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Abstract We study the representability of sets that admit extended formulations
using mixed-integer bilevel programs. We show that feasible regions modeled
by continuous bilevel constraints (with no integer variables), complementarity
constraints, and polyhedral reverse convex constraints are all finite unions of
polyhedra. Conversely, any finite union of polyhedra can be represented using
any one of these three paradigms. We then prove that the feasible region of
bilevel problems with integer constraints exclusively in the upper level is a
finite union of sets representable by mixed-integer programs and vice versa.
Further, we prove that, up to topological closures, we do not get additional
modeling power by allowing integer variables in the lower level as well. To
establish the last statement, we prove that the family of sets that are finite
unions of mixed-integer representable sets forms an algebra of sets (up to
topological closures).
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1 Introduction

This paper studies mixed-integer bilevel linear (MIBL) programs of the form

max
x,y

c>x+ d>y

s.t. Ax+By ≤ b
y ∈ arg max

y
{f>y : Cx+Dy ≤ g, yi ∈ Z for i ∈ IF }

xi ∈ Z for i ∈ IL

(1)

where x and y are finite-dimensional real decision vectors, b, c, d, f and g
are finite-dimensional vectors and the constraint matrices A, B, C, and D
have conforming dimensions. The decision-maker who determines x is called
the leader, while the decision-maker who determines y is called the follower.
The sets IL and IF are subsets of the index sets of x and y (respectively)
that determine which leader and follower decision variables are integers. The
follower solves the lower level problem

max
y

f>y

s.t. Dy ≤ g − Cx
yi ∈ Z for i ∈ IF

(2)

for a given choice of x by the leader.
Bilevel programming has a long history, with traditions in theoretical economics

(see, for instance, [27], which originally appeared in 1975) and operations
research (see, for instance, [10, 20]). While much of the research community’s
attention has focused on the continuous case, there is a growing literature on
bilevel programs with integer variables, starting with early work in the 1990s by
Bard and Moore [3, 28] through a more recent surge of interest [14, 16, 17, 22,
23, 31, 32, 34, 36]. Research has largely focused on algorithmic concerns, with
a recent emphasis on leveraging advancements in cutting plane techniques.
Typically, these algorithms restrict how variables appear in the problem. For
instance, Wang and Xu [34] consider the setting where all variables are integer-
valued. Fischetti et al. [16] allow for continuous variables but restrict the
leader’s continuous variables from entering the follower’s problem. Only very
few papers have studied questions of computational complexity in the mixed-
integer setting, and also often with restricting the appearance of integer variables
(see, for instance, [21]).

To our knowledge, a thorough study of general MIBL programs with no
additional restrictions on the variables and constraints has not been undertaken
in the literature. The contribution of this paper is to ask and answer a simple
question: what types of sets can be modeled as feasible regions (or possibly
projections of feasible regions) of such general MIBL programs? Or put in
the standard terminology of the optimization literature: what sets are MIBL-
representable?
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Separate from the design of algorithms and questions of computational
complexity, studying representability shows the reach of a modeling framework.
The classical paper of Jeroslow and Lowe [18] provides a characterization of
sets that can be represented by mixed-integer linear feasible regions. They
show that a set is the projection of the feasible region of a mixed-integer
linear problem (termed MILP-representable) if and only if it is the Minkowski
sum of a polytope and a finitely-generated integer monoid (concepts more
carefully defined below). This result is the gold standard in the theory of
representability, as it answers a long-standing question on the limits of mixed-
integer programming as a modeling framework. Jeroslow and Lowe’s result
also serves as inspiration for recent interest in the representability of a variety
of problems. See the paper by Vielma [33] for a review of the literature until
2015 and [5, 24–26] for examples of more recent work.

To our knowledge, questions of representability have not even been explicitly
asked of continuous bilevel linear (CBL) programs where IL = IF = ∅ in (1).
Accordingly, our initial focus concerns characterizations of CBL-representable
sets. In the first key result of our paper (Theorem 13), we show that every
CBL-representable set can also be modeled as the feasible region of a linear
complementarity (LC) problem (in the sense of [12]). Indeed, we show that
both CBL-representable sets and LC-representable sets are precisely finite
unions of polyhedra. Our proof method works through a connection to superlevel
sets of piecewise linear convex functions (what we term polyhedral reverse-
convex sets) that alternately characterize finite unions of polyhedra. In other
words, an arbitrary finite union of polyhedra can be modeled as a continuous
bilevel program, a linear complementarity problem, or an optimization problem
over a polyhedral reverse-convex set.

A natural question arises: how can one relate CBL-representability and
MILP-representability? Despite some connections between CBL programs and
MILPs (see, for instance, [1]), the collection of sets they represent are incomparable
(see Corollary 14 below). The Jeroslow-Lowe characterization of MILP-representability
as the finite union of polytopes summed with a finitely-generated monoid
has a fundamentally different geometry than CBL-representability as a finite
union of polyhedra. It is thus natural to conjecture that MIBL-representability
should involve some combination of the two geometries. We will see that this
intuition is roughly correct, with an important caveat.

A distressing fact about MIBL programs, noticed early on in [28], is that
the feasible region of a MIBL program may not be topologically closed (maybe
the simplest example illustrating this fact is Example 1.1 of [21]). This throws
a wrench in the classical narrative of representability that has largely focused
on closed sets. Indeed, the recent work of Lubin et al. in [25] is careful to study
representability by closed convex sets. This focus is entirely justified. Closed
sets are indeed of most interest to the working optimizer and modeler, since
sets that are not closed may fail to have desirable optimality properties (such
as nonexistence of optimal solutions). Accordingly, we aim our investigation on
closures of MIBL-representable sets. In fact, we provide a complete characterization
of these sets as unions of finitely many MILP-representable sets (Theorem 16).
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This is our second key result on MIBL-representability. The result conforms to
the rough intuition of the last paragraph. MIBL-representable sets are indeed
finite unions of other objects, but instead of these objects being polyhedra as
in the case of CBL-programs, we now take unions of MILP-representable sets,
reflecting the inherent integrality of MIBL programs.

To prove this second key result on MIBL-representability we develop a
generalization of Jeroslow and Lowe’s theory to mixed integer sets in generalized
polyhedra, which are finite intersections of closed and open halfspaces. Indeed,
it is the non-closed nature of generalized polyhedra that allows us to study
the non-closed feasible regions of MIBL-programs. Specifically, these tools
arise when we take the value function approach to bilevel programming, as
previously studied in [14, 23, 32, 35]. Here, we leverage the characterization
of Blair [8] of the value function of the mixed-integer program in the lower
level problem (2). Blair’s characterization leads us to analyze superlevel and
sublevel sets of Chvátal functions. A Chvátal function is (roughly speaking) a
linear function with integer rounding (a more formal definition later). Basu et
al. [5] show that superlevel sets of Chvátal functions are MILP-representable.
Sublevel sets are trickier, but for a familiar reason — they are, in general,
not closed. This is not an accident. The non-closed nature of mixed-integer
bilevel sets, generalized polyhedra, and sublevel sets of Chvátal functions are
all tied together in a key technical result that shows that sublevel sets of
Chvátal functions are precisely finite unions of generalized mixed-integer linear
representable (GMILP-representable) sets (Theorem 18). This result is the key
to establishing our second main result on MIBL-representability.

In fact, showing that the sublevel set of a Chvátal function is the finite
union of GMILP-representable sets is a corollary of a more general result.
Namely, we show that the collection of sets that are finite unions of GMILP-
representable sets forms an algebra (closed under unions, intersections, and
complements). We believe this result is of independent interest.

The representability results in the mixed-integer case require rationality
assumptions on the data. This is an inevitable consequence when dealing with
mixed-integer sets. For example, even the classical result of Jeroslow and Lowe
[18] requires rationality assumptions on the data. Without this assumption the
result does not even hold. The key issue is that the convex hull of mixed integer
sets are not necessarily polyhedral unless certain other assumptions are made,
amongst which the rationality assumption is most common (see [15] for a
discussion of these issues).

Of course, it is natural to ask if this understanding of MIBL-representability
has implications for questions of computational complexity. The interplay
between representability and complexity is subtle. We show (in Theorem 16)
that allowing integer variables in the leader’s decision x captures everything
in terms of representability as when allowing integer variables in both the
leader and follower’s decision (up to taking closures). However, we show (in
Theorem 19) that the former is inNP while the latter isΣ2

p-complete [22]. This
underscores a crucial difference between an integer variable in the upper level
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versus an integer variable in the lower level, from a computational complexity
standpoint.

In summary, we make the following contributions. We provide geometric
characterizations of CBL-representability and MIBL-representability (where
the latter is up to closures) in terms of finite unions of polyhedra and finite
unions of MILP-representable sets, respectively. In the process of establishing
these main results, we also develop a theory of representability of mixed-
integer sets in generalized polyhedra and show that finite unions of GMILP-
representable sets form an algebra. This last result has the implication that
finite unions of MILP-representable sets also form an algebra, up to closures.

The rest of the paper is organized as follows. The main definitions needed
to state our main results are found in Section 2, followed in Section 3 by self-
contained statements of these main results. Section 4 contains our analysis of
continuous bilevel sets and their representability. Section 5 explores representability
in the mixed-integer setting. Section 6 concludes.

Some notation: The following basic concepts are entirely standard, but
their notation less so. We state our notation for clarity and completeness. Let
R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively. Given a subset S of Rn for some integer n, the interior and
closure of S will be denoted by int(S) and cl(S), respectively. The set of all
conic combinations of the elements of S is called the cone of S and denoted
cone(S). The set of all conic combinations with integer multipliers is called
the integer cone of S and denoted int cone(S). The affine hull aff(S) of S is
the intersection of all affine sets containing S. The relative interior relint(S)
of S is the interior of S in the relative topology of aff(S). Finally, the ball
B(c, r) = {x ∈ Rn : ||x− c|| ≤ r} in the closed ball of radius r centered at c.
We use projx {(x, y) : (x, y) ∈ S} to denote the projection of the set S on to
the space of x variables. For any set A ⊆ Rn, the complement will be denoted
by Ac := {x ∈ Rn : x 6∈ A}. For any convex set K ⊆ Rn, the recession cone of
a convex set K will be denoted by rec(K). We say that a cone C is a pointed
cone if x ∈ C =⇒ −x 6∈ C. A cone C is said to be a simplicial cone if the
extreme rays of C are linearly independent.

2 Key definitions

This section provides the definitions needed to understand the statements of
our main results collected in Section 3. Concepts that appear only in the proofs
of these results are defined later as needed.

We begin with formal definitions of the types of sets we study in this paper.

