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Abstract

When underlying demand is uncertain and follows a complex stochastic process, pricing
problems are difficult to solve. In such cases, certainty equivalent (CE) policies, based on
solving the deterministic relaxation of a stochastic pricing problem, can be used as practical
alternatives. CE policies have lighter computational and informational requirements com-
pared to solving the problem to optimality. This is particularly true when the firm does not
have complete information about the underlying demand distribution.

While the effectiveness of CE pricing policies has been theoretically studied when demands
are independent, its performance is not well-known when demands are state-dependent. This
paper analyzes the performance of CE policies in a pricing problem (for a given inventory
level) where future demand depends on sales and inventory and the firm has limited opportu-
nities to change price. We show that CE policies are asymptotically optimal: as the problem
scale (denoted by m) becomes large, the percentage regret decreases at the rate of Θ(1/

√
m).

We also extend the result to the joint pricing and (initial) inventory problem. Our numerical
results are even more promising. Even in non-asymptotic settings (small scaling factor and
a few price changes), CE policies perform well and often result in revenues that are only a
few percentage points lower than optimal.

1 Introduction

In recent years, many companies have used dynamic pricing as one of the levers to improve
their sales revenue. Starting from the travel and hospitality industries with perishable inventory,
dynamic pricing is now used in retail, logistics, services, and so on. The objective of dynamic
pricing is to maximize the expected revenue over a finite selling horizon. An optimal dynamic
pricing policy chooses the price that maximizes the expected revenue for the remainder of the
horizon, given the current state (e.g., inventory, cumulative sales, etc.) and the future demand.

In many settings, future demand is uncertain and depends on factors that can change over
time. For example, when future demand is driven by a network effect, then demand depends on
cumulative sales. When inventory availability has a negative or positive effect on future demand
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(known as scarcity or display effects), then demand is affected by the state (e.g., inventory level)
of the dynamical system. These examples of state-varying demand have long been recognized in
the marketing and operations management literature. For example, network effects are modeled
in the seminal Bass diffusion model (Bass 1969), which fits empirical demand curves of new
products quite well. In this model, sales of a new product are primarily driven by word-of-mouth
from customers who purchased the product before. In some cases, demand is affected by the
inventory level. The display effect (i.e., demand is high when inventory is high) has been observed
in sales data by Wolfe (1968); Smith and Achabal (1998); Caro and Gallien (2012). This effect is
attributed to more people noticing the product if there is more inventory. On the opposite end,
the scarcity effect (i.e., demand is high when inventory is low or availability is limited) has been
observed experimentally or empirically by Van Herpen et al. (2009); Balachander et al. (2009);
Cui et al. (2019); Cachon et al. (2018). This effect arises when the perceived value of a product
increases when the item is exclusive or hard to get, creating a sense of urgency among customers
to “act fast”. With the rise of e-commerce and social media platforms where these network or
inventory effects could be amplified, it is not surprising that the demand for a product could
depend on past sales or inventory or both.

In order to determine the optimal dynamic pricing policy, the seller must know the distri-
bution of future demand. However, when the demand is a complex and state-varying stochastic
process, the seller may not have the full demand information. Oftentimes, the seller’s best avail-
able information is an estimate of the average demand in future periods. Indeed, estimating
conditional means from data uses standard statistical methodologies (relying on strong results
like the law of large numbers), whereas estimating an entire distribution requires a much larger
data set and more sophisticated approaches.

In this paper, we study a periodic-review1 pricing problem over a finite horizon and with finite
inventory when the demand distribution is state-varying. The key features that distinguish our
demand model from others in the dynamic pricing literature are that we assume that the future
demand and its distribution are state-dependent (where the state variables in our setting are the
total past sales and the current inventory level) and that the seller only has limited information
about the demand distribution. When demand is state-dependent, a pricing mistake not only
reduces the current period revenue, but also changes future demand since the mistake affects
cumulative sales and available inventory. Thus, price in one period has a lingering effect on future
demand. Furthermore, when there is a limited number of opportunities to change price, the price
chosen at each period has persistent implications beyond the current period. Lack of knowledge
about the demand distribution makes the pricing decision more difficult and nonoptimal pricing
more consequential.

