on the existence of a core point in
the positive cone of the constraint space. We call this an algebraic constraint qualification because
the concept of core can be defined in any ordered vector space. The use of core points for con-
straint qualifications was first introduced by Rockafellar [29]. However, the condition given applied
to optimization problems over Banach spaces and their Fenchel duals. Our algebraic constraint
qualification is an extension of these conditions to include general ordered vector spaces.

An advantage of the algebraic constraint qualification is that every interior point in a locally
convex topological vector space is a core point (see Holmes [20]). Therefore, if the algebraic con-
straint qualification fails to hold, then Slater’s constraint qualification in any locally convex topology
also fails. This property allows us to investigate which ordered vector spaces have interior points
in their positive cones and determine the structure of dual functionals on these spaces.

A main result is Theorem 3.8, where we construct a singular dual functional from an order
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unit and a sequence of vectors that order converge to that order unit. This result is used to
establish the existence of singular dual functionals in general Riesz spaces that need not possess
any further topological or completeness properties required by other known results (including our
own Theorem 3.13 and Theorem D.11 (see also Wnuk [35])). Next, we show (Theorem 3.13) that
the general class of Riesz spaces with order units that are either σ-order complete or satisfy the
projection property always have a singular dual functional in the algebraic dual space.

Riesz spaces are ordered vector spaces equipped with a lattice structure (see Section 2.2).
We focus on Riesz spaces and not other classes of vector spaces for four reasons. First, an ordered
vector space is necessary for constrained optimization. The common notion of being “constrained” is
based on the concept of ordering. For instance, in finite-dimensional linear programming, inequality
constraints Ax ≥ b and nonnegativity constraints x ≥ 0 are defined by the standard ordering of
finite-dimensional Euclidean space.

Second, the order and lattice assumptions endow an infinite dimensional vector space with just
enough structure for familiar properties in Rn to have meaningful analogues. On a Riesz space we
can define absolute value and order convergence. Also, the concept of disjointness (Section 2.2),
generalizes the idea that a nonzero vector can have both zero and nonzero “components.”

Third, the order dual of a Riesz space is the most general dual space that needs to be considered
in optimization when the constraint space Y is an ordered vector space. Given vector space Y , the
largest dual space is the algebraic dual Y ′. However, when Y is a Riesz space, the order dual Y ∼

consisting of dual functionals that are order-bounded is natural since it contains all of the positive
linear functionals in Y ′. By Proposition 2.4 the optimal value of the Lagrangian dual defined over
Y ′ and the optimal value of the Lagrangian dual defined over Y ∼ are equal. This implies that the
order-dual structure of Y ∼ can be used without loss of optimality when Y is a Riesz space.

Fourth, Riesz spaces provide the lattice structure which is needed to precisely classify which
dual functionals are easy to characterize and interpret, and those that are not (i.e., those that are
not countably additive) through the concept of order continuity. In an ordered vector space, the
underlying algebraic structure is insufficient to separate countably additive dual functionals from
those that are not countably additive.

An alternative to imposing a lattice structure on an ordered vector space is to endow it with a
topology. This topological vector space approach is far more common in the optimization literature
than the Riesz space approach. We show in Remark 3.4 that it is necessary to impose a lattice
structure in order to distinguish the desirable from the undesirable dual functionals. However,
because topological thinking is so pervasive, many researchers add the norm topology in addition
to the lattice structure and work with Banach lattices (for example, Aliprantis and Burkinshaw [4],
Wnuk [35], and Zaanen [36]). A key contribution of this paper is to show that the additional
topological structure is not necessary for establishing fundamental results in optimization. Riesz
spaces have the minimum structure necessary to characterize the Slater conundrum and establish
the conundrum as a fundamental problem endemic to convex optimization. We adhere to the dictum
expressed by Duffin and Karlovitz [14] of “the desirability of omitting topological considerations”
from a position of both enhanced clarity and enhanced generality. Indeed, one of our key results,
Theorem 3.13, is more general than similar results obtained for Banach lattices. See Remark 3.15
and Theorem D.11 in Appendix D.

The main result of this paper may be interpreted as being “negative” because we show that the
Slater condition for zero duality gap implies the existence of singular functionals which are difficult
to characterize. However, all is not lost when it comes to certain specially structured problems.
In Section 4 we provide two sets of sufficient conditions that “resolve” the Slater condundrum for
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linear programs by guaranteeing the existence of optimal dual solutions with no singular component
whenever the order dual is solvable. Previous studies, such as Ponstein [26] and Shapiro [34]
proposed conditions in the special settings of `∞ and L∞. Our conditions are stated over general
Riesz spaces and generalize these approaches.

1.3. Literature Review. Our work is related to several streams of literature in economics
and optimization. We briefly outline them here.

The Slater conundrum has been explored by others in specific contexts. Rockafeller and Wets
[29, 30, 31] and Ponstein [26, 27] observe that L∞ is the only Lp space with an interior point
in its positive cone. They further point out that algebraic dual of L∞ contains dual functionals
that are not countably additive. They conclude that the only Lp space where Slater’s constraint
qualification can be applied has dual functionals that are difficult to characterize and interpret.
Our development avoids topological and measure-theoretic arguments (as used in the L∞ case) and
works in greater generality by focusing on primitive algebraic and order properties. This level of
abstraction demonstrates that the Slater conundrum is endemic to infinite dimensional optimization
at its very foundation.

In the stochastic programming literature, Rockafellar and Wets [31] emphasize the central role
played by singular dual functionals in a complete duality theory for convex stochastic programs.
Previously, authors ignored such dual functionals and worked only with countably additive dual
functionals. This meant they had to accept the possibility of duality gaps. Although researchers
begrudgingly accept that general optimality conditions involve singular dual functionals in an es-
sential way, they are considered to be “unmanageable” from a practical perspective and fastidiously
avoided; see for example, Rockafellar and Wets [30]. There has also been a substantial amount of
research devoted to finding problem structures that do not have optimal singular dual functionals
(see Dempster [13] for a summary). In [26], Ponstein makes a careful study of singular dual func-
tionals in general convex optimization problems with constraint spaces in L∞. He gives conditions
that justify ignoring singular dual functionals without loss of optimality, generalizing some well-
known conditions in the stochastic programming literature. Ponstein emphasizes the computational
intractability of singular dual functionals.

Other authors have also pursued an order-algebraic approach to optimization while eschewing
topological concepts. Holmes’s classic monograph [20] on geometric functional analysis sets the
stage for order-algebraic approaches by dedicating a large initial part of his monograph to an
investigation of functional analysis without reference to topology. Similarly, Anderson and Nash
[6] ground their duality theory with a study of algebraic duality before introducing topological
notions. In this context they establish weak duality and complementary slackness, as well as lay
the algebraic foundation for an extension of the well-known simplex method to infinite dimensional
linear programs. Following a similar approach, Shapiro [34] considers conditions that imply zero
duality gap for the algebraic dual of infinite conic programs and only later introduces topologies.

Our work, in some ways, parallels developments in theoretical economics on pricing and equi-
libria in infinite dimensional commodity spaces (see for instance, Aliprantis and Brown [3]). These
studies feature Riesz spaces arguments that are akin to ours. While the literature on Riesz spaces
is quite extensive, with many quality texts ranging from the introductory level to the advanced (see
Aliprantis and Border [2], Aliprantis and Burkinshaw [4], Luxemburg and Zaanen [24] and Zaanen
[36, 37]), Riesz spaces are rarely mentioned in optimization theory. A key to our approach is to
develop novel results for Riesz spaces and apply these results to infinite dimensional optimization.

The Slater conundrum is driven by constraint qualifications for zero duality gap that require
the existence of interior points in the positive cone in the constraint space. Such interior point
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constraint qualifications are not the only approaches to establishing zero duality gap results in
infinite dimensional optimization. Researchers have long been aware of the limitations of interior
point conditions in the Lp spaces. This awareness has motivated several alternate approaches that
are worth briefly mentioning here.

First, some researchers have generalized the concept of an interior of a set. A powerful gen-
eralization, the quasi-relative interior, was introduced by Borwein and Lewis [8]. Interior points
are contained in the quasi-relative interior, as are core points [8]. For example, while the positive
cone {x ∈ Lp[0, 1] : x(t) ≥ 0 a.a. t ∈ [0, 1]} in Lp[0, 1] for 1 ≤ p < ∞ has no interior in its norm
topology, the quasi-relative interior is {x ∈ Lp[0, 1] : x(t) > 0 a.a. t ∈ [0, 1]} [8]. Unfortunately, the
direct extension of Slater’s constraint qualification using the expanded set of quasi-relative interior
points does not hold. The existence of a feasible point mapping to a quasi-relative interior point in
a positive cone is not sufficient to establish zero duality gap without additional assumptions (see
Appendix B for a concrete example). For instance, the constraint qualification presented in Bor-
wein and Lewis [8] requires that the constraint space be finite dimensional. A variety of constraint
qualifications based on the quasi-relative interior were later introduced (see for example, Boţ [9] and
Grad [18]). By considering the structure of the positive cone, rather than the topological structure
of a vector space, our approach avoids the need for additional assumptions by focusing attention
on vector spaces where core points exist.