Definition 1 (Mixed-integer bilevel linear set). A set S ⊆ Rn`+nf is called
a mixed-integer bilevel linear (MIBL) set if there exist A ∈ Rm`×n` , B ∈
Rm`×nf , b ∈ Rm` , f ∈ Rnf , D ∈ Rmf×nf , C ∈ Rmf×n` and g ∈ Rmf such
that

S = S1 ∩ S2 ∩ S3,
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S1 =
{

(x, y) ∈ Rn`+nf : Ax+By ≤ b
}
,

S2 =

{
(x, y) ∈ Rn`+nf : y ∈ arg max

y

{
f>y : Dy ≤ g − Cx, yi ∈ Z for i ∈ IF

}}
, and

(3)

S3 =
{

(x, y) ∈ Rn`+nf : xi ∈ Z for i ∈ IL
}
,

where [k] := {1, 2, 3, . . . , k} , IL ⊆ [n`], IF ⊆ [nf ]. Further, we call S a

– continuous bilevel linear (CBL) set if it has a representation with |IL| =
|IF | = 0;

– bilevel linear with integer upper level (BLP-UI) set if it has a representation
with |IF | = 0.

Such sets will be labeled rational if all the entries in A,B,C,D, b, f, g are
rational.

Definition 2 (Linear complementarity sets). A set S ⊆ Rn is a linear complementarity
(LC) set, if there exist M ∈ Rn×n, q ∈ Rn and A, b of appropriate dimensions
such that

S =
{
x ∈ Rn : x ≥ 0, Mx+ q ≥ 0, x>(Mx+ q) = 0, Ax ≤ b

}
.

Sometimes, we represent this using the alternative notation

0 ≤ x ⊥ Mx+ q ≥ 0

Ax ≤ b.

A linear complementarity set will be labeled rational if all the entries in
A,M, b, q are rational.

As an example, the set of all n-dimensional binary vectors is a linear
complementarity set. Indeed, they can be modeled as 0 ≤ xi ⊥ (1 − xi) ≥ 0
for i ∈ [n].

Definition 3 (Polyhedral convex function). A function f : Rn 7→ R is a
polyhedral convex function with k pieces if there exist α1, . . . , αk ∈ Rn and
β1, . . . , βk ∈ R such that

f(x) =
k

max
j=1

{〈
αj , x

〉
− βj

}
.

A polyhedral convex function will be labeled rational if all the entries in the
affine functions are rational.

Note that f is a maximum of finitely many affine functions. Hence f is
always a convex function.

Definition 4 (Polyhedral reverse-convex set). A set S ∈ Rn is a polyhedral
reverse-convex (PRC) set if there exist n′ ∈ Z+, A ∈ Rm×n, b ∈ Rm and
polyhedral convex functions fi for i ∈ [n′] such that

S = {x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]} .

A polyhedral reverse-convex set will be labeled rational if all the entries in A, b
are rational, and the polyhedral convex functions fi are all rational.
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One of the distinguishing features of MIBL sets is their potential for not
being closed. This was discussed in the introduction and a concrete example
is provided in Lemma 45. To explore the possibility of non-closedness we
introduce the notion of generalized polyhedra.

Definition 5 (Generalized, regular, and relatively open polyhedra). A generalized
polyhedron is a finite intersection of open and closed halfspaces. A bounded
generalized polyhedron is called a generalized polytope. The finite intersection
of closed halfspaces is called a regular polyhedron. A bounded regular polyhedron
is a regular polytope. A relatively open polyhedron P , is a generalized polyhedron
such that P = relint(P ). If relatively open polyhedron P is bounded, we call
it a relatively open polytope.

Such sets will be labeled rational if all the defining halfspaces (open or
closed) can be given using affine functions with rational data.

Note that the closure of a generalized or relatively open polyhedron is a
regular polyhedron. Also, singletons are, by definition, relatively open polyhedra.

Definition 6 (Generalized, regular and relatively open mixed-integer sets). A
generalized (respectively, regular and relatively open) mixed-integer set is the
set of mixed-integer points in a generalized (respectively, regular and relatively
open) polyhedron.

Such sets will be labeled rational if the corresponding generalized polyhedra
are rational.

Our main focus is to explore how collections of the above objects can be
characterized and are related to one another. To facilitate this investigation we
employ the following notation and vocabulary. Let T be a family of sets. These
families will include objects of potentially different dimensions. For instance,
the family of polyhedra will include polyhedra in R2 as well as those in R3. We
will often not make explicit reference to the ambient dimension of a member of
the family T , especially when it is clear from context, unless explicitly needed.
For a family T , the subfamily of bounded sets in T will be denoted by T .
Also, cl(T ) is the family of the closures of all sets in T . When referring to
the rational members of a family (as per definitions above), we will use the
notation T (Q).

We are not only interested in the above sets, but also linear transformations
of these sets. This notion is captured by the concept of representability.

Definition 7 (Representability). Given a family of sets T , S is called a T -
representable set or representable by T if there exists a T ∈ T and a linear
transform L such that S = L(T ). The collection of all such T -representable
sets is denoted TR. We use the notation TR(Q) to denote the images of the
rational sets in T under rational linear transforms, i.e., those linear transforms
that can be represented using rational matrices.1

1 We will never need to refer to general linear transforms of rational sets, or rational
linear transforms of general sets in a family T ; so we do not introduce any notation for
these contingencies.
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Remark. The standard definition of representability in the optimization literature
uses projections as opposed to general linear transforms. However, under mild
assumption on the family T , it can be shown that TR is simply the collection
of sets that are projections of sets in T . Since projections are linear transforms,
we certainly get all projections in TR. Now consider a set S ∈ TR, i.e., there
exists a set T ∈ T and a linear transform L such that S = L(T ). Observe
that S = projx{(x, y) : x = L(y), y ∈ T}. Thus, if T is a family that is closed
under the addition of affine subspaces (like x = L(y) above), and addition of
free variables (like the set {(x, y) : y ∈ T}), then TR does not contain anything
beyond projections of sets in T . All families considered in this paper are easily
verified to satisfy these conditions.

One can immediately observe that T ⊆ TR since the linear transform can
be chosen as the identity transform. However, the inclusion may or may not
be strict. For example, it is well known that if T is the set of all polyhedra,
then TR = T . However, if T is the family of all (regular) mixed-integer sets
then T ( TR.

When referencing specific families of sets we use the following notation.
The family of all linear complementarity sets is T LC , continuous bilevel sets
is T CBL and the family of all polyhedral reverse-convex sets is T PRC . The
family of mixed-integer sets is T MI . The family of MIBL sets is T MIBL. The
family of BLP-UI sets is T BLP−UI . We use P to denote the family of finite
unions of polyhedra and T D−MI to denote the family of finite unions of sets

in T MI . We use T M̂I to denote the family of generalized mixed-integer sets

and T D̂−MI to denote the family of sets that can be written as finite unions of

sets in T M̂I . The family of all integer cones is denoted by T IC . This notation
is summarized in Table 1.

We make a useful observation at this point.

Lemma 8. The family T D−MI
R is exactly the family of finite unions of MILP-

representable sets, i.e., finite unions of sets in T MI
R . Similarly, T D̂−MI

R is

exactly the family of finite unions of sets in T M̂I
R . The statements also holds

for the rational elements, i.e., when we consider T D−MI
R (Q), T MI

R (Q), T D̂−MI
R (Q)

and T M̂I
R (Q), respectively.

Proof. Consider any T ∈ T D−MI
R . By definition, there exist sets T1, . . . , Tk ∈

T MI and a linear transformation L such that T = L
(⋃k

i=1 Ti

)
=
⋃k
i=1 L(Ti)

and the result follows from the definition of MILP-representable sets.

Now consider T ⊆ Rn such that T =
⋃k
i=1 T

i where Ti ∈ T MI
R for i ∈ [k].

By definition of Ti ∈ T MI
R , we can write Rn ⊇ Ti =

{
Li(z

i) : zi ∈ T ′i
}

where T ′i ⊆ Rni × Rn′
i is a set of mixed integer points in a polyhedron

and Li : Rni × Rn′
i 7→ Rn is a linear transform. In other words, T ′i =



Mixed-integer bilevel representability 9{
zi = (xi, yi) ∈ Rni × Zn′

i : Aixi +Biyi ≤ bi
}

. Let us define

T̃i =
{

(x, x1, . . . , xk, y1, . . . , yk) : ∀ j ∈ [k], xj ∈ Rnj , yj ∈ Rn
′
j ; x = Li(x

i), Aixi +Biyi ≤ bi
}
.

(4)

Clearly, for all i ∈ [k], T̃i ⊆ Rn+
∑k

j=1(nj+n
′
j) is a polyhedron and projecting

T̃i∩
(
Rn+

∑k
j=1 nj × Z

∑k
j=1 n

′
j

)
over the first n variables gives Ti. Let us denote

the projection from (x, x1, . . . , xk, y1, . . . , yk) onto the first n variables by L.
Since any linear operator commutes with finite unions, we can write,

T =

{
L(z) : z = (x, x1, . . . , xk, y1, . . . , yk) ∈

(
k⋃
i=1

T̃i

)⋂(
Rn

′
× Zn

′′
)}

,

where n′ = n +
∑k
j=1 nj and n′′ =

∑k
j=1 n

′
j , proving the first part of the

lemma.
The second part about T D̂−MI

R follows along very similar lines and is
not repeated here. The rational version also follows easily by observing that
nothing changes in the above proof if the linear transforms and all entries in
the data are constrained to be rational. �

Remark. Due to Lemma 8, we will interchangeably use the notation T D−MI
R

and the phrase “finite unions of MILP-representable sets” (similarly, T D̂−MI
R

and “finite unions of sets in T M̂I
R ”) without further comment in the remainder

of this paper.

Finally, we introduce concepts that are used in describing characterizations
of these families of sets. The key concept used to articulate the “integrality”
inherent in many of these families is the following.

Definition 9 (Monoid). A set C ⊆ Rn is a monoid if for all x, y ∈ C, x+y ∈ C.
A monoid is finitely generated if there exist r1, r2, . . . , rk ∈ Rn such that

C =

{
x : x =

k∑
i=1

λir
i where λi ∈ Z+; ∀ i ∈ [k]

}
.

We will often denote the right-hand side of the above as int cone
{
r1, . . . , rk

}
.

Further, we say that C is a pointed monoid, if cone(C) is a pointed cone. A
finitely generated monoid is called rational if the generators r1, . . . , rk are all
rational vectors.

In this paper, we are interested in discrete monoids. A set S is discrete
if there exists an ε > 0 such that for all x ∈ S, B(x, ε) ∩ S = {x}. Not all
discrete monoids are finitely generated. For example, the set M = {(0, 0)} ∪{
x ∈ Z2 : x1 ≥ 1, x2 ≥ 1

}
is a discrete monoid that is not finitely generated.

