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Abstract5

Jeroslow and Lowe gave an exact geometric characterization of subsets of Rn that are projec-6

tions of mixed-integer linear sets, also known as MILP-representable or MILP-R sets. We give7

an alternate algebraic characterization by showing that a set is MILP-R if and only if the set can8

be described as the intersection of finitely many affine Chvátal inequalities in continuous vari-9

ables (termed AC sets). These inequalities are a modification of a concept introduced by Blair10

and Jeroslow. Unlike the case for linear inequalities, allowing for integer variables in Chvátal11

inequalities and projection does not enhance modeling power. We show that the MILP-R sets12

are still precisely those sets are are modeled as affine Chvátal inequalites with integer variables.13

Furthermore, the projection of a set defined by affine Chvátal inequalites with integer variables14

is still an MILP-R set. We give a sequential variable elimination scheme that, when applied15

to a MILP-R set yields the AC set characterization. This is related to the elimination scheme16

of Williams and Williams-Hooker, who describe projections of integer sets using disjunctions17

of affine Chvátal systems. We show that disjunctions are unnecessary by showing how to find18

the affine Chvátal inequalities that cannot be discovered by the Williams-Hooker scheme. This19

allows us to answer a long-standing open question due to Ryan (1991) on designing an elimina-20

tion scheme to represent finitely-generated integral monoids as a system of Chvátal inequalities21

without disjunctions. Finally, our work can be seen as a generalization of the approach of Blair22

and Jeroslow, and Schrijver for constructing consistency testers for integer programs to general23

AC sets.24

1 Introduction25

Researchers are interested in characterizing sets that are projections of mixed-integer sets de-26

scribed by linear constraints. Such sets have been termed MILP-representable or MILP-R sets; see27

Vielma [18] for a thorough survey. Knowing which sets are MILP-R is important because of the28

prevalence of good algorithms and software for solving MILP formulations. Therefore, if one en-29

counters an application that can be modeled using MILP-R sets, then this sophisticated technology30

can be used to solve the application. There is also growing interest in generalizations of MILP-R31

∗A preliminary version of this paper appeared as “Mixed-integer linear representability, disjunctions, and variable
elimination” in the proceedings of the IPCO 2017 conference. See [5] for a full reference.
†Applied Mathematics and Statistics, Johns Hopkins University, USA. A. Basu was supported by the NSF grant
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sets, including projections mixed-integer points in a closed convex sets (see recent work by Del Pia32

and Poskin [8], Dey, Diego and Morán [9], and Lubin, Vielma and Zadik [12, 13]).33

A seminal result of Jeroslow and Lowe [10] provides a geometric characterization of MILP-34

R sets as the sum of a finitely generated monoid, and a disjunction of finitely-many polytopes35

(see Theorem 2.1 below for a precise statement). Our point of departure is that we provide a36

constructive algebraic characterization of MILP-representability that does not need disjunctions,37

but instead makes use of affine Chvátal inequalities, i.e. affine linear inequalities with rounding38

operations (for a precise definition see Definition 2.2 below). We show that MILP-R sets are exactly39

those sets that satisfy a finite system of affine Chvátal inequalities, termed AC sets.40

Affine Chvátal functions with continuous variables are a natural language for mixed-integer41

linear optimization. Unlike the case for linear inequalities, allowing for integer variables in Chvátal42

inequalities and projection does not enhance modeling power. We show that the MILP-R sets43

are still precisely those sets are are modeled as affine Chvátal inequalites with integer variables.44

Furthermore, the projection of a set defined by affine Chvátal inequalites with integer variables is45

still an MILP-R set.46

However, allowing disjunctions of sets broadens the collection of sets that can be described.47

There exist sets defined by disjunctions of affine Chvátal systems that are not MILP-R sets (see, for48

instance, Example 3.24 below). In other words, we show that disjunctions are not only unnecessary49

but are undesirable. This last message is underscored by the work of Williams [19, 21], Williams50

and Hooker [22], and Balas [2]. Their research attempts to generalize variable elimination methods51

for linear programming – namely, the Fourier-Motzkin (FM) elimination procedure – to integer52

programming problems. In these approaches, there is a need to introduce disjunctions of inequalities53

that involve either rounding operations or congruence relations. Via this method, Williams, Hooker54

and Balas are able to describe the projections of integer sets as a disjunctive system of affine55

Chvátal inequalities. The introduction of disjunctions is a point in common between the existing56

elimination methods of Williams, Hooker and Balas and the geometric understanding of projection57

by Jeroslow-Lowe. However, disjunctions in general can be unwieldy. Moreover, as stated above,58

allowing disjunctions together with affine Chvátal inequalities (as done in the algebraic approaches59

of Williams, Hooker and Balas) takes us out of the realm of MILP-R sets.60

Our approach to characterizing MILP-R sets is related to consistency testers for pure integer61

programs. Given a rational matrix A, a consistency tester is a function that takes as input a62

vector b and returns a value that indicates whether the set {x : Ax ≥ b, x integer} is non-empty.63

Seminal work by Blair and Jeroslow [6] constructs a consistency tester for integer programs that64

is a pointwise maximum of a set of finitely many Chvátal functions (termed a Gomory function in65

Blair and Jeroslow [6]). In [17], Schrijver obtains a version of this result that builds on the concepts66

of the Chvátal rank and total dual integrality of an integer system. A consistency tester describes67

a special type of MILP-R set; the projection of the pairs (x, b) where Ax ≥ b onto the space of b’s.68

Our work generalizes the approach of Schrijver [17] to apply to not only mixed-integer linear sets,69

but more generally to AC sets (and by our main result, MILP-R sets).70

Finally, in Section 5 we give a “lift-and-project” variable elimination scheme for mixed-integer71

AC sets. Our scheme, as opposed to the ones proposed by Williams and Hooker, and Balas, does72

not need to resort to disjunctions. Towards this end, our new procedure introduces auxiliary integer73

variables to simplify the structure of the AC system. In this transformed system, the projection of74

integer variables is easier to do without introducing disjunctions; at this stage, we project out the75

auxiliary variables that were introduced, as well as the variables that were originally intended to76
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be eliminated. When this method is applied to a mixed-integer linear set, it generates redundant77

linear inequalities which, when combined with ceiling operators, characterize the projection without78

the need for disjunctions. This is our proposed extension of Fourier-Motzkin elimination to handle79

integer variables, without using disjunctions.80

In summary, we are able to simultaneously show four things: 1) disjunctions are not necessary81

for mixed-integer linear representability (if one allows affine Chvátal inequalities), an operation82

that shows up in both the Jeroslow-Lowe and the Williams-Hooker approaches, 2) the language of83

affine Chvátal functions is a robust one for integer programming, being closed under integrality and84

projection, 3) our algebraic characterization comes with a variable elimination scheme unlike the85

geometric approach of Jeroslow-Lowe, and 4) our algebraic characterization is exact, as opposed86

to the algebraic approach of Williams-Hooker which does not yield a complete characterization of87

MILP-R sets.88

Moreover, our algebraic characterization could be useful to obtain other insights into the struc-89

ture of MILP-R sets that is not apparent from the geometric perspective. As an illustration, we90

resolve an open question posed in Ryan [16] on the representability of integer monoids using our91

characterization. Theorem 1 in [16] shows that every finitely-generated integer monoid can be de-92

scribed as a finite system of Chvátal inequalities but leaves open the question of how to construct93

the associated Chvátal functions via elimination. Ryan states that the elimination methods of94

Williams in [19, 21] do not address her question because of the introduction of disjunctions. Our95

work provides a constructive approach for finding a Chvátal inequality representation of finitely-96

generated integer monoids using elimination (see Section 5).97

Our new algebraic characterization may also lead to novel algorithmic ideas where researchers98

optimize by directly working with affine Chvátal functions, rather than using traditional branch-99

and-cut or cutting plane methods. We also believe the language of affine Chvátal functions has100

potential for modeling applied problems, since the operation of rounding affine inequalities has101

an inherent logic that may be understandable for particular applications. We leave both of these102

avenues as directions for future research.103

The paper is organized as follows. Section 2 introduces our key definitions – including mixed-104

integer linear representability and affine Chvátal functions – used throughout the paper. It also105

contains a statement and intepretation of our main result, making concrete the insights described106

in this introduction. This includes the definitions of MILP-representability and affine Chvátal107

functions. Section 3 contains the proof of our main result. Section 4 relates our work to the108

existing literature of consistency testers for integer programs, which was the source of inspiration109

for this paper. Finally, Section 5 explores our methodology from the perspective of elimination110

of integer variables, where we compare and contrast approach with the existing methodologies of111

Williams, Hooker and Balas. Section 6 has concluding remarks.112

2 Definitions and discussion of main result113

In this section we introduce the definitions and notation needed to state our main result. We also114

provide an intuitive discussion of the implications of the result.115

N,Z,Q,R denote the set of natural numbers, integers, rational numbers and reals, respectively.116

Any of these sets subscripted by a plus means the nonnegative elements of that set. For instance,117

Q+ is the set of nonnegative rational numbers. The ceiling operator dae gives the smallest integer118

no less than a ∈ R. The projection operator projZ where Z ⊆ {x1, . . . , xn} projects a vector x ∈ Rn
119
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onto the coordinates in Z. We use the notation x−i to denote the set {x1, . . . , xi−1, xi+1, . . . , xn}120

and thus projx−i
refers to projecting out the i-th variable. The following classes of sets are used121

throughout the paper.122

An LP set (short for linear programming set) is any set defined by the intersection of finitely123

many linear inequalities.1 More concretely, S ⊆ Rn is an LP set if there exists an m ∈ N, matrix124

A ∈ Qm×n, and vector b ∈ Rm such that S = {x ∈ Rn : Ax ≥ b}. We denote the collection of all125

LP sets by (LP).126

A set that results from applying the projection operator to an LP-set is called a LP-R set127

(short for linear programming representable set). The set S ⊆ Rn is an LP-R set if there exists128

an m, p ∈ N, matrices B ∈ Qm×n, C ∈ Qm×d and vector b ∈ Rm such that S = projx{(x, y) ∈129

Rn × Rp : Bx+ Cy ≥ b}. We denote the collection of all LP-R sets by (LP-R).130

It well known that any LP-R set is an LP set, i.e., the projection of a polyhedron is also a131

polyhedron (see, for instance, Chapter 2 of [14]). The typical proof uses Fourier-Motzkin (FM)132

elimination, a technique that is used in this paper as well (see the proof of Theorem 3.5 and Sec-133

tion 4 below). FM elimination is a method to eliminate (and consequently project out) continuous134

variables from a system of linear inequalities. For a detailed description of the FM elimination pro-135

cedure we refer the reader to Martin [14]. We provide some basic notation for the procedure here.136

FM elimination takes as input a linear system Ax ≥ b where x = (x1, . . . , xn) and produces row137

vectors u1
1, . . . , u

t1
1 (called Fourier-Motzkin multipliers) such that uj1Ax−1 ≥ uj1b for j = 1, . . . , t1138

describes projx−1
{x : Ax ≥ b}. This procedure can be applied iteratively to sequentially elimi-139

nate variables. When all variables are eliminated we denote the corresponding FM multipliers by140

u1, . . . , ut. We make reference to FM multipliers at various points in the paper.141