Second, many researchers have focused on topological notions such as closeness, boundedness
and compactness to drive duality results, rather than interior points [6, 9, 19]. This approach is par-
ticularly useful when interior points are known not to exist. The drawback is that these conditions
are generally thought to be difficult to verify in practice, despite their theoretical elegance.

Finally, others have established zero duality gap results using limiting arguments and finite
approximations in combination with the basic duality results for finite dimensional linear program-
ming. These include papers on separated continuous linear programs (Pullan [28]) and countably
infinite linear programs (Ghate and Smith [17] and Romeijn et al. [33]). These studies avoid certain
topological arguments by leveraging duality results from finite dimensional linear programming and
careful reasoning about limiting behavior. However, our approach is quite different. We consider
general inequality-constrained convex programs (not just linear programs) and do not derive our
results from duality results in the finite dimensional setting.

The remainder of the paper is structured as follows. In Section 2.1 we give a constraint qual-
ification that is sufficient for a zero duality gap between the primal and the algebraic dual in any
ordered vector space. Section 2.2 is a very brief tutorial on Riesz spaces and provides the necessary
background material. In Section 2.3 we show that the algebraic dual and order dual (a Riesz space
concept) are equivalent on the positive cone and that a core point corresponds to an order unit
(a Riesz space concept). The main results of the paper are in Section 3 where we establish the
Slater conundrum: that Slater points lead to bad (singular) dual functionals in the most general
setting possible. Section 4 describes two sets of sufficient conditions for “working around” the Slater
conundrum in specially structured problems.

We provide several appendices to supplement our results. Appendix A provides a proof of
the results in Section 2.1. Appendix B discusses the differences between our algebraic constraint
qualification and the constraint qualifications based on the quasi-relative interior. Appendix C
includes definitions and results in Riesz space theory that are required in the proofs of some of our
results. Appendix D examines the Slater conundrum from the viewpoint of Banach lattices.

2. Optimization in Ordered Vector Spaces.
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2.1. Lagrangian Duality. We first review some of the notation, definitions, and concepts
of convex optimization and Lagrangian duality. Consider an ordered vector space Y containing a
pointed, convex cone P . The cone P , called the positive cone, defines the vector space ordering �P ,
with y �P ȳ iff y− ȳ ∈ P . The notation y �P ȳ indicates that y− ȳ ∈ P and y 6= ȳ. Other authors
have used y �P θY to mean that y lies in the interior of the cone P . We avoid this usage in favor
of explictly stating when a vector lies in the interior of a set.

Consider the following inequality constrained convex program,

inf f(x)

s.t. G(x) �P θY
x ∈ Ω,

(CP)

where Ω is a convex set contained in a vector space X, f : Ω → R is a convex functional with
domain Ω and G : Ω → Y is a P -convex map from Ω into the ordered vector space Y and θY
represents the zero element of Y .

Let Y ′ denote algebraic dual of Y, set of linear functionals over Y . Take ψ ∈ Y ′. The evaluation
ψ(y) of ψ at y ∈ Y is alternatively denoted by 〈y, ψ〉; that is, 〈y, ψ〉 = ψ(y). We use the evaluation
notation (ψ(y)) and the dual pairing notation (〈y, ψ〉) interchangeably and favor the notation that
lends the greatest clarity to a given expression. The algebraic dual cone of P is P ′ := {ψ ∈ Y ′ :
〈y, ψ〉 ≥ 0, ∀y ∈ P} and the elements of P ′ are called positive dual functionals on Y . The restriction
of the dual cone P

′
to a subspace W of Y ′, is denoted by QW = P ′ ∩W and is called the positive

dual cone with respect to W .
The Lagrangian function, L : Y ′ → R for (CP ) is L(ψ) := infx∈Ω [f(x) + 〈G(x), ψ〉]. Using this

definition of L(ψ), a family of dual programs for (CP ) is derived as follows. Let W be a subspace
of the algebraic dual Y ′. The Lagrangian dual program (DW ) of (CP ) with respect to W is

sup L(ψ)

s.t. ψ ∈ QW .
(DW )

The optimal value of an optimization problem (·) is denoted v(·). Weak duality holds when the
value of the primal program is greater than or equal to the value of the dual. If v(CP ) = v(DW ),
then the primal and dual programs have zero duality gap. As is well-known (see for instance [6])
weak duality always holds for the Lagrangian dual program (DW ) regardless of the choice of W .

Slater’s constraint qualification is perhaps the most well-known sufficient condition for zero
duality gap between the primal program (CP ) and its topological dual program (DY ∗). When the
constraint space Y is a locally convex topological vector space, its topological dual Y ∗ is the set of
dual functionals that are continuous in the topology on Y . Slater’s constraint qualification states
that there is zero duality gap when −G : Ω → Y maps a point in Ω to an interior point (in the
topology that defines Y ∗) of the positive cone P .

Theorem 2.1 (Slater’s Constraint Qualification, Ponstein [27], Theorem 3.11.2). Let Y be
a locally convex topological vector space with positive cone P and topological dual Y ∗. If there
exists an x̄ ∈ Ω such that −G(x̄) ∈ int(P ), then there is an optimal dual solution ψ̄ ∈ Y ∗ and
v(CP ) = v(DY ∗).

The set of interior points, int(P ), obviously depends upon the selection of the locally convex
topology. The proof of Theorem 2.1 uses the existence of an interior point to construct separating
hyperplanes from dual funtionals that are continuous in the topology on Y . Therefore, one would
like select a locally convex topology on Y such that: 1) every dual functional defined on Y is
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continuous so that the set of dual functionals is large for the goal of closing the duality gap (and
thus the topological and algebraic dual are the same, Y ′ = Y ∗) and 2) the set int(P ) is the largest
possible set of interior points. These two goals are achieved by using a locally convex topology
defined by core points.

Given a vector space Y and a subset A ⊆ Y , a point a ∈ A is a core point of A if for every
y ∈ Y , there exists an ε > 0 such that a+ λy ∈ A for all 0 ≤ λ ≤ ε. The set of core points of A is
denoted cor(A).

Corollary 2.2 (Algebraic Constraint Qualification). Let Y be a vector space with positive
cone P and algebraic dual Y

′
. If there exists an x̄ ∈ Ω such that −G(x̄) ∈ cor(P ), then there is an

optimal dual solution ψ̄ ∈ Y ′ and v(CP ) = v(DY ′ ).
Corollary 2.2 follows immediately from Theorem 2.1 and the fact that the core points can be

used to define is a locally convex topology on Y where int(A) = cor(A). For details, see Appendix A.
A core point is a purely geometric concept and the beauty of Corollary 2.2 is that it applies to any
ordered vector space. This is in keeping with our philosophy to present results in the most general
setting possible. Furthermore, all interior points in any locally convex topological vector space are
core points; that is, for all subsets A ⊂ Y, int(A) ⊆ cor(A) (see Holmes [20]). If P does not have
a core point, then P does not have an interior point in any locally convex topology. This implies
that the existence of a core point in P is the most general Slater condition possible.

Remark 2.3. Recently, authors have introduced constraint qualifications using quasi-relative
interior points and other topological alternatives [8, 9, 18]. Constraint qualifications based on a
quasi-relative interior point require additional structure in order to prove that there is zero duality
gap. In Appendix B we show that the existence of a quasi-relative interior point is not sufficient to
guarantee a zero duality gap with the Lagrangian dual. /

σ-order complete

order complete
==========⇒

principal projection property ==⇒

===============⇒
Archimedean

projection property
===============⇒==========⇒

Fig. 1. Main Inclusion Theorem (Theorem 25.1 in Luxemburg and Zaanen [24])

2.2. Riesz Spaces. We explore the effect that the existence of a core point in the positive
cone has on the structure and interpretation of the dual functionals. For reasons outlined in the
introduction, Riesz spaces provide a natural setting for this exploration.

We begin with a few basic definitions and concepts from Riesz space theory needed to under-
stand the statements of our results. This includes definitions of the classifications of Riesz spaces in
Figure 2.2. This figure gives the relationships among important classes of Riesz spaces. Luxemburg
and Zaanen [24] (Theorem 25.1) refer to these relationships as the main inclusion theorem. The
main inclusion theorem is used to gain a precise understanding of our contributions in Section 3 (See
Remark 3.14). Additional results on Riesz spaces used in proofs, but not needed to understand the
statements of our results, are found in Appendix C. For those interested in more details, Chapters
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8 and 9 of Aliprantis and Border [2] provide a thorough introduction to Riesz spaces.