The seminal result from Jeroslow and Lowe [18], which we restate in
Theorem 25, shows that a rational MILP-representable set is the Minkowski
sum of a finite union of rational polytopes and a rational finitely generated



10 Basu, Ryan and Sankaranarayanan

Notation Family

T bounded sets from the family T

cl(T ) the closures of sets in the family T

T (Q) the sets in family T determined with rational data

TR T -representable sets

T MI sets that are mixed-integer points in a polyhedron

T M̂I sets that are mixed-integer points in a generalized polyhedron

T CBL continuous bilevel linear (CBL) sets

T LC linear complementarity (LC) sets

T BLP−UI bilevel linear polyhedral sets with integer upper level (BLP-UI)

T D−MI sets that can be written as finite unions of sets in T MI

T D−MI
R sets that can be written as finite unions of sets in T MI

R (see Lemma 8)

T MIBL Mixed-integer bilevel sets

T D̂−MI sets that can be written as finite unions of sets in T M̂I

T D̂−MI
R sets that can be written as finite unions of sets in T M̂I

R (see Lemma 8)

T IC integer cones

P finite unions of polyhedra

Table 1: Families of sets under consideration.

monoid. Finally, we define three families of functions that provide an alternative
vocabulary for describing “integrality”; namely, Chvátal functions, Gomory
functions and Jeroslow functions. These families derive significance here from
their ability to articulate value functions of integer and mixed-integer programs
(as seen in [6–9]).

Chvátal functions are defined recursively by using linear combinations and
floor (b·c) operators on other Chvátal functions, assuming that the set of affine
linear functions are Chvátal functions. We formalize this using a binary tree
construction as below. We adapt the definition from Basu et al. [5].2

Definition 10 (Chvátal functions [5]). A Chvátal function ψ : Rn 7→ R is
constructed as follows. We are given a finite binary tree where each node of
the tree is either: (i) a leaf node which corresponds to an affine linear function
on Rn with rational coefficients; (ii) has one child with a corresponding edge
labeled by either b·c or a non-negative rational number; or (iii) has two children,
each with edges labeled by a non-negative rational number. Start at the root
node and recursively form functions corresponding to subtrees rooted at its
children using the following rules.

1. If the root has no children then it is a leaf node corresponding to an
affine linear function with rational coefficients. Then ψ is the affine linear
function.

2 The definition in [5] used d·e as opposed to b·c. We make this change in this paper to
be consistent with Jeroslow and Blair’s notation. Also, what is referred to as “order” of the
Chvátal function’s representation is called “ceiling count” in [5].
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2. If the root has a single child, recursively evaluating a function g, and the
edge to the child is labeled as b·c, then ψ(x) = bg(x)c. If the edge is labeled
by a non-negative number α, define ψ(x) = αg(x).

3. Finally, if the root has two children, containing functions g1, g2 and edges
connecting them labeled with non-negative rationals, a1, a2, then ψ(x) =
a1g1(x) + a2g2(x).

We call the number of b·c operations in a binary tree used to represent a
Chvátal function the order of this binary tree representation of the Chvátal
function. Note that a given Chvátal function may have alternative binary tree
representations with different orders.

Definition 11 (Gomory functions). A Gomory function G is the pointwise
minimum of finitely many Chvátal functions. That is,

G(x) :=
k

min
1=1

ψi(x),

where ψi for i ∈ [k] are all Chvátal functions.

Gomory functions are then used to build Jeroslow functions, as defined in
[8].

Definition 12 (Jeroslow function). Let G be a Gomory function. For any
invertible matrix E, and any vector x, define bxcE := E

⌊
E−1x

⌋
. Let I be a

finite index set and let {Ei}i∈I be a set of n × n invertible rational matrices
indexed by I, and {wi}i∈I be a set of rational vectors in Rn index by I. Then
J : Rn 7→ R is a Jeroslow function if

J(x) := max
i∈I

{
G
(
bxcEi

)
+ w>i

(
x− bxcEi

)}
,

Remark. Note that we have explicitly allowed only rational entires in the data
defining Chvátal, Gomory and Jeroslow functions. This is also standard in the
literature since the natural setting for these functions and their connection to
mixed-integer optimization uses rational data.

Remark. Note that it follows from Definition 10 to 12, the family of Chvátal
functions, Gomory functions and Jeroslow function are all closed under composition
with affine functions and addition of affine functions.

A key result by Blair in [8] is that the value function of a mixed integer
program with rational data is a Jeroslow function. This result allows us to
express the lower-level optimality condition captured in the bilevel constraint
(3). This is a critical observation for our study of MIBL-representability.

We now have all the vocabulary needed to state our main results.

3 Main results

Our main results concern the relationship between the sets defined in Table 1
and the novel machinery we develop to establish these relationships.
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First, we explore bilevel sets with only continuous variables. We show that
the sets represented by continuous bilevel constraints, linear complementarity
constraints and polyhedral reverse convex constraints are all equivalent and
equal to the family of finite unions of polyhedra.

Theorem 13. The following holds:

T CBL
R = T LC

R = T PRC
R = T PRC = P.

The next result shows the difference between the equivalent families of sets
in Theorem 13 and the family of MILP-representable sets. The characterization
of MILP-representable sets by Jeroslow and Lowe in [18] (restated below as
Theorem 25) is central to the argument here. Using this characterization, we
demonstrate explicit examples of sets that illustrate lack of containment in
these families.

Corollary 14. The following holds:

T CBL
R \T MI

R 6= ∅ and

T MI
R \T CBL

R 6= ∅.

The next result shows that the lack of containment of these families of sets
arises because of unboundedness.

Corollary 15. The following holds:

T CBL
R = T LC

R = T PRC
R = P = T MI

R .

Remark. The rational versions of Theorem 13, Corollary 14, Corollary 15 all
hold, i.e., one can replace all the sets in the statements by their rational
counterparts. For example, the following version of Theorem 13 holds:

T CBL
R (Q) = T LC

R (Q) = T PRC
R (Q) = T PRC(Q) = P(Q).

We will not explicitly prove the rational versions; the proofs below can be
adapted to the rational case without any difficulty.

Our next set of results concern the representability by bilevel problems with
integer variables. We show that, with integrality constraints in the upper level
only, bilevel representable sets correspond to finite unions MILP-representable
sets. Further allowing integer variables in lower level may yield sets that are
not necessarily closed. However, we show that the closure of sets are again
finite unions of MILP-representable sets. In contrast to Remark 3, rationality
of the data is an important assumption in this setting. This is to be expected:
this assumption is crucial whenever one deals with mixed-integer points, as
mentioned in the introduction.

Theorem 16. The following holds:

T MIBL
R (Q) ) cl

(
T MIBL
R (Q)

)
= T BLP−UI

R (Q) = T D−MI
R (Q).

In fact, in the case of BLP-UI sets, the rationality assumption can be dropped;
i.e.,

T BLP−UI
R = T D−MI

R .
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Behind the proof of this result are two novel technical results that we
believe have interest in their own right. The first concerns an algebra of sets
that captures, to some extent, the inherent structure that arises when bilevel
constraints and integrality interact. Recall that an algebra of sets is a collection
of sets that is closed under taking complements and unions. It is trivial to
observe that finite unions of generalized polyhedra form an algebra, i.e., a
family that is closed under finite unions, finite intersections and complements.
We show that a similar result holds even for finite unions of generalized mixed-
integer representable sets.

Theorem 17. The family of sets
{
S ⊆ Rn : S ∈ T D̂−MI

R (Q)
}

is an algebra

over Rn for any n.

The connection of the above algebra to optimization is made explicit in
the following theorem, which is used in the proof of Theorem 16.

Theorem 18. Let ψ : Rn 7→ R be a Chvátal, Gomory, or Jeroslow function.
Then (i) {x : ψ(x) ≤ 0} (ii) {x : ψ(x) ≥ 0} (iii) {x : ψ(x) = 0} (iv) {x : ψ(x) < 0}
and (v) {x : ψ(x) > 0} are elements of T D̂−MI

R (Q).

As observed below Definition 12, the family of Jeroslow functions capture
the properties of the bilevel constraint (3) and thus Theorem 18 proves critical
in establishing Theorem 16.

Finally, we also discuss the computational complexity of solving bilevel
programs and its the connections with representability. A key result in this
direction is the following.

Theorem 19. If S is a rational BLP-UI set, then the sentence “Is S non-
empty?” is in NP.

Remark. In light of the Theorems 16 and 19, we observe the following. While
adding integrality constraints in the upper level improves the modeling power,
it does not worsen the theoretical difficulty to solve such problems. We compare
this with the results of Lodi et al. [22] which says that if there are integral
variables in the lower level as well, the problem is much harder (Σ2

p-complete).
However, by Theorem 16, this does not improve modeling power up to closures.
This shows some of the subtle interaction between notions of complexity and
representability.

4 Representability of continuous bilevel sets

The goal of this section is to prove Theorem 13. We establish the result across
several lemmata. First, we show that sets representable by polyhedral reverse
convex constraints are unions of polyhedra and vice versa. Then we show three
inclusions, namely T PRC

R ⊆ T CBL
R , T CBL

R ⊆ T LC
R and T LC

R ⊆ T PRC
R . The

three inclusions finally imply Theorem 13.
Now we prove a useful technical lemma.
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Lemma 20. If T 1 and T 2 are two families of sets such that T 1 ⊆ T 2
R then

T 1
R ⊆ T 2

R . Moreover, the rational version holds, i.e., T 1(Q) ⊆ T 2
R (Q) implies

T 1
R (Q) ⊆ T 2

R (Q).

Proof. Let T ∈ T 1
R . This means there is a linear transform L1 and T 1 ∈ T 1

such that T = L1(T 1). Also, this means T 1 ∈ T 2
R , by assumption. So there

exists a linear transform L2 and T 2 ∈ T 2 such that T 1 = L2(T 2). So T =
L1(T 1) = L1(L2(T 2)) = (L1◦L2)(T 2), proving the result. The rational version
follows by restricting all linear transforms and sets to be rational. �

We now establish the first building block of Theorem 13.

Lemma 21. The following holds:

P = T PRC = T PRC
R .

Proof. We start by proving the first equivalence. Consider the ⊇ direction first.
Let S ∈ T PRC . Then S = {x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]} for some
polyhedral convex functions fi with ki pieces each. First, we show that S is
a finite union of polyhedra. Choose one halfspace from the definition of each
of the functions fi(x) = maxkij=1{〈αij〉 − βj} (i.e.,

{
x : 〈αij , x〉 − βij ≥ 0

}
for

some j and each i) and consider their intersection. This gives a polyhedron.