We introduce both collections (LP) and (LP-R) (even though they are equal) to emphasize the142

point that, in general, projecting sets could lead to a larger family, as in some of the other classes143

of sets defined below.144

A MILP set (short for mixed-integer linear programming set) is any set defined by the in-145

tersection of finitely many linear inequalities where some or all of the variables in the linear146

functions defining the inequalities are integer-valued. The set S ⊆ Rn is a MILP set if there147

exists an m ∈ N, I ⊆ {1, 2, . . . , n}, matrix A ∈ Qm×n, and vector b ∈ Rm such that S =148

{x ∈ Rn : Ax ≥ b, xj ∈ Z for j ∈ I}. The collection of all MILP sets is denoted (MILP).149

Following Jeroslow and Lowe [10], we define an MILP-R set (short for mixed-integer linear150

programming representable set) to be any set that results from applying a projection operator to151

an MILP set. The set S ⊆ Rn is an MILP-R set if there exists an m, p, q ∈ N, matrices B ∈ Qm×n,152

C ∈ Qm×p and D ∈ Qm×q and vector b ∈ Rm such that153

S = projx {(x, y, z) ∈ Rn × Rp × Zq : Bx+ Cy +Dz ≥ b} .154

The collection of all MILP-R sets is denoted (MILP-R).155

It is also well-known that there are MILP-R sets that are not MILP sets (see Williams [21]156

for an example). Thus, projection provides more modeling power when using integer variables, as157

opposed to the LP and LP-R sets where variables are all real-valued.158

The key result known in the literature about MILP-R sets uses the following concepts. Given a159

finite set of vectors {r1, . . . , rt}, cone{r1, . . . , rt} is the set of all nonnegative linear combinations,160

and intcone{r1, . . . , rt} denotes the set of all nonnegative integer linear combinations. The set161

1Of course, an LP-set is nothing other than a polyhedron. We use the terminology LP-set for the purpose of
consistency with the definitions that follow.
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intcone{r1, . . . , rt} is also called a finitely-generated integer monoid with generators {r1, . . . , rt}.162

The following is the main result from Jeroslow and Lowe [10] stated as Theorem 4.47 in Conforti163

et. al. [7].164

Theorem 2.1. A set S ⊂ Rn is MILP-representable if and only if there exists rational polytopes165

P1, . . . , Pk ⊆ Rn and vectors r1, . . . , rt ∈ Zn such that166

S =
k⋃

i=1

Pi + intcone
{
r1, . . . , rt

}
. (2.1)167

This result is a geometric characterization of MILP-R sets. We provide an alternative algebraic168

characterization of MILP-R sets using affine Chvátal functions and inequalities. Chvátal functions,169

first introduced by Blair and Jeroslow [6], are obtained by taking nonnegative combinations of170

linear functions and using the ceiling operator. We extend this original definition to allow for affine171

functions to define affine Chvátal functions. To make this distinction precise we formally define172

affine Chvátal functions using the concept of finite binary trees from Ryan [15].173

Definition 2.2. An affine Chvátal function f : Rn → R is constructed as follows. We are given a174

finite binary tree where each node of the tree is either: (i) a leaf, which corresponds to an affine175

linear function on Rn with rational coefficients; (ii) has one child with corresponding edge labeled176

by either a d·e or a number in Q+, or (iii) has two children, each with edges labeled by a number177

in Q+.178

Start at the root node and (recursively) form functions corresponding to subtrees rooted at its179

children. If the root has a single child whose subtree is g, then either (a) f = dge if the corresponding180

edge is labeled d·e or (b) f = αg if the corresponding edge is labeled by a ∈ Q+. If the root has181

two children with corresponding edges labeled by a ∈ Q+ and b ∈ Q+ then f = ag + bh where g182

and h are functions corresponding to the respective children of the root.2183

The depth of a binary tree representation T of an affine Chvátal function is the length of the184

longest path from the root to a node in T , and ceiling count cc(T ) is the total number of edges185

labeled d·e. /186

Example 2.3. Below, f̂ is a Chvátal function and ĝ is an affine Chvátal function:187

f̂ = 3dx1 + 5d2x1 + x2ee+ d2x3e, (2.2)188

ĝ = 3dx1 + 5d2x1 − x2 + 3.5ee+ d−2x3e. (2.3)189
190

See Figure 1 for a binary tree representation T (ĝ) of the affine Chvátal function ĝ. This represen-191

tation has depth 4 and ceiling count cc(T (ĝ)) = 3.192

The original definition of Chvátal function in the literature requires the leaves of the binary tree193

to be linear functions, and the domain of the function to be Qn (see [6, 15, 16]). Our definition194

above allows for affine linear functions at the leaves, and the domain of the functions to be Rn.195

We use the term Chvátal function to refer to the setting where the leaves are linear functions. In196

this paper, the domain of all functions is Rn. This change to the domain from Qn to Rn is not just197

cosmetic; it is imperative for deriving our results. See also the discussion after Theorem 3.5.198

2The original definition of Chvátal function in Blair and Jeroslow [6] does not employ binary trees. Ryan shows
the two definitions are equivalent in [15].
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ĝ(x) = 3dx1 + 5d2x1 − x2 + 3.5ee+ d−2x3e

dx1 + 5d2x1 − x2 + 3.5ee

x1 + 5d2x1 − x2 + 3.5e

x1

1

d2x1 − x2 + 3.5e

2x1 − x2 + 3.5

d·e

5

d·e

3

d−2x3e

−2x3

d·e

1

Figure 1: Binary tree structure for affine Chvátal function

Definition 2.4. An inequality f(x) ≤ b, where f is an affine Chvátal function and b ∈ R, is called199

an affine Chvátal inequality.200

Remark 2.5. Note that if f is an affine Chvátal function, it does not necessarily mean that −f is201

also an affine Chvátal function. Because of this, the inequality f(x) ≥ b is, in general, not an affine202

Chvátal inequality: the direction of the inequality matters in Definition 2.4. /203

An AC set (short for affine Chvátal set) is any set defined by the intersection of finitely affine204

Chvátal inequalities. The set S ⊆ Rn is an AC set if there exists an m ∈ N, affine Chvátal function205

f1, f2, . . . , fm, and a real vector b ∈ Rm such that S = {x ∈ Rn : fi(x) ≤ bi, i = 1, 2, . . . ,m}. The206

collection of all AC sets is denoted (AC).207

A set that results from applying the projection operator to an AC set is called an AC-R set208

(short for affine Chvátal representable set). The set S ⊆ Rn is an AC-R set if there exists an209

m, p ∈ N, affine Chvátal functions f1, f2, . . . , fm defined on Rn+p, and a vector b ∈ Rm such that210

S = projx{(x, y) ∈ Rn × Rp : fi(x, y) ≤ bi, i = 1, 2, . . . ,m}. The collection of all AC-R sets is211

denoted (AC-R).212

An MIAC set (short for mixed-integer affine Chvátal set) is an affine Chvátal set where some213

of the variables involved are integer. The set S ⊆ Rn is an MIAC set if there exists an m ∈ N,214

I ⊆ {1, 2, . . . , n}, affine Chvátal functions f1, f2, . . . , fm, and vector b ∈ Rm such that S = {x ∈215

Rn : fi(x) ≤ bi, i = 1, 2, . . . ,m, xj ∈ Z, j ∈ I}. The collection of all MIAC sets is denoted (MIAC).216

A set that results from applying the projection operator to an MIAC set is called a MIAC-R217

set (short for mixed-integer affine Chvátal representable set. The set S ⊆ Rn is an MIAC-R set218

if there exists an m, p, q ∈ N, affine Chvátal functions f1, f2, . . . , fm defined on Rn+p+q and vector219

b ∈ Rm such that220

S = projx {(x, y, z) ∈ Rn × Rp × Zq : fi(x, y, z) ≤ bi, i = 1, 2. . . . ,m} .221
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The collection of all MIAC-R sets is denoted (MIAC-R).222

Finally, a DMIAC set (short for disjunctive mixed-integer affine Chvátal set) is a set that can223

be written as the disjunction of finitely many MIAC sets. The set S ⊆ Rn is a DMIAC set if there224

exists a m, t ∈ N, affine functions fki for k = 1, 2, . . . , t and i = 1, 2, . . . , n, subsets Ik ⊆ {1, 2, . . . , n}225

for k = 1, 2, . . . , t such that226

S =
t⋃

k=1

{x ∈ Rn : fki(x) ≤ bi, i = 1, 2, . . . ,m, xkj ∈ Z, j ∈ Ik}227

The collection of all DMIAC sets is denoted (DMIAC).228

We now state the main theorem in this paper.229

Theorem 2.6. The following relationships exist among the sets defined above230

(LP) = (LP-R) ( (MILP) ( (MILP-R) = (AC) = (AC-R) = (MIAC) = (MIAC-R) ( (DMIAC).231

The first three relationships in Theorem 2.6 are well-known in the optimization community.232

The key insights in our paper are the remaining relationships, i.e.,233

(MILP-R) = (AC) = (AC-R) = (MIAC) = (MIAC-R) ( (DMIAC).234

Section 3.3 contains our proof of Theorem 2.6, which builds on the results of Sections 3.1 and 3.2.235

Before going to the proof, we examine Theorem 2.6 and draw out its implications. This makes236

precise some of the informal discussion we had in the introduction.237

(i) The relationship (MILP-R) = (AC) provides our algebraic characterization of mixed-integer238

linear representability. Note, in particular, that the class (AC) does not allow disjunctions.239

(ii) The relationship (AC) = (MIAC-R) shows that adding integer variables and projecting an240

AC set does not yield additional modeling power.241

(iii) The relationship (MILP-R) ( (DMIAC) shows that combining disjunctions with affine Chvátal242

inequalites does describe a strictly larger collection of sets than can be described (even through243

projection) by linear equalities with integer variables.244

Point (i) provides a “disjunction-free” characterization of mixed-integer representability. To-245

gether, points (ii) and (iii) suggest that (AC) is a natural algebraic language for mixed-integer linear246

programming. The collection (AC) uses continuous variables, with no disjunctions, to describe all247

MILP sets and their projections, whereas (DMIAC) takes us outside of the realm of mixed-integer248

programming.249

3 The modeling power of Chvátal inequalities250

This section contains the proof of our main result Theorem 2.6. The proof is broken up across251

three subsections. The first two subsections provide careful treatment is the two most challenging252

containments to establish: (MIAC) ⊆ (MILP-R) (the content of Section 3.1) and (MILP-R) ⊆ (AC)253

(the content of Section 3.2). Finally, in Section 3.3, the pieces are put together in a formal proof254

of Theorem 2.6.255
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3.1 MIAC sets are MILP-R sets256