An ordered vector space E is a Riesz space if the vector space is also a lattice; that is, each
pair of vectors x, y ∈ E has a supremum denoted x ∨ y and an infimum denoted x ∧ y. Common
examples of Riesz spaces are in Example 8.1 in Aliprantis and Border [2]) and include the Lp spaces
and spaces of continuous functions. Let E be a Riesz space ordered by the positive cone E+. Let
θE denote the zero vector of E. For each vector x ∈ E, the positive part x+, the negative part x−

and the absolute value |x| are x+ := x∨θE , x− := x∧θE and |x| := x∨ (−x). Two vectors x, y ∈ E
are disjoint, denoted x ⊥ y, whenever |x| ∧ |y| = θE . A set of vectors are pairwise disjoint if each
pair of distinct vectors are disjoint. Given a subset of a Riesz space S ⊆ E, its disjoint complement
is Sd := {y ∈ E : x ⊥ y for all x ∈ S}. A set S is order bounded from above if there exists an
upper bound u ∈ E, such that x � u for all x ∈ S. Similarly, a set is order bounded from below if
there exists a lower bound and is order bounded if the set is order bounded both from above and
below. A set S is solid when |y| � |x| and x ∈ S imply that y ∈ S.

A Riesz space E is order complete (sometimes called Dedekind complete) if every non-empty
subset of E that is order bounded from above has a supremum. Similarly, a Riesz space is σ-
order complete if every countable subset with an upper bound has a supremum. The Lp spaces for
1 ≤ p <∞ are σ-order complete.

Let {xα} be a net of vectors in E and let {xn} represent a sequence. The notation xα ↑� x
means that {xα} is order bounded from above by x. When supxα = x, we write xα ↑ x. Define
xα ↓ x similarly. A Riesz space E is Archimedean if 1

nx ↓ θ for each x � θE .

A net {xα} in a Riesz space E converges in order to x denoted as xα
◦→ x if and only if there

exists a net {yα} with the same directed set such that |xα − x| � yα for each α and yα ↓ θE . Note
that the notion of order convergence involves the absolute value, and thus cannot be defined in an
ordered vector space without a lattice structure. A subset S in E is order closed if for any net in
S with xα

◦→ x ∈ E has x ∈ S.

A vector subspace of a Riesz space E is a Riesz subspace if it is closed under the lattice
operations of E. A solid Riesz subspace is called an ideal. A principal ideal Ex ⊆ E is an ideal
generated by a vector x ∈ E and is defined as Ex := {y ∈ E : ∃λ > 0 s.t. |y| � λ|x|}. A band is
an ideal that is order closed. The band Bx which consists of the order closure of Ex is called the
principal band generated by x ∈ E. A band B is called a projection band if E = B ⊕ Bd where
⊕ denotes a direct sum of vector subspaces, meaning that every element x of E can be written
uniquely as x = y + z with y ∈ B and z ∈ Bd and |y| ∧ |z| = θ. A Riesz space E has the projection
property if every band is a projection band. A Riesz space E has the principal projection property
if every principal band is a projection band. Let B be a projection band in a Riesz Space E. By
definition of projection band, E = B ⊕ Bd and for every x ∈ E there exists an x1 ∈ B and an
x2 ∈ Bd such that x = x1 + x2. Let PB : E → B be defined as PB(x) := x1.

A dual functional ψ : E → R is order bounded if it maps order bounded sets in E to order
bounded sets in R. The set of all order bounded dual functionals on a Riesz space E is called
the order dual of E and is denoted E∼. A dual functional ψ ∈ E∼ on a Riesz space E is order
continuous if ψ(xα)→ 0 for all nets {xα} that order converge to θE . A dual functional ψ ∈ E∼ on
a Riesz space E is σ-order continuous if ψ(xn) → 0 for all sequences {xn} that order converge to
θE . The set of dual functionals that are σ-order continuous E∼c form a subspace of the order dual
called the σ-order continuous dual. The order dual can be expressed as the direct sum of E∼c and
its complementary disjoint subspace E∼s := (E∼c )d; that is, E∼c ⊕ E∼s = E∼ (see Theorem 8.28 of
Aliprantis and Border [2]). The dual functionals ψ ∈ E∼s are called singular dual functionals.
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2.3. An Order-Algebraic Approach. Consider the convex, inequality constrained program
(CP ) where the constraint space Y is an ordered vector space. When Y is also a Riesz space, then
its order dual Y ∼ generates the Lagrangian dual program (DY ∼). The added structure of the order
dual allows us to further characterize and interpret dual functionals. Corollary 2.2 applies only
to the algebraic dual program. In this section, we show this result also applies to the order dual
program. The resulting order-algebraic approach connects the theory developed in general ordered
vector spaces to the structure and interpretations available in Riesz spaces.

By definition, the order dual of a Riesz space Y contains only order bounded dual functionals
and is a subset of the algebraic dual. The feasible region of the algebraic dual program (DY ′)
consists of positive dual functionals. The following proposition shows that the order dual program
and algebraic dual program have the same feasible region and are therefore equivalent.

Proposition 2.4. For the convex program (CP ), the value of the algebraic dual equals the
value of the order dual; that is, v(DY ′) = v(DY ∼).

Proof. It suffices to show that the feasible regions of (DY ′) and (DY ∼) are equal; that is,
P ′ = QY ∼ where QY ∼ = P ′ ∩ Y ∼. Clearly QY ∼ ⊆ P ′ so it suffices to show QY ∼ ⊇ P ′. Let ψ ∈ P ′,
that is ψ is a positive dual functional over Y . Let x, y, z ∈ Y and x � y � z. Then, ψ(y − x) ≥ 0
and ψ(z − y) ≥ 0. This implies ψ(x) ≤ ψ(y) ≤ ψ(z) and the dual functional ψ is order bounded.
That is, ψ ∈ Y ∼. This implies ψ ∈ P ′ ∩ Y ∼ = QY ∼ . We conclude P ′ = QY ∼ .

Proposition 2.4 provides a crucial link between the algebraic constraint qualification and the
order dual. Restricting the space of all dual functionals to the order dual does not create a duality
gap with the primal. Therefore, if a core point satisfies the algebraic constraint qualification then
v(CP ) = v(DY ′) and Proposition 2.4 implies zero duality gap between the primal and the order
dual.

Core points of the positive cone relate to a fundamental concept in the theory of Riesz spaces
called order units. An element e � θE in a Riesz space E is an order unit if for each x ∈ E there
exists a λ > 0 such that |x| ≤ λe. The equivalence between order units and core points is given
below. This result was also known by Aliprantis and Tourky [5]. However, Aliprantis and Tourky
do not use this result within the context of optimality conditions. We provide a proof for the sake
of completeness.

Proposition 2.5. If E is a Riesz space and e � θE, then e is an order unit of E if and only
if e is a core point of the positive cone E+.

Proof. Assume that e is an order unit and let z be an an arbitrary element of E. We show
there exists an ε > 0 such that e+λz ∈ E+ for all λ ∈ [0, ε]. If e is an order unit then by definition
there exists an α > 0, such that |z| � αe. Let ε = 1/α. Then λ|z| � e for all λ ∈ [0, ε]. This implies
−λz � e and therefore θE � e+λz. Therefore, e+λz ∈ E+ for all λ ∈ [0, ε] and by definition, e is a
core point of E+. Next, assume e is a core point of E+ and let z be any element in E. Then there
exists a ε+ > 0 such that e+λz ∈ E+ for all λ+ ∈ [0, ε+]. If e+λ+z ∈ E+, then e+λ+z � θE and
therefore −z � 1

λ+
e. Applying the same logic to −z there exists a λ− that gives z � 1

λ−
e. Take

λ = min{λ+, λ−}. Then −z � 1
λe and z � 1

λe implies −z ∨ z � 1
λe. By definition |z| = z ∨ −z so

|z| � 1
λe and e is an order unit of E.

Proposition 2.4 and Proposition 2.5 provide the foundations for our order-algebraic approach.
Since the value of the order dual and the algebraic dual are equal, the algebraic constraint qual-
ification provides a sufficient condition for zero duality gap between the primal program and the
order dual. In Riesz spaces, core points of the positive cone are order units. Therefore, only Riesz
spaces that contain order units can satisfy Corollary 2.2.
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3. The Slater Conundrum. This section contains the main results of the paper. We show
for a broad class of Riesz spaces (σ-order complete spaces) that if the positive cone has a core
point, then it is necessary to either show that the optimal dual functional does not have a singular
component, or somehow characterize the singular components. To our knowledge, this has never
been shown in the broad contexts of Theorems 3.8, 3.12, and 3.13.

3.1. Duality and Countable Additivity. In this subsection we expand a theme in Exam-
ple 1.2 regarding the undesirability of dual functionals that are not countably additive. Countable
additivity (defined in Example 1.2 for sequence spaces) extends the familiar interpretations of dual
functionals to infinite dimensional Riesz spaces. In fact, the σ-order continuous dual functionals
introduced in Section 2.2 are countably additive. We now make precise the concept of countable
additivity for arbitrary Riesz spaces.

Given any sequence {ai}ni=1 of real numbers, the limit of partial sums
∑n
i=1 ai is written as∑∞

i=1 ai whenever the limit of partial sums exists. Loosely speaking, the reason a lattice structure
is added to an ordered vector space is to give the corresponding Riesz space properties that mimic
the real numbers as closely as possible. Given a lattice structure, order convergence can be defined,
and it is similar to convergence of real numbers. Now assume that the ai are vectors in an arbitrary
Riesz space E. If xn

◦→ x̄ where xn is the partial sum xn =
∑n
i=1 ai we follow the common practice

used for real numbers and write x̄ :=
∑∞
i=1 ai.