Certainty equivalent (CE) pricing policies are commonly used when the seller has access to the
1Periodic review means that prices can only be changed at the start of each period. While a continuous

review of pricing is ubiquitous in analytical models of dynamic pricing, periodic pricing changes are often more
appropriate in reality (Yang and Zhang 2014; Bitran and Mondschein 1997). Indeed, periodic pricing schemes are
widely observed in practice. For example, many brick-and-mortar stores update their prices weekly as changing
prices often requires changing price stickers and are costly to implement.
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expected demand rather than the entire distribution. Specifically, these policies rely on solving
the deterministic counterparts of the stochastic problem by replacing all random variables with
their expected values. An “open-loop” CE policy implements the optimal price sequence of the
deterministic model. Although actual prices of this policy can change during a sales season, they
are static in the sense that the deterministic problem is solved once to obtain the price schedule
for the entire season. In contrast, a “closed-loop” CE policy re-optimizes the deterministic model
on a rolling horizon using the current inventory information at the beginning of each period.
Hence, prices are adjusted over time based on the realizations of demands in past periods.

Both open-loop and closed-loop CE pricing policies are well-studied under a canonical setting
where demands are independent across time and price is reviewed/changed continuously (Gallego
and Van Ryzin 1994; Jasin 2014). However, even though the phenomena of state-varying demand
and periodic pricing reviews are well-recognized to occur in practice, to the best of our knowledge,
there has been yet no study of how CE pricing policies perform when the problem setting exhibits
these features. Our work addresses this gap.

A major challenge with this setting is that the state-dependent demand leads to non-convex
stochastic and deterministic problems that are challenging to analyze. One contribution of our
paper is to introduce a class of state-dependent demand models in which it is tractable to
analyze the performance of certainty equivalent policies. Our framework is general enough so
that it includes many of the state-dependent demand models proposed in the literature, such as
Bass (1969); Datta and Pal (1990); Gerchak and Wang (1994); Urban and Baker (1997); Smith
and Achabal (1998); Wang and Gerchak (2001); Shen et al. (2014); Smith and Agrawal (2017).

We start our analysis by establishing the tractability of solving for the optimal CE policies.
The deterministic version of the stochastic problem appears to be difficult to solve at first, due to
demand censoring terms in the objective and non-convex constraints. However, through a series
of transformations, we show that the problem is equivalent to a convex optimization model with
a unique interior solution, and hence can be solved efficiently through interior point methods.
Hence, solving for the CE policy is computationally tractable.

Next, we derive analytic performance bounds for the CE policies, which bound the gap be-
tween the CE expected revenues (under the unknown demand distribution) and the stochastic
optimal expected revenue. We do this in two steps. First, we show that under any demand dis-
tribution whose conditional mean satisfies simple regularity assumptions, the optimal revenue of
the deterministic model is an upper bound for the stochastic optimal expected revenue. Although
standard techniques (i.e., Jensen’s inequality, strong duality) could be used to establish a deter-
ministic upper bound when demands are independent (e.g., Gallego and Van Ryzin 1994; Jasin
2014 ), these same techniques cannot be used in our setting with state-dependent demand and
periodic price changes due to the pricing problem’s non-convexity. Instead, we develop a novel
induction argument to establish the upper bound through dynamic programming reformulations
of the deterministic and stochastic pricing problems.

Second, we show that as the initial inventory and the expected demand are both scaled
by m, the gap between the expected revenue of a CE policy (open-loop or closed-loop) and the

3

Electronic copy available at: https://ssrn.com/abstract=3502478



deterministic upper bound grows in the order O(
√
m). We refer to this gap as the expected

revenue loss. Since the deterministic revenue scales linearly in m, our analysis implies that both
CE policies are asymptotically optimal as the problem scale increases.