We show how to “lift” an MIAC set to a mixed-integer linear set. The idea is simple – replace257

ceiling operators with additional integer variables. However, we need to work with an appropriate258

representation of an affine Chvátal function in order to implement this idea. The next result259

provides the correct representation.260

Theorem 3.1. For every affine Chvátal function f represented by a binary tree T , one of the261

following cases hold:262

Case 1: cc(T ) = 0, which implies that f is an affine linear function.263

Case 2: f = γdg1e+ g2, where γ > 0 and g1, g2 are affine Chvátal functions such that there exist264

binary tree representations T1, T2 for g1, g2 respectively, with cc(T1) + cc(T2) + 1 ≤ cc(T ).265

Proof. We use induction on the depth of the binary tree T . For the base case, if T has depth 0,266

then cc(T ) = 0 and we are in Case 1. The inductive hypothesis assumes that for some k ≥ 0, every267

affine Chvátal function f with a binary tree representation T of depth less or equal to k, can be268

expressed in Case 1 or 2.269

For the inductive step, consider an affine Chvátal function f with a binary tree representation270

T of depth k+ 1. If the root node of T has a single child, let T ′ be the subtree of T with root node271

equal to the child of the root node of T . We now consider two cases: the edge at the root node is272

labeled with a d·e, or the edge is labeled with a scalar α > 0. In the first case, f = dge where g is273

an affine Chvátal function which has T ′ as a binary tree representation. Also, cc(T ′) + 1 = cc(T ).274

Thus, we are done by setting g1 = g, g2 = 0 and γ = 1. In the second case, f = αg where g is an275

affine Chvátal function which has T ′ as a binary tree representation, with cc(T ′) = cc(T ). Note that276

T ′ has smaller depth than T . Thus, we can apply the induction hypothesis on g with representation277

T ′. If this ends up in Case 1, then 0 = cc(T ′) = cc(T ) and f is in Case 1. Otherwise, we obtain278

γ′ > 0, affine Chvátal functions g′1, g
′
2, and binary trees T ′1, T

′
2 representing g′1, g

′
2 respectively, with279

cc(T ′1) + cc(T ′2) + 1 ≤ cc(T ′) = cc(T ) (3.1)280

such that g = γ′dg′1e+g′2. Now set γ = αγ′, g1 = g′1, g2 = αg′2, T1 = T ′1 and T2 to be the tree whose281

root node has a single child with T ′2 as the subtree, and the edge at the root labeled with α. Note282

that cc(T2) = cc(T ′2). Also, observe that T1, T2 represents g1, g2 respectively. Combined with (3.1),283

we obtain that cc(T1) + cc(T2) + 1 ≤ cc(T ).284

If the root node of T has two children, let S1, S2 be the subtrees of T with root nodes equal to285

the left and right child, respectively, of the root node of T . Then, f = αh1 + βh2, where α, β > 0286

and h1, h2 are affine Chvátal functions with binary tree representations S1, S2 respectively. Also287

note that the depths of S1, S2 are both strictly less than the depth of T , and288

cc(S1) + cc(S2) = cc(T ) (3.2)289

By the induction hypothesis applied to h1 and h2 with representations S1, S2, we can assume290

both of them end up in Case 1 or 2 of the statement of the theorem. If both of them are in Case291

1, then cc(S1) = cc(S2) = 0, and by (3.2), cc(T ) = 0. So f is in Case 1.292

Thus, we may assume that h1 or h2 (or both) end up in Case 2. There are three subcases, (i)293

h1, h2 are both in Case 2, (ii) h1 is Case 2 and h2 in Case 1, or (iii) h2 in Case 2 and h1 in Case294

1. We analyze subcase (i), the other two subcases are analogous. This implies that there exists295
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γ′ > 0, and affine Chvátal functions g′1 and g′2 such that h1 = γ′dg′1e + g′2, and there exist binary296

tree representations T ′1, T
′
2 for g′1, g

′
2 respectively, such that297

cc(T ′1) + cc(T ′2) + 1 ≤ cc(S1). (3.3)298

Now set γ = αγ′, g1(x) = g′1(x) and g2(x) = αg′2(x) + βh2(x). Then f = γdg1e+ g2. Observe that299

g2 has a binary tree representation T2 such that the root node of T2 has two children: the subtrees300

corresponding to these children are T ′2 and S2, and the edges at the root node of T2 are labeled by301

α and β respectively. Therefore,302

cc(T2) ≤ cc(T ′2) + cc(S2). (3.4)303

Moreover, we can take T1 = T ′1 as the binary tree representation of g1. We observe that304

cc(T1) + cc(T2) + 1 ≤ cc(T ′1) + cc(T ′2) + cc(S2) + 1
≤ cc(S1) + cc(S2) = cc(T )

305

where the first inequality is from the fact that T1 = T ′1 and (3.4), the second inequality is from (3.3)306

and the final equation is (3.2).307

For an MIAC set, where each associated affine Chvátal function is represented by a binary tree,308

the total ceiling count of this representation is the sum of the ceiling counts of all these binary trees.309

The next lemma shows how to reduce the total ceiling count of a MIAC set by one, in exchange310

for an additional integer variable.311

Lemma 3.2. Given a system C = {(x, z) ∈ Rn × Zq : fi(x, z) ≤ bi} of affine Chvátal inequalities312

with a total ceiling count c ≥ 1, there exists a system P = {(x, z, z̄) ∈ Rn ×Zq ×Z : f ′i(x, z) ≤ b′i}313

of affine Chvátal inequalities with a total ceiling count of at most c− 1, and C = proj(x,z)(P ).314

Proof. Since c ≥ 1, at least one of the fi has a binary tree representation T with a strictly positive315

ceiling count. Without loss of generality we assume it is f1. This means f1, along with its binary tree316

representation T , falls in Case 2 of Theorem 3.1. Therefore, one can write f as f1 = γdg1e+g2, with317

γ > 0, and g1, g2 are affine Chvátal functions such that there exist binary tree representations T1, T2318

for g1, g2 respectively, with cc(T1) + cc(T2) + 1 ≤ cc(T ). Dividing by γ on both sides, the inequality319

f1(x, z) ≤ b1 is equivalent to dg1(x, z)e + (1/γ)g2(x, z) ≤ b1/γ. Moving (1/γ)g2(x, z) to the right320

hand side, we get dg1(x, z)e ≤ −(1/γ)g2(x, z)+b1/γ. This inequality is easily seen to be equivalent to321

two inequalities, involving an extra integer variable z̄ ∈ Z: dg1(x, z)e ≤ z̄ ≤ −(1/γ)g2(x, z) + b1/γ,322

which, in turn is equivalent to g1(x, z) ≤ z̄ ≤ −(1/γ)g2(x, z) + b1/γ, since z̄ ∈ Z. Therefore, we can323

replace the constraint f1(x, z) ≤ b1 with the two constraints324

g1(x, z)− z̄ ≤ 0, (3.5)325

(1/γ)g2(x, z) + z̄ ≤ b1/γ ⇔ g2(x, z) + γz̄ ≤ b1 (3.6)326
327

as long as we restrict z̄ ∈ Z. Note that the affine Chvátal functions on the left hand sides of (3.5)328

and (3.6) have binary tree representations with ceiling count equal to cc(T1) and cc(T2) respectively.329

Since cc(T1) + cc(T2) + 1 ≤ cc(T ), the total ceiling count of the new system is at least one less than330

the total ceiling count of the previous system.331

The key result of this subsection is an immediate consequence.332
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Theorem 3.3. Every MIAC set is a MILP-R set. That is, (MIAC) ⊆ (MILP-R).333

Proof. Consider a system S = {(x, z) ∈ Rn × Zq : fi(x, z) ≤ bi} of affine Chvátal inequalities334

describing the MIAC set, with total ceiling count c ∈ N. Apply Lemma 3.2 at most c times to get335

a system S′ = {(x, z, z′) ∈ Rn × Zq × Zm : Ax+Bz + Cz′ ≥ d} such that S = proj(x,z)(S
′), where336

m ≤ c. The problem is that the z variables are integer constrained in the system describing S′,337

and the definition of MILP-representability requires the target space – (x, z) in this case – to have338

no integer constrained variables. This can be handled in a simple way. Define S′′ := {(x, z, z′, v) ∈339

Rn ×Rq ×Zm ×Zq) : Ax+Bz +Cz′ ≥ d, z = v} with additional integer variables v, and observe340

that S′ = proj(x,z,z′)(S
′′) and thus, S = proj(x,z)(S

′′). Since x, z are continuous variables in the341

system describing S′′, we obtain that S is MILP-representable.342

Example 3.4. . We give an example, showing the above procedure at work. Consider the AC set

C = {(x1, x2, x3, x4) ∈ Z : f(x) = d3x1 + 2.5x2e+ dd0.5x3e − 0.8x4e ≤ 0}.

Add variable y1 ∈ Z and the constraints343

dd0.5x3e − 0.8x4e ≤ y1 ≤ −d3x1 + 2.5x2e.

Remove the outer d·e on the left hand side to obtain344

d0.5x3e − 0.8x4 ≤ y1 ≤ −d3x1 + 2.5x2e,

which gives two affine Chvátal inequalities:345

d0.5x3e − 0.8x4 − y1 ≤ 0
y1 + d3x1 + 2.5x2e ≤ 0

(3.7)346

Taking the first affine Chvátal inequality in (3.7), and introducing another variable y2 ∈ Z, we347

obtain348

d0.5x3e ≤ y2 ≤ +0.8x4 + y1

and removing the d·e on the left hand side, we obtain349

0.5x3 ≤ y2 ≤ +0.8x4 + y1,

giving rise to two new affine Chvátal functions:350

0.5x3 − y2 ≤ 0
y2 − 0.8x4 − y1 ≤ 0

(3.8)351

Similarly, processing the second affine Chvátal inequality in (3.7), we obtain two new affine352

Chvátal inequalities involving a new variable y3 ∈ Z:353

3x1 + 2.5x2 − y3 ≤ 0
y3 + y1 ≤ 0

(3.9)354
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So we finally obtain that355

C = proj(x1,...,x4)

(x1, x2, x3, x4, y1, y2, y3, y4) :

0.5x3 − y2 ≤ 0
−0.8x4 − y1 + y2 ≤ 0
3x1 + 2.5x2 − y3 ≤ 0
y1 + y3 ≤ 0

 . /356

3.2 MILP-R sets are MIAC sets357

This direction leverages some established theory in integer programming, in particular,358

Theorem 3.5 (cf. Corollary 23.4 in Schrijver [17]). For any rational m× n matrix A, there exists359

a finite set of Chvátal functions fi : Rm → R, i ∈ I with the following property: for every b ∈ Rm,360

{z ∈ Zn : Az ≥ b} is nonempty if and only if fi(b) ≤ 0 for all i ∈ I. Moreover, these functions can361

be explicitly constructed from the matrix A.362

The main difference between Corollary 23.4 in [17] and Theorem 3.5 is that we allow the right363

hand side b to be nonrational.3 This difference is indispensable in our analysis (see the proof364

of Theorem 3.22). Although our proof of Theorem 3.5 is conceptually similar to the approach in365

Schrijver [17], we need to handle some additional technicalities related to irrationality. In particular,366

we extend the supporting results used to prove Corollary 23.4b(i) in Schrijver [17] to the nonrational367

case. To our knowledge, no previous work has explicitly treated the case where b is nonrational.368