Let ψ be a σ-order continuous dual functional defined on E. If xn
◦→ x̄, then (xn − x̄)

◦→ θE
and it follows from the definition of σ-order continuity that

ψ

( ∞∑
i=1

ai

)
= ψ(x̄) = lim

n→∞
ψ(xn) = lim

n→∞
ψ

(
n∑
i=1

ai

)
= lim
n→∞

n∑
i=1

ψ(ai) =

∞∑
i=1

ψ(ai)

where the last equality follows from the fact that the sequence of partial sums of real numbers,∑n
i=1 ψ(ai), converges to a real number ψ(x̄). Since ψ (

∑∞
i=1 ai) =

∑∞
i=1 ψ(ai) we say that ψ is

countably additive.
Likewise, if a dual functional is countably additive it is σ-order continuous. Assume ψ is a

countably additive dual functional on a Riesz space E and {xn}∞n=1 is a sequence in E such that

xn
◦→ θE . Define a new sequence {ai}∞i=1 from {xi}∞i=1 by a1 = x1 and ai = xi − xi−1 for i ≥ 2.

Then xn =
∑n
i=1 ai and xn

◦→ θE implies that the sequence of partial sums
∑n
i=1 ai order converges

to θE . Since ψ is countably additive ψ (
∑∞
i=1 ai) =

∑∞
i=1 ψ(ai) = ψ(θE) and this implies

lim
n→∞

ψ(xn) = lim
n→∞

ψ(

n∑
i=1

ai) = lim
n→∞

n∑
i=1

ψ(ai) =

∞∑
i=1

ψ(ai) = ψ(

∞∑
i=1

ai) = ψ(θE).

Then limn→∞ ψ(xn) = ψ(θE) and ψ is σ-order continuous. Therefore countable additivity and
σ-order continuity are equivalent and we have shown:

Proposition 3.1. If ψ is a dual functional on E, then ψ is σ-order continuous if and only if
it is countably additive.

The next result shows all the dual functionals in the order dual E∼ are countably additive if
and only if the order dual does not contain any nonzero singular dual functionals. Recall from
Section 2.2 that a dual functional ψ in the order dual E∼ of Riesz space E can be written as the
sum of a σ-order continuous dual functional ψc ∈ E∼c and a singular dual functional ψs ∈ E∼s ; that
is, ψ = ψc + ψs where ψc and ψs are unique.

Theorem 3.2. Let E be a Riesz space. Then, E∼ contains a dual functional that is not
countably additive if and only if E∼ contains a nonzero singular dual functional.
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Proof. (⇐) Suppose E∼ contains a nonzero singular dual functional ψ ∈ E∼s . Since E∼s and
E∼c are orthogonal, E∼c ∩E∼s = {θE′} and so ψ /∈ E∼c . Then by Proposition 3.1 ψ is not countably
additive. (⇒) Suppose E∼ contains a dual functional ψ that is not countably additive. By Theorem
8.28 in Aliprantis and Border [2], ψ = ψc + ψs for ψc ∈ E∼c and ψs ∈ E∼s . Then ψ /∈ E∼c implies
ψs 6= θE′ and E∼s contains a nonzero element.

By Theorem 3.2 singular dual functionals are clearly a problem because their existence implies
that there are dual functionals in the order dual that are not countably additive. We show in
Section 3.2 a tight connection between Riesz spaces E with order units and the order duals E∼

that have singular dual functionals.
Countable additivity allows us, in many cases, to write an infinite dimensional dual that is

analogous to the finite dimensional dual. Consider the special case of linear programs. In linear
programs with infinite dimensional constraint spaces, σ-order continuity plays an important role in
expressing the dual in a familiar way. Consider the linear program

inf
x∈X

ϕ(x)(3.1)

s.t. A(x) �P b

where X is a vector space, b ∈ Y where Y is an ordered vector space with positive cone P ,
A : X → Y is a linear map, and ϕ is a linear functional on X. The algebraic dual (see for instance
[6] for details) of (3.1) is

sup
ψ∈Y ′

ψ(b)(3.2)

s.t. A′(ψ) = ϕ

ψ ∈ P ′,

where A′ : Y ′ → X ′ is the algebraic adjoint of A, defined by 〈x,A′(ψ)〉 = 〈A(x), ψ〉. Giving a
concrete expression for the adjoint A′ is, in general, difficult. However, when the vector spaces are
finite dimensional characterizing A′ is easy.

If X = Rn and Y = Rm then (3.1) and (3.2) are easily expressed in terms of matrices. The
linear map A is characterized by an m by n matrix (abusing notation in the standard way) A = (aij)
where aij ∈ R for i = 1, . . . ,m and j = 1, . . . , n and given x ∈ Rn, A(x) =

∑n
j=1 a·jxj where a·j is

the jth column of matrix A. The algebraic adjoint map is characterized by the matrix transpose
A>. To see this, recall that ψ is countably additive and characterized by the vector ψ = (ψi)

m
i=1

with ψi ∈ R, where for y ∈ Rm, 〈y, ψ〉 =
∑m
i=1 yiψi. Then

〈A(x), ψ〉 =

m∑
i=1

A(x)iψi

=

m∑
i=1

 n∑
j=1

aijxj

ψi =

n∑
j=1

(
m∑
i=1

aijψi

)
xj = 〈x,A′(ψ)〉.(3.3)

Thus the adjoint operator corresponds to the usual matrix transpose, i.e. 〈x,A′(ψ)〉 = A>ψ(x).
The above analysis depends on two fundamental properties: (i) that the dual functional ψ over

Rm is expressed as a real vector ψ in Rm; and (ii) that it is permissible to swap the finite sums in
(3.3).
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Now consider X = Rn and Y ⊆ RN as in Example 1.2 where countable additivity is

ψ ({ai}∞i=1) = ψ

( ∞∑
i=1

aiei

)
=

∞∑
i=1

ψ (aiei) =

∞∑
i=1

aiψ (ei) =

∞∑
i=1

aiψi.(3.4)

Combining countable additivity of ψ with the fact X is a n-dimensional vector space gives

〈A(x), ψ〉 =

∞∑
i=1

A(x)iψi

=

∞∑
i=1

 n∑
j=1

aijxj

ψi =

n∑
j=1

( ∞∑
i=1

aijψi

)
xj = 〈x,A′(ψ)〉(3.5)

and once again, even though A has an infinite number of rows, we can write the adjoint as A′ = A>.
This phenomenon was demonstrated in Example 1.2 where the dual program (1.7) is characterized
in the familiar way based on the “transpose” of the primal constraints. It is the absence of singular
functionals in Y ∼ that allows one to write a dual with this convenient dual representation. However,
in (1.8) the dual program did not have a nice characterization because ψ̄ was not countably additive.

When both X and Y are infinite dimensional sequence spaces countable additivity is not suf-
ficient to justify writing the adjoint as the transpose matrix. Additional properties on the linear
map A are required to apply Fubini’s theorem and change the order of summation, as was done
in (3.3). Identifying such additional conditions in the case of countably infinite linear programs,
where X and Y are both sequence spaces, has been the focus of several studies including Ponstein
[26], Romeijn, Smith, and Bean [33] and Ghate [16].

Even in many function spaces countable additivity provides a structure for dual functionals that
is analogous to the finite dimensional case. Consider an arbitrary σ−finite measure space (T,Σ, µ).
The set of all real µ−measurable functions is the Riesz space M(T,Σ, µ). An ideal of a Riesz space
E is a solid Riesz subspace of E. The following theorem shows that for any ideal of M(T,Σ, µ), a
dual functional that is σ-order continuous has an appealing structure.

Theorem 3.3 (Zaanen [36], Theorem 86.3). For any σ-order continuous dual functional
ψ on an ideal F of M(T,Σ, µ), there exists a µ-measurable function p on T such that ψ(y) =∫
t∈T p(t)y(t)dµ holds for all y ∈ F . Furthermore, p is µ−almost everywhere uniquely determined.

Among the ideals of M(T,Σ, µ) are the associated Lp(T,Σ, µ) spaces for 1 ≤ p ≤ ∞. Theorem
3.3 provides a large class of Riesz spaces where dual functionals that are σ-order continuous can
be characterized by a measurable function p. This function is analogous to the vector (ψi : i ∈ N)
in Example 1.2. It assigns a value p(t) to every element t ∈ T, which is interpreted analogously
to a shadow price or marginal value. Furthermore, the integral structure in Theorem 3.3 is a
convenient representation of the dual functional ψ and aids in expressing the adjoint provided
additional properties allow for Fubini’s theorem to apply.

Remark 3.4. One might consider adding a topology to an ordered vector space rather than
a lattice. However, by Proposition 3.1 countable additivity and order continuity are equivalent and
a lattice structure is necessary to define order continuity and therefore distinguish the countable
dual functionals from those that are not. The continuous dual functionals defined by a topology are
insufficient to distinguish countable additivity. For example, by Theorem D.7, when E is a Banach
lattice – a Riesz space with a complete norm that is compatible with the lattice structure – the set
of norm-continuous dual functionals is the order dual E∼. However, not every element of E∼ is
σ-order continuous as we have seen, for example, in the case of `∞. /
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3.2. Order units and the existence of singular dual functionals. In the analysis that
follows, we connect the theory of order units and singular dual functionals in Riesz spaces. Recall
that order units (via Proposition 2.5) are fundamental to optimization due to their connection to
positive core points and the algebraic constraint qualification (Corollary 2.2).