There are exactly K =
∏n′

i=1 ki such polyhedra. We claim that S is precisely
the union of these K polyhedra, intersected with {x : Ax ≤ b} (clearly, the
latter set is in P). Suppose x ∈ S. Then Ax ≤ b. Also since fi(x) ≥ 0 ,
we have maxkij=1

{
〈αij , x〉 − βij

}
≥ 0. This means for each i, there exists a ji

such that 〈αiji , x〉 − βiji ≥ 0. The intersection of all such halfspaces is one of
the K polyhedra defined earlier. Conversely, suppose x is in one of these K
polyhedra (the one defined by 〈αiji , x〉−βiji ≥ 0 for i ∈ [n′]) intersected with

{x : Ax ≤ b}. Then, fi(x) = maxkij=1

{
〈αij , x〉 − βij

}
≥ 〈αiji , x〉 − βiji ≥ 0

and thus x ∈ S. This shows that T PRC ⊆P.
Conversely, suppose P ∈ P and is given by P =

⋃k
i=1 Pi and Pi ={

x : Aix ≤ bi
}

where bi ∈ Rmi . Let aij refer to the j-th row of Ai and bij
the j-th coordinate of bi. Let Ω be the Cartesian product of the index sets of
constraints, i.e., Ω = {1, . . . ,m1} × {1, . . . ,m2} × . . . × {1, . . . ,mk}. For any
ω ∈ Ω, define Now consider the following function:

fω(x) =
k

max
i=1

{
−〈aiωi

, x〉+ biωi

}
,

where ωi denotes the index chosen in ω from the set of constraints in Aix ≤ bi,
i = 1, . . . , k. This construction is illustrated in Figure 1. Let T = {x : fω(x) ≥ 0,∀ω ∈ Ω} ∈
T PRC . We now claim that P = T . If x ∈ P then there exists an i such that
x ∈ Pi, which in turn implies that bi − Aix ≥ 0. However each of the fω
contains at least one of the rows from bi − Aix, and that is non-negative.
This means each fω, which are at least as large as any of these rows, are
non-negative. This implies P ⊆ T . Now suppose x 6∈ P . This means in each
of the k polyhedra Pi, at least one constraint is violated. Now consider the
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Fig. 1: Representation of union of polyhedra [1, 2]∪{3}∪ [4, ∞) as a PRC set.
The three colored lines correspond to three different the polyhedral convex
functions. The points where each of those functions are non-negative precisely
correspond to the region shown in black, the set which we wanted to represent
in the first place.

fω created by using each of these violated constraints. Clearly for this choice,
fω(x) < 0. Thus x 6∈ T . This shows T ⊆ P and hence P = T . This finally
shows P ⊆ T PRC . Combined with the argument in the first part of the proof,
we have T PRC = P.

Now consider the set PR. A linear transform of a union of finitely many
polyhedra is a union of finitely many polyhedra. Thus PR = P. But P =
T PRC and so T PRC

R = PR = P = T PRC , proving the remaining equivalence
in the statement of the lemma. �

Next, we show that any set representable using polyhedral reverse convex
constraints is representable using continuous bilevel constraints. To achieve
this, we give an explicit construction of the bilevel set.

Lemma 22. The following holds:

T PRC
R ⊆ T CBL

R .

Proof. Suppose S ∈ T PRC . Then,

S = {x ∈ Rn : Ax ≤ b, fi(x) ≥ 0 for i ∈ [n′]}

for some n′, A, b and polyhedral convex functions fi : Rn 7→ R for i ∈ [n′].
Further, let us explicitly write fi(x) = maxkij=1

{
〈αij , x〉 − βij

}
for j ∈ [ki] for

i ∈ [n′]. Note for any i, fi(x) ≥ 0 if and only if
{
〈αij , x〉 − βij

}
≥ 0 for each

j ∈ [ki]. Now, consider the following CBL set S′ ⊆ Rn×Rn′
where (x, y) ∈ S′

if

Ax ≤ b



16 Basu, Ryan and Sankaranarayanan

y ≥ 0

y ∈ arg max
y

−
n′∑
i=1

yi : yi ≥ 〈αij , x〉 − βij for j ∈ [ki], i ∈ [n′]

 . (5)

A key observation here is that in (5), the condition yi ≥ 〈αij , x〉 − βij for all
j ∈ [ki] is equivalent to saying yi ≥ fi(x). Thus (5) can be written as y ∈
arg miny

{∑n′

i=1 yi : yi ≥ fi(x), i ∈ [n′]
}

. Since we are minimizing the sum of

coordinates of y, this is equivalent to saying yi = fi(x) for i ∈ [n′]. However, we

have constrained y to be non-negative. So, if S′′ =
{
x ∈ Rn : ∃ y ∈ Rn′

such that (x, y) ∈ S′
}

,

it naturally follows that S = S′′. Thus S ∈ T CBL
R , proving the inclusion

T PRC ⊆ T CBL
R . The result then follows from Lemma 20. �

The next result shows that a given CBL-representable set can be represented
as a LC-representable set. Again, we give an explicit construction.

Lemma 23. The following holds:

T CBL
R ⊆ T LC

R .

Proof. Suppose S ∈ T CBL. Let us assume that the parametersA, B, b, f, C, D, g
that define S according to Definition 1 has been identified. We first show that
S ∈ T LC

R . Retaining the notation in Definition 1, let (x, y) ∈ S. Then from
(3), y solves a linear program that is parameterized by x. The strong duality
conditions (or the KKT conditions) can be written for this linear program are
written below as (6b) - (6e) and hence S can be defined as (x, y) satisfying
the following constraints for some λ of appropriate dimension:

Ax+By ≤ b (6a)

D>λ− f = 0 (6b)

g − Cx−Dy ≥ 0 (6c)

λ ≥ 0 (6d)

(g − Cx−Dy)>λ = 0. (6e)

Consider S′ as the set of (x, y, λ) satisfying

b−Ax−By ≥ 0

D>λ− f ≥ 0

0 ≤ λ ⊥ g − Cx−Dy ≥ 0.

Clearly, S′ ∈ T LC
R . Let S′′ = {(x, y) : (x, y, λ) ∈ S′}. Clearly S′′ ∈ T LC

R .
We now argue that S = S′′. This follows from the fact that Lagrange multipliers
λ exist for the linear program in (3) so that (x, y, λ) ∈ S′. Hence T CBL ⊆
T LC
R follows and by Lemma 20, the result follows. �
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x

y

Fig. 2: The set T used in the proof of Corollary 14. Note that T ∈ T CBL
R \TMI

R

Finally, to complete the cycle of containment, we show that a set representable
using linear complementarity constraint can be represented as a polyhedral
reverse convex set.

Lemma 24. The following holds:

T LC
R ⊆ T PRC

R .

Proof. Let p, q ∈ R. Notice that 0 ≤ p ⊥ q ≥ 0 ⇐⇒ p ≥ 0, q ≥
0, max{−p, −q} ≥ 0. Consider any S ∈ T LC . Then

S = {x : 0 ≤ x ⊥Mx+ q ≥ 0, Ax ≤ b} = {x : Ax ≤ b, x ≥ 0, Mx+ q ≥ 0, fi(x) ≥ 0} ,

where fi(x) = max{−xi, −[Mx+ q]i}. Clearly, each fi is a polyhedral convex
function and hence by definition S is a polyhedral reverse-convex set. This
implies S ∈ T PRC . So, T LC ⊆ T PRC =⇒ T LC

R ⊆ T PRC
R . �

With the previous lemmata in hand we can now establish Theorem 13.

Proof of Theorem 13. Follows from Lemmata 21 to 24. �

We turn our focus to establishing Corollary 14. This uses the following
seminal result of Jeroslow and Lowe in [18], which gives a geometric characterization
of MILP-representable sets.

Theorem 25 ([18]). Let T ∈ T MI
R (Q). Then,

T = P + C

for some P ∈P(Q), C ∈ T IC(Q).

We now give two concrete examples to establish Corollary 14. First, a
set which is CBL-representable but not MILP-representable and, second, an
example of a set which is MILP-representable but not CBL-representable.
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Proof of Corollary 14. We construct a set T ∈ T CBL
R as follows. Consider the

following set T ′ ∈ T CBL given by (x, y, z1, z2) ∈ R4 satisfying:

(y, z1, z2) ∈ arg min


z1 − z2 :

z1 ≥ x
z1 ≥ −x
z2 ≤ x
z2 ≤ −x
y ≤ z1
y ≥ z2


with no upper-level constraints. Consider T =

{
(x, y) ∈ R2 : (x, y, z1, z2) ∈ T ′

}
illustrated in Figure 2. Note that T ∈ T CBL

R . We claim T 6∈ T MI
R . Suppose it

is. Then by Theorem 25, T is the Minkowski sum of a finite union of polytopes
and a monoid. Note that {(x, x) : x ∈ R} ⊂ T which implies (1, 1) is an
extreme ray and λ(1, 1) should be in the integer cone of T for some λ > 0.
Similarly {(−x, x) : x ∈ R} ⊂ T which implies (−1, 1) is an extreme ray and
λ′(−1, 1) should be in the integer cone of T for some λ′ > 0. Both the facts
imply, for some λ′′ > 0, the point (0, λ′′) ∈ T . But no such point is in T
showing that T 6∈ T MI

R .
Conversely, consider the set of integers Z ⊆ R. Clearly Z ∈ T MI

R since
it is the Minkowski sum of the singleton polytope {0} and the integer cone
generated by −1 and 1. Suppose, by way of contradiction, that Z can be
expressed as a finite union of polyhedra (and thus in T CBL by Theorem 13).
Then there must exist a polyhedron that contains infinitely many integer
points. Such a polyhedron must be unbounded and hence have a non-empty
recession cone. However, any such polyhedron has non-integer points. This
contradicts the assumption that Z is a finite union of polyhedra. �

These examples show that the issue of comparing MILP-representable sets
and CBL-representable sets arises in how these two types of sets can become
unbounded. MILP-representable sets are unbounded in “integer” directions
from a single integer cone, while CBL-representable sets are unbounded in
“continuous” directions from potentially a number of distinct recession cones
of polyhedra. Restricting to bounded sets removes this difference.

Proof of Corollary 15. The first three equalities follow trivially from Theorem 13.

To prove that P = T MI
R , observe from Theorem 25 that any set in T MI

R is the
Minkowski sum of a finite union of polytopes and a monoid. Observing that
T ∈ T MI

R is bounded if and only if the monoid is a singleton set containing
only the zero vector, the equality follows. �

5 Representability of mixed-integer bilevel sets

The goal of this section is to prove Theorem 16. Again, we establish the result
over a series of lemmata. In Section 5.1, we show that the family of sets
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that are representable by bilevel linear polyhedral sets with integer upper-
level variables is equal to the family of finite unions of MILP-representable
sets (that is, T BLP−UI

R = T D−MI
R ). In Section 5.2 we establish an important

intermediate result to proving the rest of Theorem 16, that the family T D̂−MI
R

is an algebra of sets; that is, it is closed under unions, intersections, and
complements (Theorem 17). This pays off in Section 5.4, where we establish
the remaining containments of Theorem 16 using the properties of this algebra
and the characterization of value functions of mixed-integer programs in terms
of Jeroslow functions, due to Blair [8].

5.1 Mixed-integer bilevel sets with continuous lower level

First, we show that any BLP-UI set is the finite union of MILP-representable
sets.

Lemma 26. The following holds:

T BLP−UI
R ⊆ T D−MI

R

Moreover, the same inclusion holds in the rational case; i.e. T BLP−UI
R (Q) ⊆

T D−MI
R (Q).