Theorem 3.5 in the rational case was originally obtained by Blair and Jeroslow in [6, Theo-369

rem 5.1]), but used a different methodology. This work in turn builds on seminal work on integer370

programming duality by Wolsey in [23, 24]. Wolsey showed that the family of subadditive functions371

suffices to give a result like Theorem 3.5; Blair and Jeroslow improved this to show that the smaller372

family of Chvátal functions suffice.373

To prove Theorem 3.5 we need some preliminary definitions and results. A system of linear374

inequalities Ax ≥ b where A = (aij) has aij ∈ Q for all i, j (that is, A is rational) is totally dual375

integral (TDI) if the maximum in the LP-duality equation376

min{c>x : Ax ≥ b} = max{y>b : A>y = c, y ≥ 0}377

has an integral optimal solution y for every integer vector c for which the minimum is finite. Note378

that rationality of b is not assumed in this definition. When A is rational, the system Ax ≥ b can379

be straightforwardly manipulated so that all coefficients of x on the right-hand side are integer.380

Thus, we may often assume without loss that A is integral.381

For our purposes, the significance of a system being TDI is explained by the following result.382

For any polyhedron P ⊆ Rn, P ′ denotes its Chvátal closure4. We also recursively define the t-th383

Chvátal closure of P as P (0) := P , and P (t+1) = (P (t))′ for i ≥ 1.384

Theorem 3.6 (See Schrijver [17] Theorem 23.1). Let P = {x : Ax ≥ b} be nonempty and assume385

A is integral. If Ax ≥ b is a TDI representation of the polyhedron P then386

P ′ = {x : Ax ≥ dbe}. (3.10)387

3We say a vector is nonrational if it has at least one component that is not a rational number. We use this
terminology instead of irrational, which we take to mean having no rational components.

4The Chvátal closure of P is defined in the following way. For any polyhedron Q ⊆ Rn, let QI := conv(Q ∩ Zn)
denote its integer hull. Then P ′ :=

⋂
{HI : H is a halfpsace containing P}.
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We now show how to manipulate the system Ax ≥ b to result in one that is TDI. The main388

power comes from the fact that this manipulation depends only on A and works for every right-hand389

side b.390

Theorem 3.7. Let A be a rational m × n matrix. Then there exists another nonnegative q ×m391

rational matrix U such that for every b ∈ Rm the polyhedron P = {x ∈ Rn : Ax ≥ b}, has a392

representation P = {x ∈ Rn : Mx ≥ b′} where the system Mx ≥ b′ is TDI and M = UA, b′ = Ub.393

Proof. First construct the matrix U. Let P({1, 2, . . . ,m}) denote the power set of {1, 2, . . . ,m}. For394

each subset of rows ai of A with i ∈ S where S ∈ P({1, 2, . . . ,m}), define the cone395

C(S) := {a ∈ Rn : a =
∑
i∈S

uia
i, ui ≥ 0, i ∈ S}. (3.11)396

By construction the cone C(S) in (3.11) is a rational polyhedral cone. Then by Theorem 16.4 in397

Schrijver [17] there exist integer vectors mk, for k = kS1 , k
S
2 . . . , k

S
qS

that define a Hilbert basis for398

this cone. In this indexing scheme qS is the cardinality of the set S. We assume that there are399

qS distinct indexes kS1 , k
S
2 . . . , k

S
qS

assigned to each set S in the power set P({1, 2, . . . ,m}). Since400

each mk ∈ C(S) there is a nonnegative nonnegative vector uk that generates mk. Without loss401

each uk is an m−dimensional vector since we can assume a component of zero for each component402

uk not indexed by S. Thus ukA = mk. Define a matrix U to be the matrix with rows uk for all403

k = kS1 , k
S
2 . . . , k

S
qS

and S ∈ P({1, 2, . . . ,m}). Then M = UA is a matrix with rows corresponding404

to all of the Hilbert bases for the power set of {1, 2, . . . ,m}. That is, the number of rows in M is405

q =
∑

S∈P({1,2,...,m}) qS .406

We first show that Mx ≥ b′ is a TDI representation of407

P = {x ∈ Rn : Ax ≥ b} = {x ∈ Rn : Mx ≥ b′}. (3.12)408

Note that {x ∈ Rn : Ax ≥ b} and {x ∈ Rn : Mx ≥ b′} define the same polyhedron since the409

system of the inequalities Mx ≥ b′ contains all of the inequalities Ax ≥ b (this is because the power410

set of {1, 2, . . . ,m} includes each singleton set) plus additional inequalities that are nonnegative411

aggregations of inequalities in the system Ax ≥ b. In order to show Mx ≥ b′ is a TDI representation,412

assume c ∈ Rn is an integral vector and the minimum of413

max{yb′ : yM = c, y ≥ 0} (3.13)414

is finite. It remains to show there is an integral optimal dual solution to (3.13). By linear program-415

ming duality min{cx|Mx ≥ b′} has an optimal solution x̄ and416

max{yb′ : yM = c, y ≥ 0} = min{cx : Mx ≥ b′}. (3.14)417

Then by equation (3.12)418

min{cx : Mx ≥ b′} = min{cx : Ax ≥ b}. (3.15)419

and min{cx : Ax ≥ b} also has optimal solution x̄. Then again by linear programming duality420

min{cx : Ax ≥ b} = max{ub : uA = c, u ≥ 0}. (3.16)421
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Let ū be an optimal dual solution to max{ub : uA = c, u ≥ 0}. Let i index the strictly positive422

ūi and define S = {i : ūi > 0}. By construction of M there is a subset of rows of M that form423

a Hilbert basis for C(S). By construction of C(S), ūA = c implies c ∈ C(S). Also, since ū is424

an optimal dual solution, it must satisfy complementary slackness. That is, ūi > 0 implies that425

aix̄ = bi. Therefore S indexes a set of tight constraints in the system Ax̄ ≥ b. Consider an arbitrary426

element mk of the Hilbert basis associated with the cone C(S). There is a corresponding m−vector427

uk with support in S and428

ukAx̄ =
∑
i∈S

uki a
ix̄ =

∑
i∈S

uki bi = ukb = b′k.429

Since ukA = mk and ukb = b′k we have430

mkx̄ = b′k, ∀k = kS1 , k
S
2 . . . , k

S
qS
. (3.17)431

As argued above, c ∈ C(S) and is, therefore, generated by nonnegative integer multiples of the mk
432

for k = kS1 , k
S
2 . . . , k

S
qS
. That is, there exist nonnegative integers ȳk such that433

c =

kSqS∑
k=kS1

ȳkm
k. (3.18)434

Hence there exists a nonnegative q-component integer vector ȳ with support contained in the435

set indexed by kS1 , k
S
2 . . . , k

S
qS

such that436

c = ȳM. (3.19)437

Since ȳ ≥ 0, ȳ is feasible to the left hand side of (3.14). We use (3.17) and (3.18) to show438

ȳb′ = cx̄, (3.20)439

which implies that ȳ is an optimal integral dual solution to (3.13) (since x̄ and ȳ are primal-dual440

feasible), implying the result.441

To show (3.20), use the fact that the support of ȳ is contained in the set indexed by kS1 , k
S
2 . . . , k

S
qS

442

which implies443

ȳb′ =

kSqS∑
k=kS1

ȳkb
′
k. (3.21)444

Then by (3.17) substituting mkx̄ for b′k gives445

ȳb′ =

kSqS∑
k=kS1

ȳkb
′
k =

kSqS∑
k=kS1

ȳkm
kx̄. (3.22)446

Then by (3.18) substituting c for
∑kSqS

k=kS1
ȳkm

k gives447

ȳb′ =

kSqS∑
k=kS1

ȳkb
′
k =

kSqS∑
k=kS1

ȳkm
kx̄ = cx̄. (3.23)448

This gives (3.20) and completes the proof.449
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Remark 3.8. When S is a singleton set, i.e. S = {i}, the corresponding mk for k = kS1 may be a450

scaling of the corresponding ai. This does not affect our argument that (3.12) holds. /451

Remark 3.9. Each of the mk vectors that define each Hilbert basis may be assumed to be integer.452

Therefore if A is an integer matrix, M is an integer matrix. /453

Next we will also need a series of results about the interaction of lattices and convex sets.454

Definition 3.10. Let V be a vector space over R. A lattice in V is the set of all integer combinations455

of a linearly independent set of vectors {a1, . . . , am} in V. The set {a1, . . . , am} is called the basis456

of the lattice. The lattice is full-dimensional if it has a basis that spans V . /457

Definition 3.11. Given a full-dimensional lattice Λ in a vector space V , a Λ-hyperplane is an affine458

hyperplane H in V such that H = aff(H∩Λ). This implies that in V = Rn, if H is a Zn-hyperplane,459

then H must contain n affinely independent vectors in Zn. /460

Definition 3.12. Let V be a vector space over R and let Λ be a full-dimensional lattice in V . Let461

HΛ denote the set of all Λ-hyperplanes that contain the origin. Let C ⊆ V be a convex set. Given462

any H ∈ HΛ, we say that the Λ-width of C parallel to H, denoted by `(C,Λ, V,H), is the total463

number of distinct Λ-hyperplanes parallel to H that have a nonempty intersection with C. The464

lattice-width of C with respect to Λ is defined as `(C,Λ, V ) := minH∈HΛ
`(C,Λ, V,H). /465

We will need this classical “flatness theorem” from the geometry of numbers – see Theorem466

VII.8.3 on page 317 of Barvinok [3], for example.467

Theorem 3.13. Let V ⊆ Rn be a vector subspace with dim(V ) = d, and let Λ be a full-dimensional468

lattice in V . Let C ⊆ V be a compact, convex set. If C ∩ Λ = ∅, then `(C,Λ, V ) ≤ d5/2.469

We will also need a theorem about the structure of convex sets that contain no lattice points470

in their interior, originally stated in Lovasz [11].471

Definition 3.14. A convex set S ⊆ Rn is said to be lattice-free if int(S) ∩ Zn = ∅. A maximal472

lattice-free set is a lattice-free set that is not properly contained in another lattice-free set. /473

Theorem 3.15 (Theorem 1.2 in Basu et. al. [4] and also Lovasz [11]). A set S ⊂ Rn is a maximal474

lattice-free convex set if and only if one of the following holds:475

(i) S is a polyhedron of the form S = P + L where P is a polytope, L is a rational linear space,476

dim(S) = dim(P ) + dim(L) = n, S does not contain any integral point in its interior and477

there is an integral point in the relative interior of each facet of S;478

(ii) S is an irrational affine hyperplane of Rn.479

The previous result is used to prove the following.480

Theorem 3.16. Let A ∈ Rm×n be a rational matrix. Then for any b ∈ Rm such that P := {x ∈481

Rn : Ax ≥ b} satisfies P ∩ Zn = ∅, we must have `(P,Zn,Rn) ≤ n5/2. Note that P is not assumed482

to be bounded.483
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Proof. If P is not full-dimensional, then aff P is given by a system {x : Ãx = b̃} where the matrix484