A simple conjecture is that in an infinite dimensional Riesz space, the existence of an order
unit implies the existence of a singular dual functional in the order dual. The following examples
demonstrates that this is not the case.

Example 3.5 (Luxemburg and Zaanen [24], Example (v) on page 141 and Zaanen [36], Example
103.5). Consider the Riesz space E of all real functions f on an uncountable set T for which there
exists a finite number f(∞) such that, given any ε > 0, we have |f(t) − f(∞)| > ε for at most
finitely many t ∈ T . The function e(t) = 1 for all t ∈ T is an order unit of E. However, Zaanen
[36] shows that all dual functionals in the order dual of E are σ-order continuous. /

This example demonstrates the need for additional structure to guarantee the existence of a
singular functional. The next example provides insight into structure leveraged in later proofs.

Example 3.6. The space of bounded sequences `∞ has the order unit e = (1, 1, 1, . . .). Let
ei ∈ `∞ have 1 in component i and zero otherwise. Furthermore, define xn :=

∑n
i=1 ei. Clearly,

xn
◦→ e. Consider the positive dual functional ψ̄ defined in Example 1.2. Then ψ̄(xn) = 0 for all n

and ψ̄(e) = 1. Thus ψ̄(e) is not σ-order continuous and ψ̄ = ψ̄c + ψ̄s where ψ̄s is a nonzero singular
dual functional in `∞. /

This example guides our approach to constructing singular dual functionals from order units
in Theorem 3.8 below. The idea is to find a sequence of vectors {xn}∞n=1 where none of the xn
are order units, but {xn}∞n=1 order converges to an order unit e � θE . The following result on
extending dual functionals is used in the argument.

Theorem 3.7 (Krein-Rutman Theorem, Holmes [20], Theorem 6B). Let X be an ordered vector
space with positive cone P and let M be a subspace of X. Assume that P ∩M contains a core point
of P . Then any positive linear dual functional ψ on M admits a positive extension to all of X.

Theorem 3.8. Let E be an infinite dimensional Riesz space with order unit e � θE. If there
exists an increasing sequence {xn} of non-order units such that xn

◦→ e, then there exists a positive,
nonzero, singular dual functional on E.

Proof. Without loss, assume that xn � θE for all n. Otherwise, replace xn with the sequence
x+
n = xn ∨ θE . None of the x+

n are order units and by Lemma 8.15(ii) in Aliprantis and Border

[2], x+
n
◦→ e. Let M be a subspace of E defined by M := span({e} ∪ {xn}). Then every y ∈ M is

represented by a finite set of scalars {λn}Nn=0 such that y = λ0e+
∑N
n=1 λnxn. For shorthand, let

yx denote
∑N
n=1 λnxn.

Claim 1. For every y = λ0e+
∑N
n=1 λnxn in M the value of λ0 in its representation is uniquely

determined.

Proof of Claim 1: We show that the order unit e cannot be represented as a linear combination
of the {xn}. Assume the opposite; that is, there exists a finite set of scalers {µn}Nn=1 such that∑N
n=1 µnxn = e. Let µ = max{|µ1|, |µ2|, . . . , |µN |}. Since {xn} is an increasing, nonnegative

sequence, µNxN �
∑N
n=1 µnxn = e. Next, consider an arbitrary z ∈ E. Since e is an order unit,

there exists an α > 0 such that |z| � αe � αµNxN . By definition, this implies that xN is an order
unit, arriving at a contradiction. Therefore, the value of λ0 in the decomposition of y is uniquely
determined. †

Define the functional ψM : M → R by ψM (y) = ψM (λ0e + yx) := λ0 for all y ∈ M . This
functional is well-defined by Claim 1. The following claim establishes the properties on ψM needed
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to apply the Krein-Rutman Theorem.

Claim 2. The functional ψM is a positive linear functional on M .

Proof of Claim 2: Let y = λ0ye + yx and z = λ0ze + zx be vectors in M and let α, β ∈ R. Then
ψM (αy+βz) = ψM ((αλ0y+βλ0z)e+αyx+βzx) = αλ0y+βλ0z = αψM (y)+βψM (z). Hence, ψM is a
linear functional on M . Next show that ψM is a positive functional. Assume otherwise. Then there
exists a y ∈ E such that y = λ0e+

∑N
n=1 λnxn where y � θE and λ0 < 0. Without loss, scale y such

that λ0 = −1. Then,
∑N
n=1 λnxn � e. As in the proof of Claim 1, let λ = max{|λ1|, |λ2|, . . . , |λN |}.

Then, since {xn} is an increasing, nonnegative sequence, λNxN � e. However, this implies that
xN is an order unit and yields a contradiction. †

Since e ∈ E+∩M is an order unit of E, it is a core point of E+ by Proposition 2.5. Furthermore,
Claim 2 states that ψM is a positive linear functional on M . Therefore, by the Krein-Rutman
Theorem, ψM on M extends to a positive dual functional ψ on E. Notice that ψ is not σ-order
continuous, since xn

◦→ e, ψ(xn) → 0 since ψ(xn) = ψM (xn) = 0, and ψ(e) = 1. Therefore,
ψ = ψc + ψs with ψs 6= θE , since E∼ = E∼c ⊕E∼s . Since E∼ is a Riesz space (see Theorem 8.24 in
[2]) and ψ is positive, Theorem C.4 implies that ψs is a positive singular dual functional on E.

Theorem 3.8 applies to arbitrary infinite dimensional Riesz spaces. To leverage this result,
additional structure is added to a Riesz space to guarantee the existence of an order convergent
sequence that satisfies the premise of Theorem 3.8. Below, in Theorem 3.13, we prove that all
infinite dimensional Riesz spaces with order units that are either σ-order complete or have the
projection property Riesz have sufficient additional structure to meet this criterion. However, as
the following example demonstrates, this additional structure is not necessary for the existence of
singular dual functionals.

Example 3.9 (Luxemburg and Zaanen [24], example (iv) page 140). The Riesz space `0∞(N) is
the space of all sequences that are constant except for a finite number of components. For example,
the sequence (2, 0, 3, 1, 1, 1 . . .) is an element of `0∞(N). Let e = (1, 1, . . .) be the vector of all ones.
Then the set {ei : i = 1, 2, 3, . . .}∪ {e} forms a Hamel basis of `0∞(N) and every dual functional can
be characterized by assigning values to each vector in the set. The dual functionals on `0∞(N) that
are not σ-order continuous are those that assign a value of zero to all ei and a nonzero value to e.
Let ψ be such a dual functional. Then yn

◦→ e where yn =
∑n
i=1 ei, but limn→∞ ψ(yn) = 0 6= ψ(e)

and so `0∞(N) contains a singular dual functional. However, `0∞(N) is not σ-order complete and
does not have the projection property. First consider x1 = (1, 0, 0, . . . ), x2 = (1, 1/2, 0, 0, . . . ),
x3 = (1, 1/2, 1/3, 0, 0, . . . ), . . . . The sequence {xn} is order bounded from above by e ∈ `0∞(N)
but clearly has no supremum in `0∞(N) and is therefore not σ−order complete. Next consider the
band B = {x ∈ `0∞(N) : x(i) = 0, i odd}. Then x ∈ B implies x has a finite number of nonzero
even components. Clearly all of the y ∈ Bd have the property that the even components of y
must be zero and this implies every y ∈ Bd has a finite number of nonzero odd components. Then
e /∈ B ⊕Bd so B cannot be a projection band. /

The proof of Theorem 3.12 shows how to construct, in any infinite dimensional Riesz space with
order unit that is either σ-order complete or has the projection property, an increasing sequence
{xn} of non-order units such that xn

◦→ e. Constructing {xn} requires the following lemma, due to
Luxemburg and Zaanen [24], used to generate an initial sequence from which we construct {xn}.

Lemma 3.10 (Luxemburg and Zaanen [24], Proposition 26.10). Every infinite dimensional
Archimedean Riesz space E contains an infinite set of pairwise disjoint elements.

The next example uses `∞ to motivate the steps of the proof of our key result Theorem 3.12.