Proof. Suppose T ∈ T BLP−UI . Then T = {x : x ∈ T ′}∩{x : xj ∈ Z, ∀ j ∈ IL},
for some T ′ ∈ T CBL and for some IL (we are abusing notation here slightly
because we use the symbol x now to denote both the leader and follower
variables in the bilevel problem). By Theorem 13, T ′ ∈ P. Thus we can

write T ′ =
⋃k
i=1 T

′
i where each T ′i is a polyhedron. Now T =

(⋃k
i=1 T

′
i

)
∩

{x : xj ∈ Z, ∀ j ∈ IL} =
⋃k
i=1 ({x : xj ∈ Z, ∀ j ∈ IL} ∩ T ′i ) which is in T D−MI

by definition. The result then follows from Lemma 20. The rational version
involving T BLP−UI

R (Q) and T D−MI
R (Q) holds by identical arguments restricting

to rational data. �

We are now ready to prove the reverse containment to Lemma 26 and thus
establish one of the equivalences in Theorem 16.

Lemma 27. The following holds:

T D−MI
R ⊆ T BLP−UI

R .

Moreover, the same inclusion holds in the rational case; i.e. T BLP−UI
R (Q) ⊆

T D−MI
R (Q).

Proof. Let T ∈ T D−MI
R ; then, by definition, there exist polyhedra T̃i such that

T is the linear image under the linear transform L of the mixed integer points in

the union of the T̃i. Let T̃ =
⋃k
i=1 T̃i and so T =

{
L(y, z) : (y, z) ∈ T̃ ∩

(
Rn′ × Zn′′

)}
.

By Theorem 13, T̃ ∈ T CBL
R . If the z ∈ Zn′′

are all upper level variables in the
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feasible region of the CBL that projects to T̃ , then T is clearly in T BLP−UI
R . If,

on the other hand, some zi is a lower level variable then adding a new integer
upper level variable wi and upper level constraint wi = zi gives a BLP-UI
formulation of a lifting of T̃ , and so again T ∈ T BLP−UI

R . This proves the
inclusion. The rational version involving T BLP−UI

R (Q) and T D−MI
R (Q) holds

by identical arguments restricting to rational data. �

5.2 The algebra T D̂−MI
R

We develop some additional theory for generalized polyhedra, as defined in
Section 2. The main result in this section is that the family of sets that are finite
unions of sets representable by mixed-integer points in generalized polyhedra
forms an algebra (in the sense of set theory). Along the way, we state some
standard results from lattice theory and prove some key lemmata leading to
the result. This is used in our subsequent proof in the representability of
mixed-integer bilevel problems.

We first give a description of an arbitrary generalized polyhedron in terms
of relatively open polyhedra. This allows us to extend properties we prove for
relatively open polyhedra to generalized polyhedra.

Lemma 28. Every generalized polyhedron is a finite union of relatively open
polyhedra. If the generalized polyhedron is rational, then the relatively open
polyhedra in the union can also be taken to be rational.

Proof. We proceed by induction on the affine dimension d of the polyhedron.
The result is true by definition for d = 0, where the only generalized polyhedron
is a singleton, which is also a relatively open polyhedron. For higher dimensions,
let P = {x : Ax < b, Cx ≤ d} be a generalized polyhedron. Without loss of
generality, assume P is full-dimensional, because otherwise we can work in the
affine hull of P . We then write

P =

{
x :

Ax < b
Cx < d

}
∪
⋃
i

(
P ∩

{
x : 〈ci, x〉 = di

})
.

The first set is a relatively open polyhedron and each of the sets in the second
union is a generalized polyhedron of lower affine dimension, each of which are
finite unions of relatively open polyhedra by the inductive hypothesis.

The rational version also goes along the same lines, by restricting the data
to be rational. �

From [29, Theorem 6.6], we obtain the following:

Lemma 29 ([29]). Let Q ⊆ Rn be a relatively open polyhedron and L is
any linear transformation. Then L(Q) is relatively open. If Q and L are both
rational, then L(Q) is also rational.

We now prove for relatively open polyhedra an equivalent result to the
Minkowski-Weyl theorem for regular polyhedra.
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Lemma 30. Let Q ⊆ Rn be a relatively open polyhedron. Then Q = P + R
where P is a relatively open polytope and R is the recession cone rec cl(Q). If
Q is rational then P and R can also be taken to be rational.

Proof. We first assume that dim(Q) = n; otherwise, we can work in the affine
hull of Q. Thus, we may assume that Q can be expressed as Q = {x ∈ Rn :
Ax < b} for some matrix A and right hand side b.

We first observe that if L is the lineality space of cl(Q), thenQ = projL⊥(Q)+
L where projL⊥(·) denotes the projection onto the orthogonal subspace L⊥ to
L. Moreover, projL⊥(Q) is a relatively open polyhedron by Lemma 29 and its
closure is pointed (since we projected out the lineality space). Therefore, it
suffices to establish the result for full-dimensional relatively open polyhedra
whose closure is a pointed (regular) polyhedron. Henceforth, we will assume
cl(Q) is a pointed polyhedron.

Define Qε := {x ∈ Rn : Ax ≤ b − ε1} and observe that Q0 = cl(Q) and
Q = ∪0<ε≤1Qε. Notice also that rec(Qε) = rec(cl(Q)) = R for all ε ∈ R (they
are all given by {r ∈ Rn : Ar ≤ 0}). Moreover, since cl(Q) is pointed, Qε is
pointed for all ε ∈ R. Also, there exists a large enough natural integer M such
that the box [−M,M ]n contains, in its interior, all the vertices of Qε for every
0 ≤ ε ≤ 1.

Define P ′ := Q0 ∩ [−M,M ]n which is a regular polytope. By standard
real analysis arguments, int(P ′) = int(Q0) ∩ int([−M,M ]n). Thus, we have
int(P ′) + R ⊆ int(Q0) + R = Q. Next, observe that for any ε > 0, Qε ⊆
int(P ′) + R because every vertex of Qε is in the interior of Q0, as well as in
the interior of [−M,M ]n by construction of M , and so every vertex of Qε is
contained in int(P ′). Since Q = ∪0<ε≤1Qε, we obtain that Q ⊆ int(P ′) + R.
Putting both inclusions together, we obtain that Q = int(P ′) +R. Since P :=
int(P ′) is a relatively open polytope, we have the desired result.

The rational version of the proof is along the same lines, where we restrict
to rational data. �

We also observe below that generalized polyhedra are closed under Minkowski
sums (up to finite unions).

Lemma 31. Let P,Q be generalized polyhedra, then P + Q is a finite union
of relatively open polyhedra. If P and Q are rational, then P + Q is a finite
union of rational relatively open polyhedra.

Proof. By Lemma 28, it suffices to prove the result for relatively open polyhedra
P and Q. The result then follows from the fact that relint(P+Q) = relint(P )+
relint(Q) = P+Q, where the second equality follows from [29, Corollary 6.6.2].

The rational version follows along similar lines by using the rational version
of Lemma 28. �

We now prove a preliminary result on the path to generalizing Theorem 25
to generalized polyhedra.
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Lemma 32. Let Q ⊆ Rn × Rd be a rational generalized polyhedron. Then
Q∩ (Zn×Rd) is a union of finitely many sets, each of which is the Minkowski
sum of a relatively open rational polytope and a rational monoid.

Proof. By Lemma 28, it is sufficient to prove the theorem where Q is relatively
open. By Lemma 30, we can write Q = P +R where P is a rational relatively
open polytope and R is a cone generated by finitely many rational vectors. Set

T = P+X, whereX =
{∑k

i=1 λir
i : 0 ≤ λi ≤ 1

}
where ri are the extreme rays

of R whose coordinates can be chosen as integers. For u+v ∈ Q = P+R, where
u ∈ P, v ∈ R; let v =

∑k
i=1 µir

i. Define γi = bµic and λi = µi−γi. So, u+v =

(u+
∑k
i=1 λir

i) +
∑k
i=1 γir

i, where the term in parentheses is contained in T
and since γi ∈ Z+, the second term is in a monoid generated by the extreme
rays of R. Thus, we have Q∩(Zn×Rd) = (T ∩(Zn×Rd))+int cone(r1, . . . , rk).
Since T is a finite union of rational relatively open polytopes by Lemma 31,
T ∩ (Zn × Rd) is a finite union of rational relatively open polytopes. �

The following is an analog of Jeroslow and Lowe’s fundamental result
(Theorem 25) to the generalized polyhedral setting.

Theorem 33. The following are equivalent:

(1) S ∈ T D̂−MI
R (Q),

(2) S is a finite union of sets, each of which is the Minkowski sum of a rational
relatively open polytope and a rational finitely generated monoid, and

(3) S is a finite union of sets, each of which is the Minkowski sum of a rational
generalized polytope and a rational finitely generated monoid.

Proof. (1) =⇒ (2): Observe from Lemma 29 that a (rational) linear transform
of a (rational) relatively open polyhedron is a (rational) relative open polyhedron,
and by definition of a (rational) monoid, a (rational) linear transform of a
(rational) monoid is a (rational) monoid. Now from Lemmata 8 and 32, the
result follows.
(2) =⇒ (3): This is trivial since every (rational) relatively open polyhedron
is a (rational) generalized polyhedron.
(3) =⇒ (1): This follows from the observation that the Minkowski sum of a
rational generalized polytope and a rational monoid is a rational generalized
mixed-integer representable set. A formal proof could be constructed following
the proof of Theorem 25 given in the original [18] or [11, Theorem 4.47]. These
results are stated for the case of regular polyhedra but it is straightforward to
observe that their proofs equally apply to the generalized polyhedra setting
with only superficial adjustments. We omit those minor details for brevity. �

Remark. Notice that the equivalence of (1) and (3) in Theorem 33 is an analog
of Jeroslow and Lowe’s Theorem 25. Moreover, the rationality assumption
cannot be removed from Lemma 32, and hence cannot be removed from
Theorem 33. This is one of the places where the rationality assumption plays
a crucial role; see also Section 5.2.
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Now we prove that if we intersect sets within the family of generalized
MILP-representable sets, then we remain in that family.

Lemma 34. Let S and T be sets in Rn where S, T ∈ T M̂I
R . Then S ∩ T ∈

T M̂I
R . The rational version holds, i.e., one can replace T M̂I

R by T M̂I
R (Q) in

the statement.

Proof. Using the same construction in Lemma 8, one can assume that there
is a common ambient space Rn1 ×Rn2 and a common linear transformation L
such that

S =
{
L(x) : x ∈ Rn1 × Zn2 : A1x ≤ b1, Â1x < b̂1

}
T =

{
L(x) : x ∈ Rn1 × Zn2 : A2x ≤ b2, Â2x < b̂2

}
.

Now, it is easy to see S ∩ T ∈ T M̂I
R .