Ã is rational, since the matrix A is rational and Ã can be taken to be a submatrix of A. Now take a485

Zn-hyperplane H that contains {x|Ãx = 0}. Then `(P,Zn,Rn, H) = 0 or 1, depending on whether486

the translate in which P is contained in a Zn-hyperplane translate of H or not. This immediately487

implies that `(P,Zn,Rn) is either 0, 1.488

Thus, we focus on the case when P is full-dimensional. By Theorem 3.15, there exists a basis489

v1, . . . , vn of Zn, a natural number k ≤ n, and a polytope C contained in the linear span of490

v1, . . . , vk, such that P ⊆ C + L, where L = span({vk+1, . . . , vn}) and (C + L) ∩ Zn = ∅ (the491

possibility of k = n is allowed, in which case L = {0}).492

Define V = span({v1, . . . , vk}) and Λ as the lattice formed by the basis {v1, . . . , vk}. Since C is493

a compact, convex set in V and C ∩Λ = ∅, by Theorem 3.13, we must have that `(C,Λ, V ) ≤ k5/2.494

Every Λ-hyperplane H ⊆ V can be extended to a Zn-hyperplane H ′ = H + L in Rn. This shows495

that `(C + L,Zn,Rn) ≤ k5/2 ≤ n5/2. Since P ⊆ C + L, this gives the desired relation that496

`(P,Zn,Rn) ≤ n5/2.497

Example 3.17. If A is not rational, the above result is not true. Consider the set498

P := {(x1, x2) : x2 =
√

2(x1 − 1/2)}499

Now, P ∩ Z2 = ∅. Any Z2-hyperplane containing (0, 0) is the span of some integer vector. All500

such hyperplanes intersect P in exactly one point, since the hyperplane defining P has an irrational501

slope and so intersects every Z2-hyperplane in exactly one point. Hence, `(P,Z2,R2) = ∞ for all502

H ∈ HZ2 and so `(P,Z2,R2) =∞. /503

Theorem 3.16 will help to establish bounds on the Chvátal rank of any lattice-free polyhedron504

with a rational constraint matrix. First we make the following modification of equation (6) on page505

341 in Schrijver [17].506

Lemma 3.18. Let A ∈ Rm×n be a rational matrix. Let b ∈ Rm (not necessarily rational) and let507

P := {x ∈ Rn : Ax ≥ b}. Let F ⊆ P be a face. Then F (t) = P (t) ∩ F for any t ∈ N.508

Proof. The proof follows the proof of (6) in Schrijver [17] on pages 340-341 very closely. As509

observed in Schrijver [17], it suffices to show that F ′ = P ′ ∩ F .510

Without loss of generality, we may assume that the system Ax ≥ b is TDI (if not, then throw511

in valid inequalities to make the description TDI). Let F = P ∩ {x : αx = β} for some integral512

α ∈ Rn. The system Ax ≥ b, αx ≥ β is also TDI, which by Theorem 22.2 in Schrijver [17] implies513

that the system Ax ≤ b, αx = β is also TDI (one verifies that the proof of Theorem 22.2 does not514

need rationality for the right hand side).515

Now if β is an integer, then we proceed as in the proof of the Lemma at the bottom of page516

340 in Schrijver [17].517

If β is not an integer, then αx ≥ dβe and αx ≤ bβc are both valid for F ′, showing that F ′ = ∅.518

By the same token, αx ≥ dβe is valid for P ′. But then P ′ ∩ F = ∅ because dβe > β.519

We now prove the following modification of Theorem 23.3 from Schrijver [17].520

Theorem 3.19. For every n ∈ N, there exists a number t(n) such that for any rational matrix521

A ∈ Rm×n and b ∈ Rm (not necessarily rational) such that P := {x ∈ Rn : Ax ≥ b} satisfies522

P ∩ Zn = ∅, we must have P (t(n)) = ∅.523
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Proof. We closely follow the proof in Schrijver [17]. The proof is by induction on n. The base case524

of n = 1 is simple with t(1) = 1. Define t(n) := n5/2 + 2 + (n5/2 + 1)t(n− 1).525

Since P ∩ Zn = ∅, `(P,Zn,Rn) ≤ n5/2 by Theorem 3.16, this means that there is an integral526

vector c ∈ Rn such that527

bmax
x∈P

cTxc − dmin
x∈P

cTxe ≤ n5/2. (3.24)528

Let δ = dminx∈P c
Txe. We claim that for each k = 0, . . . , n5/2 + 1, we must have529

P (k+1+k·t(n−1)) ⊆ {x : cTx ≥ δ + k}. (3.25)530

For k = 0, this follows from definition of P ′. Suppose we know (3.25) holds for some k̄; we531

want to establish it for k̄ + 1. So we assume P (k̄+1+k̄·t(n−1)) ⊆ {x : cTx ≥ δ + k̄}. Now, since532

P ∩ Zn = ∅, we also have P (k̄+1+k̄·t(n−1)) ∩ Zn = ∅. Thus, the face F = P (k̄+1+k̄·t(n−1)) ∩ {x :533

cTx = δ+ k̄} satisfies the induction hypothesis and has dimension strictly less than n. By applying534

the induction hypothesis on F , we obtain that F t(n−1) = ∅. By Lemma 3.18, we obtain that535

P (k̄+1+k̄·t(n−1)+t(n−1)) ∩ {x : cTx = δ + k̄} = ∅. Thus, applying the Chvátal closure one more time,536

we would obtain that P (k̄+1+k̄·t(n−1)+t(n−1)+1) ⊆ {x : cTx ≥ δ + k̄ + 1)}. This confirms (3.25) for537

k̄ + 1.538

Using k = n5/2 + 1 in (3.25), we obtain that P (n5/2+2+(n5/2+1)·t(n−1)) ⊆ {x : cTx ≥ δ+n5/2 + 1}.539

From (3.24), we know that maxx∈P c
Tx < δ+ n5/2 + 1. This shows that P (n5/2+2+(n5/2+1)·t(n−1)) ⊆540

P ⊆ {x : cTx < δ + n5/2 + 1}. This implies that P (n5/2+2+(n5/2+1)·t(n−1)) = ∅, as desired.541

This allows us to establish the following.542

Theorem 3.20 (c.f. Theorem 23.4 in Schrijver [17]). For each rational matrix A there exists a543

positive integer t such that for every right hand side vector b (not necessarily rational),544

{x : Ax ≥ b}(t) = {x : Ax ≥ b}I . (3.26)545

Proof. The proof proceeds exactly as the proof of Theorem 23.4 in Schrijver [17]. The proof in546

Schrijver [17] makes references to Theorems 17.2, 17.4 and 23.3 from Schrijver [17]. Every instance of547

a reference to Theorem 23.3 should be replaced with a reference to Theorem 3.19 above. Theorems548

17.2 and 17.4 do not need the rationality of the right hand side.549

We now have all the machinery we need to prove Theorem 3.5.550

Proof of Theorem 3.5. Given A we can generate a nonnegative matrix U using Theorem 3.7 so that551

UAz ≥ Ub is TDI for all b. Then by Theorem 3.6 we get the Chvátal closure using the system552

UAz ≥ dUbe. Using Theorem 3.20 we can apply this process t times independent of b and know we553

end up with {z : Az ≥ b}I . We then apply Fourier-Motzkin elimination to this linear system and554

the desired fi’s are obtained.555

With Theorem 3.5 in hand we can now prove the main theorem of this subsection. This uses556

the following straightforward lemma that is stated without proof.557

Lemma 3.21. Let T : Rn1 → Rn2 be an affine transformation involving rational coefficients, and558

let f : Rn2 → R be an affine Chvátal function. Then f ◦ T : Rn1 → R can be expressed as559

f ◦ T (x) = g(x) for some affine Chvátal function g : Rn1 → R.560
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Figure 2: The DMIAC set in Example 3.24 that is not in (MILP-R).

Theorem 3.22. Every MILP-R set is an AC set. That is, (MILP-R) ⊆ (AC).561

Proof. Let m,n, p, q ∈ N. Let A ∈ Qm×n, B ∈ Qm×p, C ∈ Qm×q be any rational matrices, and let562

d ∈ Qm. Define F = {(x, y, z) ∈ Rn × Rp × Zq : Ax+By + Cz ≥ d}. It suffices to show that the563

projection of F onto the x space is an AC set.564

By applying Fourier-Motzkin elimination on the y variables, we obtain rational matrices A′, C ′565

with m′ rows for some natural number m′, and a vector d′ ∈ Qm′ such that the projection of F566

onto the (x, z) space is given by F := {(x, z) ∈ Rn × Zq : A′x+ C ′z ≥ d′}.567

Let fi : Rm′ → R, i ∈ I be the set of Chvátal functions obtained by applying Theorem 3.5 to568

the matrix C ′. It suffices to show that the projection of F onto the x space is F̂ := {x ∈ Rn :569

fi(d
′ − A′x) ≤ 0, i ∈ I} since for every i ∈ I, fi(d

′ − A′x) ≤ 0 can be written as gi(x) ≤ 0570

for some affine Chvátal function gi, by Lemma 3.21.5 This follows from the following sequence of571

equivalences.572

x ∈ projx(F) ⇔ x ∈ projx(F)

⇔ ∃z ∈ Zq such that (x, z) ∈ F
⇔ ∃z ∈ Zq such that C ′z ≥ d′ −A′x
⇔ fi(d

′ −A′x) ≤ 0 for all i ∈ I (By Theorem 3.5)

⇔ x ∈ F̂ . (By definition of F̂)

573

Remark 3.23. We note in the proof of Theorem 3.22 that if the right hand side d of the mixed-574

integer set is 0, then the affine Chvátal functions gi are actually Chvátal functions. This follows575

from the fact that the function g in Lemma 3.21 is a Chvátal function if f is a Chvátal function576

and T is a linear transformation. /577

3.3 Proof of main result578

The proof makes reference to the following example of a DMIAC set that is not in (MILP-R).579

Example 3.24. Consider the set E := {(λ, 2λ) : λ ∈ Z+} ∪ {(2λ, λ) : λ ∈ Z+} as illustrated in580

Figure 2. This set is a DMIAC set because it can be expressed as E = {x ∈ Z2
+ : 2x1 − x2 =581

0} ∪ {x ∈ Z2
+ : x1 − 2x2 = 0}.582

5This is precisely where we need to allow the arguments of the fi’s to be nonrational because the vector d′ −A′x
that arise from all possible x is sometimes nonrational.
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We claim that E is not the projection of any MILP set. Indeed, by Theorem 2.1 every MILP-583

representable set has the form (2.1). Suppose E has such a form. Consider the integer points584

in E of the form (λ, 2λ) for λ ∈ Z+. There are infinitely many such points and so cannot be585

captured inside of the finitely-many polytopes Pk in (2.1). Thus, the ray λ(1, 2) for λ ∈ Z+ must586

lie inside intcone{r1, . . . , rt}. Identical reasoning implies the ray λ(2, 1) for λ ∈ Z+ must also lie587

inside intcone{r1, . . . , rt}. But then, every conic integer combination of these two rays must lie in588