Example 3.11. Let E be the space of bounded sequences `∞ with the order unit e =
(1, 1, 1, . . .). Assume Lemma 3.10 generates a sequence of vectors {un} where for vector un, com-
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ponent 2n − 1 is (1/2)n and the other components are zero. The first three vectors in {un} are
u1 = ( 1

2 , 0, . . . ), u2 = (0, 0, 1
4 , 0, . . .), and u3 = (0, 0, 0, 0, 1

8 , 0 . . .). Using un, construct the se-
quence zn :=

∑n
j=1 uj . Then z1 = ( 1

2 , 0, . . . ), z2 = ( 1
2 , 0,

1
4 , 0, . . .), z3 = ( 1

2 , 0,
1
4 , 0,

1
8 , 0 . . .), . . . .

has the desirable property that it is increasing and none of the zn are order units. However, this
sequence order converges to z̄ = ( 1

2 , 0,
1
4 , 0,

1
8 , 0,

1
16 , . . .), which is not an order unit. At this point,

one might be tempted to simply define u0 = e − z̄ and then redefine ẑn := u0 + zn. This gives
ẑ1 = (1, 1, 3

4 , 1,
7
8 , . . . ), ẑ2 = (1, 1, 1, 1, 7

8 , . . . ), . . . and ẑn
◦→ e. Unfortunately, each zn is an order

unit since u0 = (1
2 , 1,

3
4 , 1,

7
8 , . . . ) is an order unit and thus the sequence {ẑn} fails the premise of

Theorem 3.8. More care is necessary.

Constructing the appropriate sequence of non-order units requires two additional steps. First,
project e onto the band generated by the sequence {zn}. This projection is well defined and is equal
to PB(e) := sup{e ∧ nzn : n = 1, 2, . . .} = (1, 0, 1, 0, 1, . . .). Define a new sequence wn := e ∧ nzn.
Each wn has the same support as zn and each of its positive components increase to 1 as n→∞,
so w1 = (1

2 , 0, . . . ), w2 = (1, 0, 1
2 , 0, . . .), w3 = (1, 0, 1, 0, 3

8 , 0 . . .), . . . , and wn
◦→ PB(e). Second,

construct the vector u0 = e−PB(e) = (0, 1, 0, 1, 0, . . .). The wn for each n and u0 are not order units

and the sequence {u0 +wn} is an increasing sequence of non-order units such that u0 +wn
◦→ e. /

Theorem 3.12. Assume E is an infinite dimensional Riesz space that is either σ-order com-
plete or has the projection property. If E contains an order unit e � θE, then E contains an
increasing sequence xn of non-order units with xn

◦→ e.

Proof. By hypothesis E is σ-order complete or has the projection property. Therefore E
is Archimedean by the main inclusion theorem (see Theorem 25.1 of Luxemburg and Zaanen [24]
and our Figure 2.2). Since E is Archimedean and infinite dimensional, E contains an infinite set
{un}∞n=1 of pairwise disjoint elements by Lemma 3.10. By the definition of disjoint, we can assume
that this sequence is positive. Since the un are pairwise disjoint none are order units by Lemma C.2.

Define a new sequence of vectors {zn} from the sequence of vectors {un} by

zn :=

n∑
k=1

uk.(3.6)

Since each element of {zn} is a linear combination of the elements of {un}, Lemma C.3 implies
that none of the {zn} are order units. Note that θE � zn ↑ since each uk is a positive vector. The
sequence {zn} either converges in order to e or it does not. If {zn} does order converge to e the
proof is complete with the desired sequence {xn} := {zn}.

Assume {zn} does not order converge to e. Define B to be the band generated by {zn}. Since
E is either σ−order complete or has the projection property and θE � zn ↑, Theorem 28.3 in
Luxemburg and Zaanen [24] implies that B is a projection band and

PB(e) = sup{e ∧ nzm : m,n = 1, 2, . . .} = sup{e ∧ nzn : n = 1, 2, . . .}.(3.7)

Define wn := e ∧ nzn for n ∈ N. Clearly, θE � {wn} ↑ so (3.7) implies {wn} ↑ PB(e) � e. By
definition, wn � nzn for each n ∈ N. Since the zn are not order units, nzn are not order units and
θE � wn � nzn implies that none of the {wn} are order units. If e = PB(e), the proof is complete
with {xn} := {wn}, since {wn} is an increasing sequence of non-order units that order converges
to e.

Assume e 6= PB(e). Since PB(e) � e it follows that PB(e) ≺ e and u0 := e − PB(e) � θE .
Consider the sequence {u0 + wn}. Since {wn} ↑ PB(e), it follows from the definition of u0 that
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{u0 + wn} ↑ e. Because B is a projection band, u0 is disjoint from the z1, z2, . . . , that generate B.
Then by Lemma C.3, u0 + nzn is not an order unit for all n. Finally, observe that

θE ≺ u0 + wn = u0 + (e ∧ nzn) = (u0 + e) ∧ (u0 + nzn) � u0 + nzn.

Since the u0 + nzn are not order units, the u0 + wn are not order units. Hence the increasing
sequence {xn} := u0 + wn of non-order units converges to e. This establishes the result.

Theorem 3.13. All infinite dimensional Riesz spaces with order units that are either σ-order
complete or have the projection property have non-zero, positive, singular dual functionals.

Proof. Let E be an infinite dimensional Riesz space with an order unit e � θE that is either σ-
order complete or has the projection property. By Theorem 3.12 there exists an increasing sequence
{xn} of non-order units such that xn

◦→ e. Then by Theorem 3.8 there exists a non-zero, positive,
singular dual functional on E.

Remark 3.14. The results in this section provide insight into which classes of Riesz spaces
have the property that the existence of an order unit implies the existence of singular dual function-
als. Recall the main inclusion theorem of Luxemburg and Zaanen (Theorem 25.1 in [24]) expressed
in Figure 2.2. Theorem 3.13 result shows that infinite dimensional Riesz spaces with order unit
that are either σ-order continuous or satisfy the projection property have singular dual functionals.
However, the condition is not necessary. Indeed, Luxemberg and Zaanan [24] show that the Riesz
space in Example 3.9 satisfies the principal projection property but is neither σ-order continuous
nor satisfies the projection property. However, we showed it has a singular dual functional.

The Archimedean property, which is implied by the principal projection property, is insufficient
to guarantee the existence of singular dual functionals. Luxemburg and Zaanen [24] show that the
Riesz space in Example 3.5 is Archimedean (see Example (v) on page 141), but as we have shown,
it has no singular dual functionals. However, Luxemburg and Zaanen [24] also show that the Riesz
space in Example 3.5 is not σ−order complete and does not have the projection property. Therefore
Example 3.5 does not contradict Theorem 3.13.

An open question remains regarding the connection between the principal projection property
and the existence of singular dual functionals. In particular, one conjecture is that the principal
projection property is sufficient for the existence of singular dual functionals in infinite dimensional
Riesz spaces with order unit. However, the principal projection property is not necessary. Indeed,
C[0, 1] is an infinite dimensional Riesz space with order unit that does not satisfy the principal
projection property (see Example (v) on page 140 of Luxemburg and Zaanen [24]) but has singular
dual functionals (see page 147 of Zaanen [37]).

Remark 3.15. Theorem 3.13 uses an order-algebraic approach to show that a large class
of infinite dimensional Riesz spaces satisfy Theorem 3.8 and therefore have singular functionals
in their order duals. A similar, but less general result, using topological methods is provided in
Appendix D. There we show that if E is a σ-order complete Banach lattice with an order unit then
E∼ admits singular functionals. However, this result requires the additional structure of being a
Banach lattice. This is not required in Theorem 3.13. By Theorem 9.28 of Aliprantis and Border
[2], any order complete Riesz space E can be equipped with a norm that defines a Banach lattice.
However, unlike Theorem 3.13, this requires order completeness as opposed to σ-order completeness.
Moreover, Theorem 3.13 also handles the case where the space satisfies the projection property only
and is possibly not even σ-order complete. We also reiterate that Theorem 3.8 applies to all infinite
dimensional Riesz spaces, providing a general condition for the existence of singular dual functionals.
/
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4. Resolving the Slater Conundrum. Connecting our algebraic constraint qualification
based on core points to the existence of singular dual functionals reveals a significant modeling
issue in infinite dimensional programming. We show the tradeoff between the sufficiency of interior
point conditions for zero duality gap and the difficulties of working with singular dual functionals.
The question thus remains how to “get around” the Slater conundrum and still work in spaces like
`∞ and L∞, which are otherwise desirable for modeling purposes.

We provide sufficient conditions to bypass the conundrum for general infinite dimensional linear
programs over Riesz spaces with structure (3.1). Consider

inf
x
〈x, ϕ〉

s.t. A(x) �Y + b

x �X+ θX

(RLP)

where A : X → Y is a linear map and X and Y are both infinite-dimensional Riesz spaces where
ϕ ∈ X∼, b ∈ Y , Y + is a pointed convex convex cone with nonempty core in Y , and X+ is a
pointed convex cone in X. When the underlying vector space is clear, we drop the subscripts on
the orderings �X+ and �Y + for ease of notation. The order dual of (RLP) is

sup
ψ

〈b, ψ〉

s.t. A∼(ψ) �X+ ϕ

ψ ∈ (Y +)∼

(RLP∼)

where A∼ : Y ∼ → X∼ is the order adjoint of A defined by 〈x,A∼(ψ)〉 = 〈A(x), ψ〉 for all x ∈ X
and ψ ∈ Y ∼, and (Y +)∼ is the order dual cone of Y +.