The rational version follows by restricting the linear transforms and data
to be rational. �

An immediate corollary of the above lemma is that the class T D̂−MI
R is

closed under finite intersections.

Lemma 35. Let S and T be sets in Rn where S, T ∈ T M̂I
R . Then S ∩

T ∈ T D̂−MI
R . The rational version holds, i.e., one can replace T D̂−MI

R by

T D̂−MI
R (Q) in the statement.

Proof. By Lemma 8, S =
⋃k
i=1 Si and T =

⋃`
i=1 Ti where Si, Ti ∈ T M̂I

R . Now

S ∩ T =
(⋃k

i=1 Si

)
∩
(⋃`

i=1 Ti

)
=
⋃k
i=1

⋃`
j=1 (Si ∩ Tj). But from Lemma 34,

Si ∩ Tj ∈ T M̂I
R . Then the result follows from Lemma 8.

The rational version follows from the rational versions of Lemmata 8 and 34.
�

To understand the interaction between generalized polyhedra and monoids,
we review a few standard terms and results from lattice theory. We refer the
reader to [4, 11, 30] for more comprehensive treatments of this subject.

Definition 36 (Lattice). Given a set of linearly independent vectors d1, . . . , dr ∈
Rn, the lattice generated by the vectors is the set

Λ =

{
x : x =

r∑
i=1

λid
i, λi ∈ Z

}
(7)

We call the vectors d1, . . . , dr as the generators of the lattice Λ and denote it
by Λ = Z(d1, . . . , dr).

Note that the same lattice Λ can be generated by different generators.
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Definition 37 (Fundamental parallelepiped). Given Λ = Z(d1, . . . , dr) ⊆ Rn,
we define the fundamental parallelepiped of Λ (with respect to the generators
d1, . . . , dr) as the set

Π{d1,...,dr} :=

{
x ∈ Rn : x =

r∑
i=1

λid
i, 0 ≤ λi < 1

}
.

We prove the following two technical lemmata, which are crucial in proving

that T D̂−MI
R (Q) is an algebra. The lemmata prove that (P + M)c, where P

is a polytope and M is a finitely generated monoid, is in T D̂−MI
R (and a

corresponding rational version is true). The first lemma proves this under the
assumption that M is generated by linearly independent vectors. The second
lemma uses this preliminary results to prove it for a general monoid.

The proof of the lemma below whereM is generated by linearly independent
vectors is based on the following key observations.

(i) If the polytope P is contained in the fundamental parallelepiped Π of the
lattice generated by the monoid M , then the complement of P +M is just
(Π \ P ) +M along with everything outside cone(M).

(ii) The entire lattice can be written as a disjoint union of finitely many cosets
with respect to an appropriately chosen sublattice. The sublattice is chosen
such that its fundamental parallelepiped contains P (after a translation).
Then combining the finitely many cosets with the observation in (i), we
obtain the result.

The first point involving containment of P inside Π is needed to avoid any
overlap between distinct translates of P in P +M . The linear independence of
the generators of the monoid is important to be able to use the fundamental
parallelepiped in this way. The proof also has to deal with the technicality that
the monoid (and the lattice generated by it) need not be full-dimensional.

Lemma 38. Let M ⊆ Rn be a monoid generated by a linearly independent
set of vectors M = {m1, . . . ,mk} and let P be a generalized polytope. Then

(P+M)c ⊆ T D̂−MI
R . Moreover, if P and M are both rational, then (P+M)c ⊆

T D̂−MI
R (Q).

Proof. Suppose k ≤ n. We now choose vectors m̃k+1, . . . , m̃n, a scaling factor
α ∈ Z+ and a translation vector f ∈ Rn such that the following all hold:

(i) M̃ :=
{
m1, . . . ,mk, m̃k+1, . . . , m̃n

}
forms a basis of Rn.

(ii)
{
m̃i
}n
i=k+1

are orthogonal to each other and each is orthogonal to the space
spanned by M.

(iii) f+P is contained in the fundamental parallelepiped defined by the vectors
M := αM∪

{
m̃k+1, . . . , m̃n

}
.

Such a choice is always possible because of the boundedness of P and by
utilizing the Gram-Schmidt orthogonalization process. Since we are interested
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in proving inclusion in T D̂−MI
R , which is closed under translations, we can

assume f = 0 without loss of generality.

Define Λ̃ := Z(M̃) and M̃ := int cone(M̃). Define Λ := Z
(
M
)
⊆ Λ̃ and

M := int cone(M) ⊆ M̃ . Moreover, linear independence of M̃ and M implies

that M̃ = Λ̃ ∩ cone(M̃) and M = Λ ∩ cone(M). All of these together imply

Claim 38.1: M = Λ ∩ M̃ .

Proof of Claim 38.1: M = Λ∩cone(M) = Λ∩cone(M̃) = (Λ∩Λ̃)∩cone(M̃) =

Λ∩
(
Λ̃ ∩ cone(M̃)

)
= Λ∩ M̃ , where the second equality follows from the fact

that cone(M) = cone(M̃).

Claim 38.2: ΠM + M = cone(M̃). Moreover, given any element in x ∈
cone(M̃), there exist unique u ∈ ΠM and v ∈M such that x = u+ v.

Proof of Claim 38.2: Suppose u ∈ ΠM and v ∈M , then both u and v are non-
negative combinations of elements inM. So clearly u+v is also a non-negative
combination of those elements. This proves the forward inclusion. To prove the
reverse inclusion, let x ∈ cone(M̃). Then x =

∑k
i=1 λim

i+
∑n
i=k+1 λim̃

i where
λi ∈ R+. But now we can write

x =

(
k∑
i=1

⌊
λi
α

⌋
αmi +

n∑
i=k+1

bλic m̃i

)
+

(
k∑
i=1

(
λi
α
−
⌊
λi
α

⌋)
αmi +

n∑
i=k+1

(λi − bλic)m̃i

)
,

where the term in the first parentheses is in M and the term in the second
parentheses is in ΠM. Uniqueness follows from linear independence arguments,
thus proving the claim.

Claim 38.3:
(
ΠM +M

)
\ (P +M) = (ΠM \ P ) +M .

Proof of Claim 38.3: Note that, by construction, P ⊆ ΠM. By the uniqueness
result in Claim 38.2, (ΠM+u)∩ (ΠM+ v) = ∅ for u, v ∈M and u 6= v. Thus
we have, x = u + v = u′ + v′ such that u ∈ ΠM, u′ ∈ P, v, v′ ∈ M implies
v = v′. Then the claim follows.

Also, there exists a finite set S such that Λ̃ = S + Λ (for instance, S can

be chosen to be ΠM ∩ Λ̃) [4, Theorem VII.2.5]. So we have

P + M̃ = P + (Λ̃ ∩ M̃)

=
⋃
s∈S

(
P +

(
(s+ Λ) ∩ M̃

))
=

⋃
s∈S

(
P + (Λ ∩ M̃) + s

)
=

⋃
s∈S

(
P +M + s

)
, (8)
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(a) P is shown in gray and the

translates of P along M̃ are shown. The
fundamental parallelepiped ΠΛ is also

shown to contain P .

(b) P + ((s+ Λ) ∩ M̃) is shown for each
s ∈ S. The red crosses correspond to the
translation of M along each s ∈ S. The

union of everything in Figure 3b is
Figure 3a.

Fig. 3: Intuition for the set S such that Λ+ S = Λ̃.

where the last equality follows from Claim 38.1. The intuition behind the
above equation is illustrated in Figure 3. We will first establish that (P +

M̃)c ∈ T D̂−MI
R . By taking complements in (8), we obtain that (P + M̃)c =⋂

s∈S
(
P +M + s

)c
. But from Lemma 34, and from the finiteness of S, if we

can show that (P +M +s)c is in T D̂−MI
R for every s ∈ S, then we would have

established that (P + M̃)c ∈ T D̂−MI
R .

Since each of the finite s ∈ S induce only translations, without loss of
generality, we can only consider the case where s = 0. Since we have P +M ⊆
cone(M̃), we have(

P +M
)c

= cone(M̃)c ∪
(

cone(M̃) \ (P +M)
)

= cone(M̃)c ∪
((
ΠM +M

)
\ (P +M)

)
, (9)

which follows from Claim 38.2. Continuing from (9):(
P +M

)c
= cone(M̃)c ∪

(
(ΠM \ P ) +M

)
,

which follows from Claim 38.3.
The first set cone(M̃)c in (5.2) belongs to T D̂−MI

R since the complement
of a cone is a finite union of generalized polyhedra. In the second set (ΠM \
P ) +M , ΠM and P are generalized polytopes, and hence ΠM \ P is a finite

union of generalized polytopes, (ΠM \ P ) + M is a set in T D̂−MI
R . Thus,

(P +M)c ∈ T D̂−MI
R (note that Lemma 8 shows that T D̂−MI

R is closed under
unions).

We now finally argue that (P +M)c belongs to T D̂−MI
R . Let A1 := (P +

M̃)c.
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For each vector m̃i for i = k + 1, . . . , n added to form M̃ from M, define
Hi as follows:

Hi =
{
x : 〈m̃i, x〉 ≥ ‖m̃i‖22

}
.

Now let A2 :=
⋃n
i=k+1H

i. Note that A2 is a finite union of halfspaces and

hence A2 ∈ T D̂−MI
R . We claim (P +M)c = A1 ∪A2. This suffices to complete

the argument since we have shown A1 and A2 are in T D̂−MI
R and thus so is

their union.
First, we show that A1 ∪ A2 ⊆ (P + M)c, i.e., P + M ⊆ Ac1 ∩ Ac2. Let

x ∈ P + M . Since M ⊆ M̃ we have x ∈ P + M̃ . Thus, x 6∈ A1. Further,
since x ∈ P + M we may write x = u + v with u ∈ P and v ∈ M where
u =

∑k
i=1 µiαm

i +
∑n
i=k µim̃

i, v =
∑k
j=1 λjm

j with 0 ≤ µ < 1 and λj ∈ Z+,

since P ⊆ ΠM. So for all i, 〈m̃i, u〉 = µi‖m̃i‖22 < ‖m̃i‖22. This is because we
have m̃i is orthogonal to every vector mj and m̃j for i 6= j. Hence, 〈m̃i, u+v〉 <
‖m̃i‖22. This follows because m̃i is orthogonal to the space spanned by the
monoid M 3 v. Thus x 6∈ A2. So we now have P + M ⊆ Ac1 ∩ Ac2 and so
A1 ∪A2 ⊆ (P +M)c.