E. Observe that (3, 3) = (2, 1) + (1, 2) is one such integer combination but (3, 3) /∈ E. We conclude589

that E cannot be represented in the form (2.1) and hence E is not MILP-representable. /590

We now prove the main result of the paper.591

Proof of Theorem 2.6. The relationships592

(LP) = (LP-R) ( (MILP) ( (MILP-R)593

are known but we include the proof for completeness. By Fourier-Motzkin elimination we know that594

projecting variables from a system of linear inequalities gives a new system of linear inequalities so595

(LP) = (LP-R). There are sets in (MILP) that are not convex while LP sets are convex polyhedra, so596

(LP) ( (MILP). Since (LP) = (LP-R), (LP-R) ( (MILP). Since a set is always a (trivial) projection597

of itself, (MILP) ⊆ (MILP-R). See Williams [21] for an example of a set that is in (MILP-R) but598

not in (MILP). Therefore (MILP) ( (MILP-R).599

We now establish the new results600

(MILP-R) = (AC) = (AC-R) = (MIAC) = (MIAC-R) ( (DMIAC). (3.27)601

We first show the equalities. We show in Theorem 3.22 that if a set S ∈ (MILP-R), then S ∈602

(AC) so (MILP-R) ⊆ (AC). Since a set is always a (trivial) projection of itself, (AC) ⊆ (AC-R).603

Also it trivially follows that (AC-R) ⊆ (MIAC-R) and (AC) ⊆ (MIAC). Finally, since a set is a604

projection of itself, (MIAC) ⊆ (MIAC-R). Thus, we obtain the two sequences: (MILP-R) ⊆ (AC) ⊆605

(AC-R) ⊆ (MIAC-R), and (MILP-R) ⊆ (AC) ⊆ MIAC ⊆ (MIAC-R). To complete the proof of the606

equalities in (3.27), it suffices to show that (MIAC-R) ⊆ (MILP-R). Consider any S ∈ (MIAC-R).607

By definition, there exists a MIAC set C ⊆ Rn×Rp×Zq such that S = projx(C), where we assume608

x refers to the space in which S lies in, and we let (y, z) ∈ Rp × Zq refer to the extra variables609

used in the description of C. In Theorem 3.3, we show that C ∈ (MIAC) implies C ∈ (MILP-R),610

i.e., there is a MILP set C ′ in a (possibly) higher dimension such that C = projx,y,z(C
′). Thus,611

S = projx(C) = projx(projx,y,z(C
′)) = projx(C ′). So, S ∈ (MILP-R).612

Trivially, (MIAC) is a subset of (DMAIC). From Example 3.24 we know (MILP-R) ⊂ (DMIAC).613

Since (MILP-R) = (MIAC-R) we now have the complete proof of (3.27).614

4 Connections to consistency testers615

We now explore the conceptual connection of our main result to an established theory of consistency616

testers in linear and pure integer systems. Let A be an m by n matrix. We call V : Rm → R an617

LP-consistency tester for A if for any b ∈ Rm, V (b) ≤ 0 if and only if {x ∈ Rn : Ax ≥ b} is618

nonempty. We call F : Rm → R an IP-consistency tester for A if for any b ∈ Rm, F (b) ≤ 0 if and619

only if {z ∈ Zn : Az ≥ b} is nonempty. The following result shows that FM elimination is a source620

of LP-consistency testers.621
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Theorem 4.1 (Corollary 2.11 in Martin [14]). Let u1, . . . , ut be the FM multipliers of the matrix622

A from eliminating all x variables in the system Ax ≥ b. Then U(b) = maxi=1,...,t u
ib is an LP-623

consistency tester for A.624

Any LP-consistency tester that arises from applying Fourier-Motzkin to the matrix A is called625

a FM-based LP-consistency tester. For a given matrix A there can be more than one FM-based626

LP-consistency tester. The FM elimination procedure has two flexibilities that can be adjusted in627

a given implementation:628

(F1) (Scaling) Differing nonnegative scalings of the rows of the matrix in the process of eliminating629

a column. For instance, a common implementation is to first normalize the coefficients in the630

column to be eliminated to be ±1.631

(F2) (Ordering) Different orders of eliminating columns. For instance, one could eliminate the632

first column, followed by the second, etc. Alternatively one could eliminate the last column,633

second-to-last, etc.634

Different choices of scaling and ordering gives rise to different sets of inequalities involving b635

and hence different consistency testers. However, all FM-based LP-consistency testers share some636

common properties. We call the cone CP = {u ∈ Rm : uA = 0, u ≥ 0} the projection cone of A.637

The FM multipliers have the following relationship with CP .638

Theorem 4.2 (Proposition 2.3 in Martin [14]). The extreme rays of the projection cone CP are639

contained in the set
{
u1, . . . , ut

}
of FM multipliers of matrix A.640

This connection grounds the following result.641

Theorem 4.3. Let e1, . . . , er denote a set of extreme rays of CP and set E(b) = maxk=1,...,r e
kb.642

Then643

(i) E is an LP-consistency tester, and644

(ii) every LP-consistency tester V of the form V (b) = maxi∈I v
ib where I is a finite index set and645

vi ∈ Rm is such that the set
{
vi : i ∈ I

}
contains a positive multiple of each extreme ray ek.646

Proof. (i) To show E is a consistency tester, first suppose Ax ≥ b is consistent. Then ekAx ≥ ekb647

is also feasible since ek ≥ 0 and since ekA = 0 this implies 0 ≥ ekb. Since this is true for all k648

we have E(b) ≤ 0. Next, suppose Ax ≥ b is inconsistent. Then by Farkas Lemma there exists a649

u ∈ CP such that uA = 0, u ≥ 0 and ub > 0. Since u is a conic combination of the ek, this means650

there exists a k such that ekb > 0. Hence, E(b) > 0. This implies E is a consistency tester.651

(ii) Let V be a consistency tester and let e be an arbitrary extreme ray of CP . Let J =652

{j : ej > 0} denote the support of e. We make the following two claims, whose proofs are straight-653

forward.654

Claim 1. The support of any of the vi cannot be a strict subset of the support of e. In particular,655

if {j : vij > 0} is a subset of J then it must equal J .656

Claim 2. If {j : vij > 0} = J then vi is a positive multiple of e.657
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Now, consider the right-hand side b̄ where b̄j = 1 for all j ∈ J and b̄j = −M for all j /∈ J where658

M is an arbitrarily large real number. Since eb̄ > 0, the system Ax ≥ b̄ is not feasible. Then, since659

V is an LP-consistency tester, there exists an i such that vib̄ > 0. But since M is arbitrarily large660

it must be the case that vij = 0 for all j /∈ J . But this implies that the support of vi is contained661

in the support of J , and so its support must be exactly J by Claim 1. Then Claim 2 implies vi is662

a positive multiple of e.663

Hence, every extreme ray is a positive multiple of some vi and so the theorem is proved.664

One interpretation of the previous result is that a set of extreme rays of CP forms a minimal665

LP-consistency tester for A. For this reason, for LP-consistency tester V (b) = maxi∈I v
ib vi if666

vector vi is not an extreme ray of CP we call it redundant. Typically, FM-based LP-consistency667

involve many redundant vectors (although see Example 4.8 below). A key idea of this section is668

that although these vectors are redundant for an LP-consistency tester, they may not be for an669

associated IP-consistency testers. Our next task is to make this statement precise.670

One interpretation of Theorem 3.5 is that there exists an IP-consistency tester of671

the form F (b) = maxi∈I fi(b) where fi for i ∈ I is a finite collection of Chvátal functions.672

Our goal is to connect IP-consistency testers of this type to FM-based LP-consistency testers. To673

do so we need the following definitions and observations.674

Definition 4.4. The carrier of a Chvátal function f : Rn → R, denoted carr(f), is the linear675

function g that results when all ceiling operators in f are removed. For example, if f(x1, x2) =676

ddx1 + x2e+ 3x2e+ x1 then carr(f) = 2x1 + 4x2. /677

For a more precise definition of carrier see Definition 2.9 in Blair and Jeroslow [6], although678

this level of formality is not needed for our development. An important fact is that the carrier of679

the Chvátal function is unique.680

Related to the concept of the carrier is the reverse operation, taking a linear function and681

turning it into a Chvátal function through the use of ceiling operations.682

Definition 4.5. A ceilingization of a linear function g, denoted ceil g, is any Chvátal function f683

such that carr(f) = g.684

The ceilingization of a linear function need not be unique. Indeed, we have two types of (related)685

flexibilities.686

(F3) (Ceiling pattern) Given a linear function g, ceilings can be inserted to include just certain687

variables, certain terms, or across terms. For instance, d2x1 + 4x2e, d2x1e+ 4x2, and d2x1e+688

d4x2e are all ceilingizations of g(x1, x2) = 2x1 + 4x2.689

(F4) (Break-ups) New terms can be created by “breaking up” terms and inserting ceilings within690

the newly created terms. For instance, dx1e+ dx1e+ 4x2 and d1
2x1e+ d1

2x1e+ dx1e+ 4x2 are691

both ceilingizations of g(x1, x2) = 2x1 + 4x2.692

The following result builds a connection between LP-consistency testers and IP-consistency693

testers through the lens of carriers.694

Theorem 4.6 (Theorem 5.20 in Blair and Jeroslow [6]). If F (b) = maxi∈I fi(b) is an IP-consistency695

tester for A where the fi are Chvátal functions and I is finite, then G(b) = maxi∈I gi(b) is an LP-696

consistency tester for A, where gi = carr(fi) for i ∈ I.697
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In other words, given an IP-consistency tester based on Chvátal functions, it is a simple matter698

to produce an LP-consistency tester – just erase all the ceilings! However, this raises the question699

of a potential converse.700

Question 1. Given an LP-consistency tester G(b) = maxi∈I gi(b) where gi are linear for all i and701

I is finite, does there exist a ceilingization fi of the gi for all i such that F (b) = maxi∈I fi(b) is an702

IP-consistency tester?703

For brevity, we abuse terminology and call F (b) = maxi∈I fi(b) a ceilingization of G(b) =704

maxi∈I gi(b) if each fi is a ceilingization of gi. Then, we can rephrase the question as whether there705

always exists a ceilingization of an LP-consistency that is an IP-consistency tester.706

The answer to this question is “no”, as illustrated in the following example.707

Example 4.7. Consider the linear system708

−x1 +1
2x2 − 1

10x3 ≥ b1
x1 −1

4x2 ≥ b2
−x2 +x3 ≥ b3

x3 ≥ b4
−x3 ≥ b5 .