Remark 4.1. The linear program (RLP) requires that x ∈ X+, a condition not included
of previous formulations in this paper. However, this condition is easily relaxed via a standard
argument in linear programming. /

Our investigation is motivated by the following question. Given an instance of (RLP) where
there exists an optimal dual solution to (RLP∼), does there always exist an optimal dual solution
that has no singular component? If we can affirmatively answer this, then we say that we have
resolved the Slater conundrum. One sufficient condition for resolving the conundrum is:

If ψ∗ = ψ∗c + ψ∗s is optimal to (RLP∼) with ψ∗c ∈ Y ∼c , ψ∗s ∈ Y ∼s then ψ∗c is also optimal.(4.1)

In this section we provide two sets of sufficient conditions that guarantee (4.1) holds and thus
resolve the Slater conundrum. The first set of conditions is inspired by Theorem 5.1 of Ponstein
[26] for problems in `∞.

Theorem 4.2. Consider an instance of (RLP) where A and b are such that the following two
conditions hold: for all positive singular linear functionals ψs ∈ (Y +)∼s

A∼(ψs) � θ(4.2)

and

〈b, ψs〉 ≤ 0.(4.3)

Then condition (4.1) holds.
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Proof. Let ψ∗ = ψ∗c + ψ∗s be an optimal solution to (RLP∼). The proof proceeds in two
steps. We first show that ψ∗c is itself a feasible dual solution using (4.2). Second, we show that
〈b, ψ∗c 〉 ≥ 〈b, ψ∗〉 using (4.3). This establishes that ψ∗c is also an optimal solution and so (4.1)
holds. To establish the first step note that ϕ � A∼(ψ∗) = A∼(ψ∗c ) + A∼(ψ∗s ) � A∼(ψc) where
the first inequality follows from the feasibility of ψ∗, the equality follows from the linearity of the
order adjoint and the second inequality follows by (4.2). To establish the second step note that
〈b, ψ∗〉 = 〈b, ψ∗c 〉 + 〈b, ψ∗s 〉 ≤ 〈b, ψ∗c 〉 where the equality follows from linearity and the inequality
follows from (4.3).

Ponstein [26] considers problems where Y = `∞ and uses the notion singular nonpositive to
condition A and b so that (4.2) and (4.3) hold. A sequence y = (y1, y2, . . . ) ∈ `∞ is singularly
nonpositive if every accumulation point of y is nonpositive. Lemma 4.2 of [26] shows that if ψ ∈
(`∼∞)s then ψ(y) ≤ 0 for all singularly nonpositive y ∈ `∞. Ponstein considers a linear program of
the form (RLP) where A : X → `∞ is represented by a doubly infinite matrix (also denoted A) and
X is a sequence space that contains the unit vectors ei for i = 1, 2, . . . . Theorem 5.1 of [26] then
shows that if −b and the columns of A (themselves sequences) are singularly nonpositive then (4.2)
and (4.3) hold, thus establishing (4.1) via our Theorem 4.2.

A sufficient condition to guarantee that the columns of A are singularly nonpositive is to require
that that the matrix A has finitely many nonzero entries in each column. This sufficient condition
was used by Ghate, Romeijn, and Smith [17, 33, 32] in their work on the duality of countably
infinite programs. By using this sufficient condition, they were able to ignore the contributions of
singular dual functionals.

What can be done to resolve the conundrum when either (4.2) or (4.3) fail? We provide one
further set of sufficient conditions, based on a decomposition of the dual problem, that draws
partial inspiration from Shapiro’s approach to the duality of conic optimization problems over L∞
in [34]. The idea is to use the orthogonality of Y ∼c and Y ∼s and assume a particular structure on A
that allows the dual problem to be decomposed into a “continuous” subproblem and a “singular”
subproblem.

Theorem 4.3. Assume the primal problem (RLP) is feasible with ϕ ∈ X∼c and the order
adjoint A∼ satisfies A∼((Y +)∼n ) ⊆ X∼n and A∼((Y +)∼s ) ⊆ X∼s ; that is, the order adjoint maps
positive σ-order continuous linear functionals to σ-order continuous linear functionals and positive
singular linear functionals to singular linear functionals. Then condition (4.1) holds.

Proof. Let ψ∗ = ψ∗c + ψ∗s be an optimal solution to (RLP∼). The proof proceeds by decom-
posing (RLP∼) into two subproblems, one involving only ψ∗c and one involving only ψ∗s . First, we
decompose the constraint ψ∗ = ψ∗c + ψ∗s � θ in (RLP∼). Since ψ∗c ⊥ ψ∗s , Theorem C.4 implies
ψ∗c � θ and ψ∗s � θ. Of course, ψ∗c � θ and ψ∗s � θ implies ψ∗c + ψ∗s � θ, and so these two condi-
tions are equivalent. Second, we decompose the constraint A∼(ψ∗) � ϕ. Note that A∼(ψ∗) � ϕ
holds if and only if ϕ − A∼(ψ∗c ) − A∼(ψ∗s ) � θ. By assumption ϕ ∈ X∼c and A∼(ψ∗c ) ∈ X∼c since
ψ∗c ∈ (Y +)∼c so ϕ − A∼(ψ∗c ) ∈ X∼c . Moreover, by assumption A∼(ψ∗s ) ∈ X∼s since ψ∗s ∈ (Y +)∼s .
Then by Theorem C.4, ϕ−A∼(ψ∗c )−A∼(ψ∗s ) � θ implies ϕ−A∼(ψ∗c ) � θ and −A∼(ψ∗s ) � θ.

The above decompositions imply that ψ∗ is an optimal solution to (RLP∼) if and only if ψ∗c is
an optimal solution to

sup
ψ

〈b, ψc〉

s.t. A∼(ψc) � ϕ
ψc ∈ (Y +)∼c

(RLP∼c )
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and ψ∗s is an optimal solution to

sup
ψ

〈b, ψs〉

s.t. A∼(ψs) � θ
ψs ∈ (Y +)∼s

(RLP∼s )

with v(RLP∼) = v(RLP∼c ) + v(RLP∼s ).

The feasible region to (RLP∼s ) is a cone since if ψs is feasible then λψs is feasible for all
λ ≥ 0. This follows directly from the linearity of the adjoint A∼(λψs) = λA∼(ψs) � θ for all
λ ≥ 0. Therefore, if there exists a feasible solution ψs to (RLP∼s ) such that 〈b, ψs〉 > 0 then
(RLP∼s ) is unbounded. But (RLP) is feasible, so ∞ > v(RLP) ≥ v(RLP∼) by weak duality.
Thus 〈b, ψ∗s 〉 = v(RLP∼s ) = 0 which implies ψs = θ is also optimal solution to (RLP∼s ). Then
v(RLP∼) = v(RLP∼c ) and ψ∗c + θ = ψ∗c is also an optimal solution to (RLP∼). This establishes
(4.1).

Remark 4.4. The approaches in Theorem 4.2 and Theorem 4.3 are different and not implied
by each other. Theorem 4.3 puts no condition on the right-hand-side b and so is more general in
this regard. Theorem 4.2 does not restrict where A∼ maps continuous or singular linear functionals,
and is thus more general in this direction. We leave for future work the implications of Theorem 4.3
for particular optimization problems in spaces such as `∞ or L∞. /

Appendix A. The Convex Core Topology.

In this appendix we show Corollary 2.2 follows from Theorem 2.1 under a special topology that
captures the inherent algebraic structure of the vector space.

Let Y be a vector space. A subset A of Y is algebraically open if cor(A) = A. Let B denote
the set of all algebraically open convex sets that contain the origin θX . The set B forms the
neighborhood basis of the origin for the topology τ(B) where

U ∈ τ(B) if and only if ∀y ∈ U, ∃B ∈ B s.t. y +B ⊆ U.(A.1)

Following Day [11] we call τ(B) the convex core topology of Y. It has also been called the natural
topology by Klee [22] and generates the locally convex topological vector space (Y, τ(B)).

Since (Y, τ(B)) is a locally convex topological vector space we can apply Theorem 2.1 to a
problem with (Y, τ(B)) as a constraint space. Corollary 2.2 is then a direct consequence of the
following proposition, whose proof is straightforward and thus omitted.

Proposition A.1. Let Y be a vector space with positive cone P and τ(B) the natural topology
on Y . Then int(P ) = cor(P ) and the topological dual Y ∗ under the natural topology is the algebraic
dual Y ′.

Appendix B. Comparison with quasi-relative interior.

Borwein and Lewis [8] propose the quasi-relative interior as a useful generalization of the notion
of interior for constraint qualifications of convex programs. Let X be a topological vector space
with topological dual X∗ and let A ⊆ X be a convex set. The quasi-relative interior of a set A is
qri(A) := {x ∈ A : cl (cone(A− x)) is a linear subspace of X}.

By Corollary 2.2 (CP) has zero duality gap with its Lagrangian dual if there exists an x ∈ X
such that −G(x) ∈ cor(P ). Example B.1 below shows that when the condition −G(x) ∈ cor(P ) is
replaced with −G(x) ∈ qri(P ), then there may be a positive duality gap. Thus Corollary 2.2 is not
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immediately subsumed by results in the literature on constraint qualifications involving the quasi-
relative interior. See Example 21.1 in Boţ [9] for an example where the existence of a quasi-relative
interior point is not sufficient to guarantee a zero duality gap with the Fenchel dual.