Conversely, suppose x 6∈ P + M . If, in addition, x 6∈ P + M̃ then x ∈ A1

and we are done. However, if x = u + v ∈ P + (M̃ \M) with u ∈ P and

v ∈ M̃ \M . This means v =
∑k
j=1 λjm

j +
∑n
j=k+1 λjm̃

j with λj ∈ Z+ for

all j = 1, . . . , n and λj ≥ 1 for some j ∈ {k + 1, . . . , n} and we can write u =∑k
j=1 µjαm

j +
∑n
j=k+1 µjm̃

j with 0 ≤ µ ≤ 1. So 〈m̃i, u〉 = 〈m̃i, µim̃i〉 ≥ 0

and 〈m̃j , v〉 = 〈m̃j , λjm̃
j〉 > ‖mj‖22. So u + v ∈ Hj ⊆ A2. Thus we have the

reverse containment and hence the result.
The rational version follows along similar lines. �

Lemma 39. Let P ⊆ Rn be a rational generalized polytope and M ∈ Rn be

a rational, finitely generated monoid. Then S = (P +M)c ∈ T D̂−MI
R (Q).

Proof. Define C := cone(M). Consider a triangulation C =
⋃
i Ci, where each

Ci is simplicial. Now, Mi := M ∩Ci is a monoid for each i (one simply checks
the definition of a monoid) and moreover, it is a pointed monoid because Ci
is pointed and cone(Mi) = Ci since every extreme ray of Ci has an element of
Mi on it. Observe that M =

⋃
iMi.

By Theorem 4, part 1) in [19], each of the Mi are finitely generated. By
part 3) of the same theorem, each Mi can be written as Mi =

⋃wi

j=1(pi,j +M i)

for some finite vectors pi,1, . . . , pi,wi ⊆Mi, where M i is the monoid generated
by the elements of Mi lying on the extreme rays of Ci. Now,

P +M =
⋃
i

(P +Mi) =
⋃
i

wi⋃
j=1

(P + (pi,j +M i)).

Thus by Lemma 35, it suffices to show that (P + (pi,j +M i))
c is in T D̂−MI

R .
Since M i is generated by linearly independent vectors, we have our result from
Lemma 38. �



28 Basu, Ryan and Sankaranarayanan

Remark. We do not see a way to remove the rationality assumption in Lemma 39,
because it uses Theorem 4 in [19] that assumes that the monoid is rational and
finitely generated. This is the other place where rationality becomes a crucial
assumption in the analysis (see also Section 5.2).

Lemma 40. If S ∈ T D̂−MI
R (Q) then Sc ∈ T D̂−MI

R (Q).

Proof. By Theorem 33, S can be written as a finite union S =
⋃`
j=1 Sj , with

Sj = Pj+Mj , where Pj is a rational generalized polytope and Mj is a rational,
finitely generated monoid. Observe Scj = (Pj+Mj)

c, which by Lemma 39, is in

T D̂−MI
R (Q). Now by De Morgan’s law, Sc =

(⋃
j Sj

)c
=
⋂
j S

c
j . By Lemma 35,

T D̂−MI
R (Q) is closed under intersections, and we have the result. �

Proof of Theorem 17. We recall that a family of sets F is an algebra if the
following two conditions hold. (i) S ∈ F =⇒ Sc ∈ F and (ii) S, T ∈
F =⇒ S ∪ T ∈ F . For the class of interest, the first condition is satisfied
from Lemma 40 and noting that the complement of finite unions is a finite

intersection of the complements and that the family T D̂−MI
R (Q) is closed

under finite intersections by Lemma 35. The second condition is satisfied by

Lemma 8 which shows that T D̂−MI
R (Q) is the same as finite unions of sets in

T M̂I
R (Q). �

5.3 Value function analysis

We now discuss the three classes of functions defined earlier, namely, Chvátal
functions, Gomory functions and Jeroslow functions, and show that their

sublevel, superlevel and level sets are all elements of T D̂−MI
R (Q). This is

crucial for studying bilevel integer programs via a value function approach
to handling the lower-level problem using the following result.

Theorem 41 (Theorem 10 in [8]). For every rational mixed integer program
maxx, y{c>x+d>y : Ax+By = b; (x, y) ≥ 0, x ∈ Zm} there exists a Jeroslow
function J such that if the program is feasible for some b, then its optimal
value is J(b).

We now show that the sublevel, superlevel, and level sets of Chvátal functions

are all in T D̂−MI
R (Q).

Lemma 42. Let ψ : Rn 7→ R be a Chvátal function. Then (i) {x : ψ(x) ≥ 0},
(ii) {x : ψ(x) ≤ 0}, (iii) {x : ψ(x) = 0}, (iv) {x : ψ(x) < 0}, and (v) {x : ψ(x) > 0}
are all in T D̂−MI

R (Q).

Proof. (i) We prove by induction on the order ` ∈ Z+ used in the binary
tree representation of ψ (see Definition 10). For ` = 0, a Chvátal function is
a rational linear inequality and hence {x : ψ(x) ≥ 0} is a rational halfspace,
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which is clearly in T D̂−MI
R (Q). Assuming that the assertion is true for all

orders ` ≤ k, we prove that it also holds for order ` = k+1. By [5, Theorem. 4.1],
we can write ψ(x) = ψ1(x) + bψ2(x)c where ψ1 and ψ2 are Chvátal functions
with representations of order no greater than k. Hence,

{x : ψ(x) ≥ 0} = {x : ψ1(x) + bψ2(x)c ≥ 0}
= {x : ∃y ∈ Z, ψ1(x) + y ≥ 0, ψ2(x) ≥ y} .

We claim equivalence because, suppose x is an element of the set in RHS with
some y ∈ Z, y is at most bψ2(x)c. So if ψ1(x) + y ≥ 0, we immediately have
ψ1(x)+bψ2(x)c ≥ 0 and hence x is in the set on LHS. Conversely, if x is in the
set on LHS, then choosing y = bxc satisfies all the conditions for the sets in
RHS, giving the equivalence. Finally, observing that the RHS is an intersection

of sets which are already in T D̂−MI
R (Q) by the induction hypothesis and the

fact that T D̂−MI
R (Q) is an algebra by Theorem 17, we have the result.

(ii) By similar arguments as (i), the statement is true for ` = 0. For positive
`, we proceed by induction using the same construction. Now,

{x : ψ(x) ≤ 0} = {x : ψ1(x) + bψ2(x)c ≤ 0}
= {x : ∃y ∈ Z, ψ1(x) + y ≤ 0, ψ2(x) ≥ y, ψ2(x) < y + 1} .

The last two conditions along with integrality on y ensures y = bψ2(x)c.
Note that {x : ψ2(x)− y ≥ 0} is in T D̂−MI

R (Q) by (i). Similarly {x : ψ2(x)− y − 1 ≥ 0} ∈
T D̂−MI
R (Q). Since T D̂−MI

R (Q) is an algebra (cf. Theorem 17), its complement

is in T D̂−MI
R (Q) and hence we have {x : ψ2(x) < y + 1} ∈ T D̂−MI

R (Q). Finally

from the induction hypothesis, we have {x : ψ1(x) + y ≤ 0} ∈ T D̂−MI
R (Q).

Since T D̂−MI
R (Q) is closed under finite intersections, the result follows.

(iii) Set defined by (iii) is an intersection of sets defined in (i) and (ii).
(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �

Lemma 43. Let G : Rn 7→ R be a Gomory function. Then (i) {x : G(x) ≥ 0},
(ii) {x : G(x) ≤ 0}, (iii) {x : G(x) = 0}, (iv) {x : G(x) < 0}, (v) {x : G(x) > 0}
are all in T D̂−MI

R (Q).

Proof. Let G(x) = minki=1 ψi(x), where each ψi is a Chvátal function.

(i) Note that {x : G(x) ≥ 0} =
⋂k
i=1 {x : ψi(x) ≥ 0} ∈ T D̂−MI

R (Q) since

each individual set in the finite intersection is in T D̂−MI
R (Q) by Lemma 42

and T D̂−MI
R (Q) is closed under intersections by Lemma 35.

(ii) Note that G(x) ≤ 0 if and only if there exists an i such that ψi(x) ≤ 0.

So {x : G(x) ≤ 0} =
⋃k
i=1 {x : ψi(x) ≤ 0} ∈ T D̂−MI

R (Q) since each individual

set in the finite union is in T D̂−MI
R (Q) by Lemma 42, andT D̂−MI

R (Q) is an
algebra by Theorem 17.

(iii) This is the intersection of sets described in (i) and (ii).
(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �
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Lemma 44. Let J : Rn 7→ R be a Jeroslow function. Then (i) {x : J(x) ≥ 0},
(ii) {x : J(x) ≤ 0}, (iii) {x : J(x) = 0}, (iv) {x : J(x) < 0}, and (v) {x : J(x) > 0}
are all in T D̂−MI

R (Q).

Proof. (i) Let J(x) = maxi∈I G
(
bxcEi

)
+w>i (x−bxcEi

) be a Jeroslow function,
where G is a Gomory function, I is a finite set, {Ei}i∈I is set of rational
invertible matrices indexed by I, and {wi}i∈I is a set of rational vectors
indexed by I. Since we have a maximum over finitely many sets, from the fact

that T D̂−MI
R (Q) is an algebra, it suffices to show

{
x : G(bxcE) + w>(x− bxcE) ≥ 0

}
∈

T D̂−MI
R (Q) for arbitrary E, w and Gomory function G. Observe that

{
x : G(bxcE) + w>(x− bxcE) ≥ 0

}
= projx

(x, y1, y2, y3) :

G(y1) + y2 ≥ z
y1 = bxcE
y2 = 〈w, y3〉
y3 = x− y1


and the set being projected in the right hand side above is equal to the
following intersection

{
(x, y1, y2, y3) : G(y1) + y2 ≥ 0

}
∩

{
(x, y1, y2, y3) : E−1y1 =

⌊
E−1x

⌋}
∩

{
(x, y1, y2, y3) : y2 = 〈w, y3〉

}
∩

{
(x, y1, y2, y3) : y3 = x− y1

}
.

Since each of the sets in the above intersection belong to T D̂−MI
R (Q) by

Lemmata 42 and 43, and T D̂−MI
R (Q) is an algebra by Theorem 17, we obtain

the result.
(ii) As in (i), since we have maximum over finitely many sets, from the fact

that T D̂−MI
R (Q) is an algebra (Theorem 17), it suffices to show

{
x : G(bxcE) + w>(x− bxcE) ≤ 0

}
∈

T D̂−MI
R (Q) for arbitrary E, w and Gomory function G. The same arguments

as before pass through, except for replacing the ≥ in the first constraint with
≤.

(iii) This is the intersection of sets described in (i) and (ii).
(iv)-(v) Sets defined here are complements of sets defined in (i)-(ii). �

Proof of Theorem 18. Follows from Lemmata 42 to 44. �

5.4 General mixed-integer bilevel sets

We start by quoting an example from [21] showing that the MIBL set need
not even be a closed set. This is the first relation in Theorem 16, showing a
strict containment.
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Lemma 45. [21, Example 1.1] The following holds:

T MIBL
R \ cl

(
T MIBL
R

)
6= ∅.