(4.1)709

710

We generate an LP-consistency tester G using FM elimination (and Theorem 4.1). FM elimination711

yields712

0 ≥ 2b1 + 2b2 + 1
2b3 + 3

10b5 (4.2)713

0 ≥ 1
10b4 + 1

10b5. (4.3)714
715

when eliminating the variables in the order x1, x2, then x3. This yields the LP-consistency tester716

G(b1, b2, b3, b4, b5) = max
{

2b1 + 2b2 + 1
2b3 + 3

10b5,
1
10b4 + 1

10b5
}

(4.4)717

We now show that there is no possible ceilingization of G that yields an IP consistency tester. Let718

B denote the set of all b = (b1, . . . , b5) ∈ R5 such that there exist x1, x2, x3 ∈ Z satisfying system719

(4.1). In particular, b1 = (0, 0, 0, 1,−1) /∈ B while b2 = (−1, 0, 0, 1,−1) ∈ B. Consider b1. This720

forces x3 = 1 and the only feasible values for x1 are 1/10 ≤ x1 ≤ 4/10. Therefore, for this set of721

b values applying the ceiling operator to some combination of terms in (4.2)- (4.3) must result in722

either (4.2) positive or (4.3) positive. Since b11 = b12 = b13 = 0 and b15 = b25 = −1 there is no ceiling723

operator that can be applied to any term in (4.2) to make the right hand side positive. Hence a724

ceiling operator must be applied to (4.3) in order to make the right hand side positive for b14 = 1725

and b25 = −1. However, consider b2. For this right-hand-side, x1 = x2 = x3 = 1 is feasible. Since we726

still have b24 = 1 and b25 = −1, the ceiling operator applied to (4.3) will incorrectly conclude that727

there is no integer solution with right-hand side b2. /728

In this example the LP-consistency tester (4.4) is minimal in the sense of Theorem 4.3 – it has729

only two linear terms in the LP-consistency tester and both are extreme rays of the projection730

cone. This suggests that although redundant vectors are not needed for the linear cases, they may731

be needed in the integer case. Since FM elimination is typically a source of redundant vectors, the732

next question refines Question 1 in this context.733
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Question 2. Given a matrix A, does there exist an FM-based LP-consistency tester G for A such734

that there exists a ceilingization F of G that is an IP-consistency tester for A.735

To our knowledge, this question is open. Indeed, it seems hard to answer because of the736

inherent flexibilities in deriving FM-based LP-consistency testers and in ceilingizing affine functions737

– (F1)–(F4) provide four sources of flexibility that can be exploited in deriving a G and F to738

answer Question 2 positively. The following examples show the power of this flexibility, but also739

its limitations.740

Example 4.8 (Example 4.7, continued). We already showed in Example 4.7 that there is no741

ceilingization of LP-consistency tester (4.4) that yields an IP consistency tester. We demonstrated742

this by showing every resulting ceilingization cannot separate b1 and b2, while b1 is not a feasible743

right-hand side and b2 is. In other words, flexibilities (F3) and (F4) are not sufficient, given a744

particular FM-based LP-consistency tester.745

However, (4.4) is not the only FM-based LP-consistency tester possible. We leverage flexibility746

(F2) and eliminate the variables in a different order: eliminate x2 first, followed by x3 then x1 to747

yield the following:748

0 ≥ 4b1 + 4b2 + b3 + 1
5b4 + 4

5b5749

0 ≥ 16
3 b1 + 16

3 b2 + 4b3 + 4
5b5750

0 ≥ b4 + b5.751
752

Observe that there is a simple ceilingization that can separate b1 and b2. Simply round the top753

inequality to 4b1 + 4b2 + b3 + d1
5b4e+ d

4
5b5e. Indeed, evaluated at b1 = (0, 0, 0, 1,−1) this ceilingized754

inequality evaluations to 0 6≥ d1
5(1)e + d4

5(−1)e = 1. It is straightforward to see that b2 is still755

feasible. This overcomes the deficiency discussed in Example 4.7. Observe that in the above three756

inequalities involving the bi, one is redundant, in the sense of not being a conic combination of the757

other two.758

Another way to approach this example is to simply add a redundant inequality x1 ≥ b1 + 2b2 +759

1
10b4 to the original system (4.1). Integrality of x1 implies x1 ≥ db1 +2b2 + 1

10b4e. Applying Fourier-760

Motzkin elimination to (4.1) along with x1 ≥ db1 + 2b2 + 1
10b4e generates the additional inequality761

0 ≥ b1 + 1
2b3 + db1 + 2b2 + 1

10b4e+ 4
10b5, which separates b1 and b2. The idea of adding redundant762

constraints is central to our method in Section 3. /763

The previous example leaves open the question of whether changing the order of elimination764

in the FM procedure gives rise to a consistency tester for the corresponding integer program.765

The next example shows that changing the order may be insufficient given a particular scheme of766

ceilingization.767

Example 4.9. Consider the linear system768

3x1 +2x2 ≥ b1
−3x1 −2x2 ≥ b2

3x1 −2x2 ≥ b3
−3x1 +2x2 ≥ b4 .

(4.5)769

770

We will now apply Fourier-Motzkin on this system with a very simple ceilingization rule: whenever771

we derive a constraint with integer coefficients on the left hand side, we put a ceiling operator on772
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the right hand side. Fourier-Motzkin will be applied with the canonical scalings (see (F1)) where773

the variable being eliminated has coefficients ±1. Moreover, we will apply the procedure under all774

possible variable orderings. Under both orderings, we will see that the Chvátal inequalities obtained775

do not give a consistency tester for the integer program. This will show that the flexibility of (F2)776

alone is not enough.777

Under the ordering x1, x2, the final Chvátal inequalities obtained under the above scheme are778

0 ≥ db1e+ db2e
3

, 0 ≥ db3e+ db4e
3

, 0 ≥
⌈
db1e+ db4e

4

⌉
+

⌈
db2e+ db3e

4

⌉
779

Under the ordering x2, x1, the final Chvátal inequalities obtained under the above scheme are780

0 ≥ db1e+ db2e
2

, 0 ≥ db3e+ db4e
2

, 0 ≥
⌈
db1e+ db3e

6

⌉
+

⌈
db2e+ db4e

6

⌉
781

Neither of the above two systems give a consistency tester for the integer feasibility problem for (4.5).782

This is because setting b1 = 1, b2 = −4, b3 = −1, b4 = −2 satisfies all the Chvátal inequalities above.783

However, the polyhedron obtained with these right hand sides in (4.5) does not contain any integer784

points in Z2. /785

Although an answer to Question 2 as stated seems elusive, the theory discussed above (par-786

ticularly, the part that builds on the approach of Schrijver [17]) provides a positive answer to an787

adjusted question. The idea is to add redundant constraints to the initial system Ax ≥ b in order788

to generate even more redundant vectors in the resulting FM-based LP-consistency tester. In other789

words, although the FM procedure does generate redundant vectors from the original system, even790

this level of redundancy is insufficient to produce an IP-consistency tester through ceilingization.791

However, our results from Section 3 do provide a level of “redundancy” that does suffice. This792

insight is captured in the next result.793

Let vkAx ≥ vkb for k = 1, . . . ,K be a collection of redundant inequalities to the linear system794

Ax ≥ b where the vk are independent of b. Let A′ be the matrix A with appended rows vkA for795

k = 1, . . . ,K. Let b′(b) = (b, vkb : k = 1, . . . ,K)>, (that is, if we think of b′ as a function of b,796

appending values to the bottom of b). Let u1, . . . , ut denote a set the FM multipliers for the matrix797

A′.798

Theorem 4.10. There exists a choice of row multipliers vk and FM multipliers ui (as described799

above) such that there exists a ceilingization of G(b) = maxt=1,...,t u
tb′(b) that is an IP-consistency800

tester.801

Proof. This is a consequence of the procedure described in the proof of Theorem 3.5 (which follows802

Theorem 3.20). Observe that the system {x : Ax ≥ b}I is a system of the form A′x ≥ b′ with803

appropriate rounding of the right-hand sides. Then, FM elimination produces an IP-consistency804

tester (this is precisely the conclusion of Theorem 3.5).805

This result provides a perspective on our results in the previous section, which builds on the806

work in Schrijver [17]. The theory of Chvátal closures provides the “right” redundant constraints807

to add to the system, and a method to ceilingize the resulting right-hand sides, to recover an808

IP-consistency tester.809
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5 Connections to variable elimination schemes810

In the last section we saw the power of FM elimination for producing consistency testers for linear811

and some of its potential limitations for producing consistency testers for integer programs. Ex-812

tending the FM elimination procedure to handle the elimination of integer variables has been a813

goal of-repr several researchers in past decades. One benefit of this exploration is the possibility of814

producing IP-consistency testers. Other benefits include solving integer programs and understand-815

ing notions of duality for integer systems (for more details see [1, 20, 22]). This section explores816

some implications of our methodology for the topic of elimination of integer variables.817

To carefully describe what we mean by a variable elimination scheme (VES) we first describe818

the elimination of a single variable. A VES takes a description of a mixed integer set S ⊆ Rn ×Zq
819

involving affine Chvátal functions and algorithmically produces a representation of the projection820

projx−j ,z S for some j ∈ {1, 2, . . . , n} or projx,z−k
S for some k ∈ {1, 2, . . . , q}, again using only affine821

Chvátal functions. We are a bit vague when we say a description of a set “involving affine Chvátal822

functions”. We allow this to include both MIAC sets and DMIAC sets, as defined in Section 2. We823

also restrict attention to elimination schemes that “specialize” to FM elimination when eliminating824

a continuous variable xj that does not appear in any ceiling operations. Indeed, in this case, it is825

straightforward to see that FM suffices to recover the projection.826

Next, we describe how a VES approaches the projection of more than one variable from the set827

S. A VES, like FM elimination, will attack this sequentially. For instance, if we want to find a828

description of the projection projx−j ,z−k
S for some j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , q}, a VES829

will first eliminate x−j (or z−k) to produce projx−j ,z S (or projx,z−k
). Then, the next step is to830

eliminate the remaining variable from the description of the projected set.831

The existing literature focuses on variable elimination schemes (VES’s) for the special case832

where the starting set is the set of pure integer points inside a polyhedron and the output is a833

DMIAC set (after eliminating more than the first variable). The VES of Williams and Hooker [22]834

is described in some detail in Section 5.2 below.835

Our approach (the focus of Section 5.3) complements the existing methods along two important836

directions. First, our method starts with an arbitrary MIAC set, not only mixed integer polyhedral837

sets. Second, we are guaranteed to output a MIAC set, not just a DMIAC set. Also in Section 5.2838

we show that DMIAC sets are not necessarily MILP-R sets. Hence, maintaining a MIAC descrip-839

tion after projection is critical to our characterization result of MILP-R sets as MIAC sets (see840

Example 3.24 below).841

In a related direction, Ryan shows (see Theorem 1 in [16]) that Y is a finitely generated integral842

monoid if and only if there exist Chvátal functions f1, . . . , fp such that Y = {b : fi(b) ≤ 0, i =843

1, . . . , p}. A finitely generated integral monoid Y is MILP representable since, by definition, there844

exists a matrix A such that Y = {b : b = Ax, x ∈ Zn
+}. Thus, an alternate proof of Ryan’s845

characterization follows from Theorems 3.3 and 3.22 and Remark 3.23.846

Ryan [16] further states that “It is an interesting open problem to find an elimination scheme to847

construct the Chvátal constraints for an arbitrary finitely generated integral monoid.” We interpret848

this statement as asking for a VES as defined at the outset of this section. Ryan was aware of the849

methodology of Williams in [21] and this method fell short of her goal. In Section 5.3 we provide850

an approach that positively answers the conjecture of Ryan. In fact, it answers positively the more851

general question: does there exist a VES that provides a MIAC representation of a MILP-R set852