Example B.1. Consider the semi-infinite linear program

minx1

−(1/n)x1 − (1/n)2x2 + (1/n) ≤ 0, n = 1, 2, 3, . . .
(B.1)

with constraint space `2(N). An optimal primal solution is (x∗1, x
∗
2) = (1, 0) for an optimal primal

value of 1. A feasible dual solution is a positive dual functional ψ that satisfies

ψ ({−1/n}∞n=1) = 1(B.2)

ψ
({
−(1/n)2

}∞
n=1

)
= 0.(B.3)

We claim that the algebraic dual is infeasible. By Theorem 2.4 and Theorem D.7 every positive
dual functional ψ corresponds to an element {ψn}∞n=1 in `2(N) with ψn ≥ 0 for all n. Thus, (B.2) and
(B.3) amount to

∑∞
n=1−(1/n)ψn = 1 and

∑∞
n=1−(1/n)2ψn = 0. The above inequalities cannot be

satisfied by any positive ψ. The first equality requires at least one of the ψn to be strictly positive,
which violates the second inequality. We conclude that the algebraic dual of (B.1) is infeasible.

Since the primal is feasible and dual is infeasible, (B.1) has an infinite duality gap. However,
there exists an x̄ such that −G(x̄) ∈ qri(P ) where G is the linear map defining the constraints of
(B.1) and P = (`2(N))+. Let x̄ = (2, 0). Then ȳ = −G(x̄) is the sequence {1/n}∞n=1. Example
3.11(i) of Borwein and Lewis [8] shows that qri(P ) = {y ∈ `2(N) : yn > 0 for all n}. Hence ȳ ∈
qri(P ). /

Appendix C. Properties of Riesz Spaces.

This appendix contains results about Riesz spaces used in the paper that are not readily found
in other references.

Proposition C.1. Assume E is Riesz space with positive cone E+. If x, y, z ∈ E+, then
x ⊥ (y + z)⇒ x ⊥ y and x ⊥ z.

Proof. By definition x ⊥ (y+ z) implies that |x| ∧ |y+ z| = θE . Then x, y, z ∈ E+ implies that
θE = |x|∧|y+z| = x∧(y+z). Therefore θE = x∧(y+z) � x∧y � θE and θE = x∧(y+z) � x∧z � θE ,
which implies that x ⊥ y and x ⊥ z.

Lemma C.2. Let x and y be elements of the Riesz space E. If y 6= θE and x ∧ y = θE, then x
is not an order unit.

Proof. Prove the contrapositive and assume x is an order unit. Then there exists a λ > 0 such
that y � λx. Then λx ∧ y = y and y 6= θE by hypothesis. By Theorem 8.1(ii) in Zaanen [37], this
implies that x ∧ y 6= θE , i.e. x and y are not disjoint.

Lemma C.3. Let {un}∞n=1 be a sequence of nonzero disjoint vectors in Riesz space E. No linear
combination of {un}∞n=1 is an order unit in E.

Proof. Since the un for n ∈ N are nonzero disjoint vectors, it follows from Lemma C.2 that
the un are not order units. Let u =

∑N
n=1 αnun be an arbitrary linear combination of the elements

of {un}. Then Theorems 8.1(ii)-(iii) in Zaanen [37] imply that u ⊥ uN+1. If u is an order unit,
then there exists a λ > 0 such that uN+1 � λu. Thus, λu and uN+1 are not disjoint since
uN+1 ∧ λu = uN+1 6= θ. Then by Theorem 8.1(ii) in Zaanen [37], u and uN+1 are not disjoint,
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yielding a contradiction. Since u was an arbitrary linear combination of the the elements of {un},
no linear combination of the elements of the un is an order unit.

Theorem C.4. (Cone Decomposition) If E is a Riesz space with y, z ∈ E such that y ⊥ z,
then y + z � θ if and only if y � θ and z � θ

Proof. (⇐) If y � θ and z � θ then y + z � θ. (⇒) If y + z � θ, then

y + z = |y + z| = |y − z|

where the second equality follows from Theorem 8.12 (2) of [2] and the fact that y and z are disjoint.
Then by Theorem 8.6 (8) of [2],

y ∧ z =
1

2
(y + z − |y − z|)

but y + z = |y + z| = |y − z| gives

y ∧ z =
1

2
(y + z − |y − z|) =

1

2
(|y − z| − |y − z|) = θ.

If y ∧ z = θ, then y � (y ∧ z) = θ and z � (y ∧ z) = θ.

Appendix D. Banach Lattices.
Theorem 3.13 uses an order-algebraic approach to prove that infinite dimensional, σ-order

complete Riesz spaces with order units have order duals that contain singular dual functionals.
Alternatively, similar, but weaker results can be proved using topological methods. First some
definitions.

Definition D.1 (Banach lattice). Let E be a Riesz space with norm || · ||. We say || · || is
a lattice norm if for x, y ∈ E with |x| ≤ |y|, then ||x|| ≤ ||y||. A Riesz space equipped with a
lattice norm is called a normed Riesz space. If the lattice norm is norm-complete (that is, Cauchy
sequences converge in norm) then E is a Banach lattice.

Definition D.2 (AM-space). A lattice norm on a Riesz space E is an M -norm if x, y � θE
implies ||x ∨ y|| = max{||x||, ||y||}. A Banach lattice with an M -norm is an AM-space.

Definition D.3 (Order Continuous Norm). The lattice norm ‖ · ‖ is an order continuous
norm if xα ↓ θE implies ‖xα‖ ↓ 0.

Definition D.4 (σ-Order Continuous Norm). The lattice norm ‖ · ‖ is a σ- order continuous
norm if xn ↓ θE implies ‖xn‖ ↓ 0.

Theorem D.5 (Aliprantis and Border [2], Theorem 9.28). If E is either a Banach lattice or
an order complete Riesz space, then for each x ∈ E the principal ideal Ex, equipped with the norm
||y||∞ = inf{λ > 0 : |y| � λ|x|} = min{λ ≥ 0 : |y| � λx} is an AM-space, with order unit |x|.

If E is an order complete Riesz space with an order unit e � θE , then the principal ideal Ee is
all of E. Therefore, Theorem D.5 implies that every order complete Riesz space with order unit is
a Banach lattice, indeed an AM-space when equipped with norm topology || · ||∞.

Theorem D.6 (Aliprantis and Burkinshaw [4], Corollary 4.4). All lattice norms that make a
Riesz space a Banach lattice are equivalent.

Theorem D.7 (Aliprantis and Burkinshaw [4], Corollary 4.5). If E is a Banach lattice then
E∗ = E∼ where E∗ is the norm dual and E∼ is the order dual.

Theorem D.8 (Aliprantis and Burkinshaw [4], Theorem 4.51; or Wnuk [35], Theorem 1.1).
For an arbitrary σ-order complete Banach lattice E the following statements are equivalent: (i) E
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does not have order continuous norm and (ii) There exists an order bounded disjoint sequence of
E+ that does not converge in norm to zero.

Theorem D.9 (Zaanen [36], Theorem 103.9). A Banach lattice E has an order continuous
norm if and only if E is σ-order complete and E has a σ-order continuous norm.

Theorem D.10 (Zaanen [36], Theorem 102.8). A Banach lattice E has a σ-order continuous
norm if and only if E∗ = E∼c .

The logic for Theorem D.11 given below is inspired by page 48 of Wnuk [35].
Theorem D.11. If an infinite dimensional vector space E is either a σ-order complete Banach

lattice or an order complete Riesz space and E contains an order unit e � θE, then there exists a
nonzero singular functional in the algebraic dual E′, the order dual E∼ and the norm dual E∗.

Proof. By Theorem D.5, (E, || · ||∞) is an AM-space with order unit where || · ||∞ is defined by

‖x‖∞ := inf{λ > 0 : |x| � λe}.(D.1)

By Theorem D.6 all lattice norms that make E a Banach lattice are equivalent, and so without
loss, take E to be the Banach lattice E = (E, ‖ · ‖∞).

By hypothesis, E is infinite dimensional. Then by Lemma 3.10, E contains an infinite sequence
{xn}∞n=1 of pairwise disjoint elements. By definition of disjointness, we can assume this sequence
is positive. By Theorem 8.1(ii) in Zaanen [37] the sequence defined as

yn :=
xn
‖xn‖∞

(D.2)

is still positive pairwise disjoint. By the definition of yn in (D.2), ‖yn‖∞ = 1 which implies by
definition of the ‖ · ‖∞ in (D.1) that |yn| � e. Thus the sequence {yn}∞n=1 is order bounded by
e. Hence {yn}∞n=1 is an order bounded sequence of positive pairwise disjoint elements that norm
converges to 1. Therefore condition (ii) of Theorem D.8 holds and this implies E does not have an
order continuous norm.

Since E is σ-order complete without an order continuous norm, Theorem D.9 implies that E
does not have a σ-continuous norm. Therefore, Theorem D.10 implies E∗ 6= E∼c and there exists a
nonzero singular dual functional in the norm dual of E. Since E∗ = E∼ ⊆ E′, the norm dual, the
order dual and the algebraic dual of E contain a nonzero singular dual functional.
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