Proof. The following set T is in T MIBL
R \ cl

(
T MIBL
R

)
:

T =

{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, y ∈ arg min

y
{y : y ≥ x, 0 ≤ y ≤ 1, y ∈ Z}

}
.

By definition, T ∈ T MIBL
R . Observe that the bilevel constraint is satisfied

only if y = dxe. So T = {(0, 0)} ∪ ((0, 1]× {1}). So T is not a closed set.
Observing that every set in cl

(
T MIBL
R

)
is closed, T 6∈ cl

(
T MIBL
R

)
. �

Now we prove a lemma that states that rational MIBL-representable sets

are in T D̂−MI
R (Q).

Lemma 46. The following holds: T MIBL
R (Q) ⊆ T D̂−MI

R (Q).

Proof. Recall from Definition 1 an element S of T MIBL(Q) consists of the
intersection S1 ∩ S2 ∩ S3 (with rational data). From Theorem 41, S2 can be
rewritten as

{
(x, y) : f>y ≥ J(g − Cx)

}
for some Jeroslow function J . Thus,

from Lemma 44, S2 ∈ T D̂−MI
R (Q). Moreover, S1, S3 ∈ T D̂−MI

R (Q) since they
are either rational polyhedra or mixed-integer points in rational polyhedra.

Thus, S = S1 ∩ S2 ∩ S3 ∈ T D̂−MI
R (Q) by Theorem 17, proving the inclusion.

This shows that T MIBL(Q) ⊆ T D̂−MI
R (Q), and by Lemma 20 the result

follows. �

Lemma 46 gets us close to showing cl(T MIBL
R (Q)) ⊆ T D−MI

R (Q), as
required in Theorem 16. Indeed, we can immediately conclude from Lemma 46

that cl(T MIBL
R (Q)) ⊆ cl(T D̂−MI

R (Q)). The next few results build towards

showing that cl(T D̂−MI
R ) = T D−MI

R , and consequently cl(T D̂−MI
R (Q)) =

T D−MI
R (Q). The latter is intuitive since closures of generalized polyhedra are

regular polyhedra. As we shall see, the argument is a bit more delicate than
this simple intuition. We first recall a couple of standard results on the closure
operation cl(·).

Lemma 47. If S1, . . . , Sk ∈ Rn then cl (
⋃n
i=1 Si) =

⋃n
i=1 cl (Si) .

Proof. Note Sj ⊆
⋃
i Si for any j ∈ [k]. So cl(Sj) ⊆ cl(

⋃
i Si). So, by union

on both sides over all j ∈ [n], we have that the RHS is contained in LHS.
Conversely, observe that the RHS is a closed set that contains every Si. But
by definition, LHS is the inclusion-wise smallest closed set that contains all
Si. So the LHS is contained in the RHS, proving the lemma. �

Lemma 48. Let A,B be sets such that A is a finite union of convex sets,
cl(A) is compact and B is closed. Then cl(A+B) = cl(A) +B.
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Proof. For the inclusion ⊇, we refer to Corollary 6.6.2 in [29], which is true
for arbitrary convex sets A, B. The result naturally extends using Lemma 47
even if A is a finite union of convex sets. For the reverse inclusion, consider
z ∈ cl(A + B). This means, there exist infinite sequences {xi}∞i=1 ⊆ A and
{yi}∞i=1 ⊆ B, such that the sequence {xi + yi}∞i=1 converges to z. Now, since
cl(A) ⊇ A, xi ∈ cl(A) and since cl(A) is compact, there exists a subsequence,
which has a limit in cl(A). Without loss of generality, let us work only with
such a subsequence xi and the limit as x. Now from the fact that each yi ∈ B,
B is a closed set and the sequence yi converges to z−x, we can say z−x ∈ B.
This proves the result, as we wrote z as a sum of x ∈ cl(A) and z−x ∈ B. �

Lemma 49. The following holds: cl(T D̂−MI
R ) = T D−MI

R . Moreover, cl(T D̂−MI
R (Q)) =

T D−MI
R (Q).

Proof. The ⊇ direction is trivial because sets in T D−MI
R are closed and a

regular polyhedron is a type of generalized polyhedron. For the ⊆ direction,

let S ∈ cl(T D̂−MI
R ); that is, S = cl(

⋃k
i=1(Pi +Mi)) for some Pi that are finite

unions of generalized polytopes and Mi that are finitely generated monoids.
By Lemma 47, this equals

⋃k
i=1 cl(Pi+Mi). Observe that Pi is a finite union of

generalized polytopes and are hence bounded. Thus their closures are compact.
AlsoMi are finitely generated monoids and are hence closed. Thus, by Lemma 48,
we can write this is equal to

⋃k
i=1 cl(Pi) + Mi. But by Theorem 25, each of

these sets cl(Pi) + Mi is in T MI
R . Thus, their finite union is in T D−MI

R by
Lemma 8.

The rational version follows by assuming throughout the proof that the
generalized polytopes and monoids are rational. �

The following is then an immediate corollary of Lemmata 46 and 49.

Corollary 50. The following holds: cl(T MIBL
R (Q)) ⊆ T D−MI

R (Q).

We are now ready to prove the main result of the section.

Proof of Theorem 16. The strict inclusion follows from Lemma 45. The equalities
T BLP−UI
R (Q) = T D−MI

R (Q) and T BLP−UI
R = T D−MI

R are obtained from
Lemmata 26 and 27. For the equality cl(T MIBL

R (Q)) = T D−MI
R (Q), the

inclusion ⊇ follows from the equality T BLP−UI
R (Q) = T D−MI

R (Q) and the
facts that BLP-UI sets are MIBL sets and sets in T D−MI

R are closed. The
reverse inclusion is immediate from Corollary 50. �

Finally, we prove Theorem 19.

Proof of Theorem 19.. Following the notation in Definition 1, S = S1∩S2∩S3.
Since |IF | = 0, (x, y) ∈ S2 if and only if there exists a λ ≤ 0 such that D>λ =
f and λ>(g−Cx) = f>y. However, this is same as checking if there exists (x, y)
such that (x, y) ∈ S1∩S3∩

{
(x, y) : ∃λ ≤ 0, D>λ = f, λ>g − f>y ≤ λ>Cx

}
is non-empty. But this set is a set of linear inequalities, integrality requirements
along with exactly one quadratic inequality. From [13], this problem is in
NP. �



Mixed-integer bilevel representability 33

By reduction from regular integer programming, we obtain this corollary.

Corollary 51. Bilevel linear programs with rational data integrality constraints
only in the upper level is NP-complete.

6 Conclusion

In this paper we give a characterization of the types of sets that are representable
by feasible regions of mixed-integer bilevel linear programs. In the case of
bilevel linear programs with only continuous variables, the characterization
is in terms of the finite unions of polyhedra. In the case of mixed-integer
variables, the characterization is in terms of finite unions of generalized mixed-
integer linear representable sets. Interestingly, the family of finite unions of
polyhedra and the family of finite unions of generalized mixed-integer linear
representable sets are both algebras of sets. The parallel between these two
algebras suggests that generalized mixed-integer linear representable sets are
the “right” geometric vocabulary for describing the interplay between projection,
integrality, and bilevel structures. We are hopeful that the algebra properties of
finite unions of generalized mixed-integer linear representable sets may prove
useful in other contexts.

There remain important algorithmic and computational questions left unanswered
in this study. For instance, is there any computational benefit of expressing
a bilevel program in terms of disjunctions of (generalized) mixed-integer linear
representable sets? Are there problems that are naturally expressed as disjunctions
of generalized mixed-integer linear representable sets that can be solved using
algorithms for mixed-integer bilevel optimization (such as the recent work by
Fishchetti et al. [17], and Wang and Xu [34], etc.)? In the case of continuous
bilevel linear problems, its equivalence with unions of polyhedra suggests a
connection to solving problems over unions of polyhedra, possibly using the
methodology of Balas [2]. The connection between bilevel constraints and
linear complementarity also suggest a potential for interplay between the
computational methods of both types of problems.
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21. M. Köppe, M. Queyranne, and C. T. Ryan. Parametric integer
programming algorithm for bilevel mixed integer programs. Journal of
Optimization Theory and Applications, 146(1):137–150, jul 2010.

22. Andrea Lodi, Ted K Ralphs, and Gerhard J Woeginger. Bilevel
programming and the separation problem. Mathematical Programming,
146(1-2):437–458, 2014.

23. Leonardo Lozano and J Cole Smith. A value-function-based exact
approach for the bilevel mixed-integer programming problem. Operations
Research, 65(3):768–786, 2017.

24. Miles Lubin, Emre Yamangil, Russell Bent, and Juan Pablo Vielma.
Extended formulations in mixed-integer convex programming. In
International Conference on Integer Programming and Combinatorial
Optimization, pages 102–113. Springer, 2016.

25. Miles Lubin, Ilias Zadik, and Juan Pablo Vielma. Mixed-integer convex
representability. In International Conference on Integer Programming and
Combinatorial Optimization, pages 392–404. Springer, 2017.

26. Miles Lubin, Ilias Zadik, and Juan Pablo Vielma. Regularity in mixed-
integer convex representability. arXiv preprint arXiv:1706.05135, 2017.

27. James A Mirrlees. The theory of moral hazard and unobservable
behaviour: Part I. The Review of Economic Studies, 66(1):3–21, 1999.

28. James T Moore and Jonathan F Bard. The mixed integer linear bilevel
programming problem. Operations Research, 38(5):911–921, 1990.

29. R. Tyrrel Rockafellar. Convex Analysis. Princeton University Press, 1970.
30. Alexander Schrijver. Theory of Linear and Integer Programming. John

Wiley & Sons, 1998.
31. Sahar Tahernejad, Ted K Ralphs, and Scott T DeNegre. A branch-and-cut

algorithm for mixed integer bilevel linear optimization problems and its
implementation. Technical report, Technical Report 16T-015-R3, Lehigh
University, 2016.

32. Onur Tavaslioglu, Oleg A. Prokopyev, and Andrew J. Schaefer. Solving
stochastic and bilevel mixed-integer programs via a generalized value
function. Optimization Online preprint, 2018.

33. Juan Pablo Vielma. Mixed integer linear programming formulation
techniques. SIAM Review, 57(1):3–57, 2015.

34. Lizhi Wang and Pan Xu. The watermelon algorithm for the bilevel integer
linear programming problem. SIAM Journal on Optimization, 27(3):1403–
1430, jan 2017.

35. Jane J Ye and Daoli Zhu. New necessary optimality conditions for bilevel
programs by combining the mpec and value function approaches. SIAM
Journal on Optimization, 20(4):1885–1905, 2010.

36. Dajun Yue, Jiyao Gao, and Fengqi You. A projection-based reformulation
and decomposition algorithm for global optimization of mixed integer
bilevel linear programs. arXiv preprint: arXiv:1707.06196, 2017.


	Introduction
	Key definitions
	Main results
	Representability of continuous bilevel sets
	Representability of mixed-integer bilevel sets
	Conclusion