(which is guaranteed to exist by Theorem 3.22)?853
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5.1 Eliminating a single variable, and the difficulty of eliminating subsequent854

variables855

It turns out that eliminating the first integer variable from a linear system can be easily granted856

by a simple extension of FM elimination. Consider the following procedure. For simplicity, assume857

that the first variable to be eliminated is x1. Given a linear system Ax ≥ b where x ∈ Rn and858

A = (aij) and let859

H+ := {i : ai1 > 0}860

H− := {i : ai1 < 0}861

H0 := {i : ai1 = 0}862
863

We will assume that H+ and H− are both nonempty and hence x1 can be eliminated. The case864

where one of H+ or H− being empty means the problem is unbounded in x1 and the integer865

projection in this case is straightforward. The case where both of H+ or H− are empty means that866

x1 does not appear in the system, a case that we ignore.867

FM elimination stems from that fact that if Ax ≥ b where x = (x2, . . . , xn) then868

bp
ap1
−

n∑
j=2

apj
ap1
xj ≤ x1 ≤ bq

aq1
−

n∑
j=2

aqj
aq1
xj (5.1)869

for all p ∈ H+ and q ∈ H−. Conversely, if any choice of variables x2, x3, . . . , xn satisfies870

n∑
j=2

aijxj ≥ bi for i ∈ H0 (5.2)871

n∑
j=2

(
apj
ap1
− aqj

aq1

)
xj ≥ bp

ap1
− bq

aq1
for p ∈ H+ and q ∈ H−, (5.3)872

873

there exists a choice of x1 that satisfies (5.1), resulting in Ax ≥ b where x = (x1, x2, . . . , xn). In874

other words, (5.2)–(5.3) characterizes projx−1
{x ∈ Rn : Ax ≥ b}.875

However, this does not characterize the projection of the integer values of x1. All integer x1876

satisfy (5.1) but the converse may not be true. There is a simple fix. Introduce ceilings as follows:877  bp
ap1
−

n∑
j=2

apj
ap1
xj

 ≤ x1 ≤ bq
aq1
−

n∑
j=2

aqj
aq1
xj (5.4)878

and no additional integer values for x1 can be introduced. This is proven formally in the following879

result.880

Proposition 5.1. The set projx−1
{x ∈ Zn : Ax ≥ b} equal all integer vectors (x2, . . . , xn) such881

that882

n∑
j=2

aijxj ≥ bi for i ∈ H0 (5.5)883

bq
aq1
−

n∑
j=2

aqj
aq1
xj −

 bp
ap1
−

n∑
j=2

apj
ap1
xj

 ≥ 0 for p ∈ H+ and q ∈ H− (5.6)884

885
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Proof. Let (x̄2, . . . , x̄n) ∈ projx−1
{x ∈ Zn : Ax ≥ b}. There exists exists an integer x̄1 such that886

Ax̄ ≥ b where x̄ = (x1, x2, . . . , xn). Hence, it must be that (x̄2, . . . , x̄n) ∈ projx−1
{x ∈ Rn : Ax ≥ b}887

and so (5.1) must be satisfied by x1. Since x1 is integer, it must also satisfy (5.4) when we round888

up the right-hand side of (5.1). Hence, x̄ satisfies the system of equations (5.5)–(5.6).889

Conversely, suppose (x̄2, . . . , x̄n) are integers that satisfy (5.5)–(5.6). Set x̄1 =
⌈

bp
ap1
−
∑n

j=2
apj
ap1
x̄j

⌉
.890

Clearly, this choice of x̄1 satisfies (5.1) and is integer. Hence, x̄ = (x̄1, x̄2, . . . , x̄n) is integer and891

satisfies Ax̄ ≥ b and thus892

(x̄2, . . . , x̄n) ∈ projx−1
{x ∈ Zn : Ax ≥ b} ,893

as required.894

One would like to continue in this way to build a VES that sequentially eliminate variables.895

But there is one key challenge: FM elimination works only on linear systems but (5.5)–(5.6) have896

ceilings!897

This “ceiling quagmire” calls for new ideas. One approach is to introduce disjunctions. This898

technique is described at a high level in the next section. However, as we will see there, introducing899

disjunctions moves us outside the class of MIAC sets that characterize MILP representability. Our900

approach is to “lift” the formulation by introducing new integer variables as in Theorem 3.3 and901

then “project” using the technique described in Theorem 3.22. This “lift-and-project” method is902

described in detail in Section 5.3.903

5.2 The Williams-Hooker elimination scheme904

In this section we briefly describe the main idea and some the implications of the elimination scheme905

of Williams and Hooker [22]. For short (and in parallel to FM elimination), we call their procedure906

WH elimination. WH elimination builds on the previous work of Williams in [19–21].907

WH elimination is a VES that takes as input a polyhedral description of a set of mixed in-908

teger vectors in the form of linear inequalities. Variables are eliminated in a similar manner as909

FM elimination with an additional step of accounting for integrality. This accounting introduces910

two additional mathematical features not present in FM elimination: congruence relations and dis-911

junctions. The congruence relation relates to the coefficients on the variables that are eliminated912

and the disjunctions correspond to an exhaustive enumeration of congruence classes, e.g. 0 mod 3,913

1 mod 3, and 2 mod 3. These new mathematical features get around the “quagmire” described at914

the end of Section 5.1.915

WH elimination is a powerful technique that can be used to analyze a variety of integer916

programming-related questions. For our specific context, it can be used to establish the follow-917

ing result.918

Theorem 5.2. Every MILP-R set is a DMIAC set. That is, (MILP-R) ⊆ (DMIAC).919

Theorem 5.2 is not explicitly stated in [19, 21, 22] but it is a direct consequence of their method.920

We established this containment already in Theorem 2.6 using a different methodology, first of all921

showing the equivalence between (MILP-R) and (MIAC). Example 3.24 shows that the converse is922

not true.923
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5.3 A lift-and-project variable elimination scheme924

We now describe a VES that takes as input an arbitrary MIAC set. We describe only a single925

variable elimination step. Since it takes as input an arbitrary MIAC set and produces as output926

its projection described as a MIAC set, it can be used iteratively to sequentially elimination all927

variables.928

929

Lift-and-project method for eliminating a single variable930

Input: Mixed integer set S described by a system of affine Chvátal inequalities {(x, z) ∈ Rn×Zq :931

fi(x, z) ≤ bi for i = 1, . . . ,m} and a variable to project, either xj or zj .932

Output: A system of affine Chvátal inequalities describing the projection of S onto all but one of933

its variables; that is, projx−j ,z S or projx,z−j
S.934

Procedure:935

1. If the variable to project is xj AND xj does not appear in any of the ceiling operators of any936

of the fi then use FM elimination to eliminate xj and return the resulting system. Else, go937

to 2.938

2. Lift step. Introduce integer variables wk for each ceiling function that involves xj (alter-939

natively zj) following the procedure described in Lemma 3.2. Suppose K integer variables940

are introduced and set T (with total ceiling count 0) denotes the resulting MILP set in941

Rn × Zq × ZK .942

3. Project step. Use the procedure described in Theorem 3.22 to find eliminate variables943

w1, . . . , wK and xj (alternatively zj) to return the resulting characterization of projx−j ,z S944

(alternatively projx,z−j
S).945

946

Clearly, the resulting algorithm of sequentially applying the above procedure produces a variable947

elimination scheme. The lifting into higher dimensions overcomes the “quagmire” discussed at the948

end of Section 5.1. Moreover, eliminating the lifted variables w1, . . . , wK in the projection step949

of the procedure produces (potentially many) redundant inequalities to the description of S in its950

original variable space. As discussed in Section 4, these additional redundant constraints are useful951

in describing the integer projection. This procedure positively answers the question of Ryan [16]952

and provides a projection algorithm in a similar vein to Williams [19, 21, 22] and Balas [1] but953

without the use of disjunctions.954

6 Conclusion955

This paper describes a novel hierarchy of linear representable sets, mixed-integer linear representable956

sets and sets represented by affine Chvátal functions. This hierarchy is summarized in our main957

result (Theorem 2.6). Our results show that affine Chvátal functions are a unifying tool for mixed-958

integer linear optimization, incorporating both integrality and the notion of projection. We then959

explore a variety of implications of this hierarchy. For instance, we extend and contextualize the960
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theory of consistency testers for integer programs, which has traditionally used the tool of Chvátal961

functions, to the more general setting of MILP-R sets. Moreover, we provide a new variable962

elimination scheme for studying MILP-representable systems that builds on the existing literature,963

which was based on a combination of disjunctions and ceiling operations for pure polyhedral integer964

systems.965

We are intrigued by the possibility that our results could be used in applications. The use of966

AC sets could provide an opportunity for modeling, as the operation of rounding affine inequalities967

has an inherent logic that may be understandable for particular applications. If a problem can be968

modeled using AC constraints, then we know it has an mixed-integer linear representation in some969

higher dimension. We leave the full exploration of this issue as an area for future research. Here,970

we provide an illustrative example to underscore this point.971

Example 6.1. Consider a production batch-size problem. A product can be either not be produced,972

or if we produce a positive quantity we must produce between 50 and 200 units. In other words973

x = 0 OR 50 ≤ x ≤ 200.

Based on the results in this paper there are three equivalent representations.974

Representation 1: Disjunctive representation P1 ∪ P2 where P1 = {x|x = 0} and P2 =975

{x|50 ≤ x ≤ 20}.976

Representation 2: MILP-R set977

The following standard formulation introduces the auxiliary binary variable y:978

x ≥ 50y979

x ≤ 200y980

y ∈ {0, 1}.981

Representation 3: AC set982

The AC constraint983

x/200 + d−1/50xe ≤ 0 (6.1)984

admits the zero solution and all solutions in the closed interval [50, 200], that is all solutions in985

P1∪P2. Also, strictly negative values of x and values of x in the open interval (0, 50) are not feasible986

to (6.1). However, (6.1) does admit values of x greater than 200 such as 201. Hence we add987

x ≤ 200 (6.2)988

in order to obtain the exact modeling of P1 ∪ P2. /989

We also see an analogy between the relationship between our work and that of Williams, Hooker,990

and Balas and the two main approaches to algorithmically solving integer programs – branching991

and cutting planes. Disjunction is the organizing concept of branch-and-bound methods in integer992

programming, which is also at the core of the work of Williams, Hooker and Balas. By contrast,993

cutting planes in integer programming often result from “rounding”, which introduces ceiling (or994

floor) operations. This is in concert with our approach to describing mixed-integer sets with995

Chvátal functions. Indeed, our main result relies on results that also serve as a foundation for the996

theory of cutting planes. Our requirements, however, are more demanding than standard integer997

programming since we solve parametrically in the right-hand side. Hence, we add all possible998
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cutting planes of interest for any right-hand side (see Theorem 3.5 and cf. Theorem 23.4 of [17]).999

This full complement of “redundant constraints” are needed for the projection to work, as discussed1000

in Section 4.1001
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