In our setting with state-dependent demand, proving the O(
√
m) upper bound on the revenue

loss is challenging since the analysis must apply for state-dependent distributions (satisfying some
regularity conditions). Hence, we cannot use standard techniques such as Scarf’s bound which
are used to prove the O(

√
m) loss in the independent demand case. Instead, we show the O(

√
m)

loss by constructing an appropriate martingale, utilizing the Azuma-Hoeffding inequality, and
showing that the sequences of states visited by the CE policies converge (as m increases) to the
states visited by the deterministic optimal policy.

When demands are independent across periods, Jasin (2014) proves that re-optimization can
reduce the revenue loss from O(

√
m) to O(logm). We show that this is not the case when

demand is state-dependent. Specifically, we prove that the expected revenue losses of both open-
loop and closed-loop CE policies are lower bounded by Ω(

√
m). Hence, the O(

√
m) bound on the

expected revenue loss is tight and re-optimization has less benefit with state-dependent demand.
We show through large-scale numerical experiments that a small number of price changes is

sufficient to recover nearly the same profit as an optimal policy for a continuous-time model with
arbitrarily many price-change opportunities. The numerical experiments also provide guidance
for choosing the number of price changes. In our simulations, as little as two to five price changes
suffice to recover more than 95% of potential revenue from a continuous-time model. We prove
that a fixed pricing policy that has worked well with stationary and independent demand (i.e.,
the asymptotic rate of O(1/

√
m) proved by Gallego and Van Ryzin 1994) performs poorly with

state-dependent demand. Together with our numerical study, the result shows that adding a little
bit of price flexibility goes a long way. We extend our analysis to the case where the firm needs
to determine the initial inventory (in addition to prices) and show that the CE policy performs
well in a joint pricing and inventory problem under state-dependent demand. We believe that
this paper makes one of the first papers that provide a comprehensive analysis of the CE policies
when past sales or inventory affect future demand.

1.1 Literature review

In the operations literature, deterministic formulations are extensively studied, with a focus on
deriving their structural properties. Thomas (1970); Rajan et al. (1992); Smith and Achabal
(1998); Chen et al. (2001); Deng and Yano (2006); Geunes et al. (2006); Shen et al. (2014) study
the joint decisions of pricing and production/inventory policies with deterministic demand. Sethi
et al. (2008) propose the optimal advertising and pricing for a monopoly product under a de-
terministic demand process. Krishnamoorthy et al. (2010) extend the analysis to a duopoly
market. Banker et al. (1998) use a deterministic optimization problem to study quality man-
agement. However, none of these papers theoretically analyze how well CE policies perform in
stochastic settings.

On the other hand, the performance guarantee of CE policies are commonly studied in rev-
enue management literature, where such policies are adopted either because of their simplicity
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(Gallego and Van Ryzin 1994) or because the stochastic problem is difficult to solve (Gallego and
Van Ryzin 1997; Bumpensanti and Wang 2020; Lei et al. 2021). A number of papers establish
theoretical performance bounds for CE policies. The vast majority of the papers that analyze
CE policies for dynamic pricing problems make two general modeling assumptions (Gallego and
Van Ryzin 1994, 1997; Jasin and Kumar 2012, 2013; Jasin 2014). First, demand is assumed
to follow a specific stochastic process (e.g. a Poisson process) that depends only on the current
price, so future demand is independent of the past demand. Second, they assume price can be
changed continuously. We refer to these two conditions as the classical dynamic pricing setting.
The first condition results in a customer’s purchase affecting the seller’s current revenue but
not its future demand. The second condition allows the seller to shut off demand immediately
(by charging a high price) at the moment inventory runs out. Together, these two conditions
allow associated CE problems to be formulated as linear or convex programs. Thus, theoretical
analyses of these settings utilize existing tools from linear or convex optimization (e.g., strong
duality).

Under the assumption that customers arrive according to a homogeneous Poisson process,
Gallego and Van Ryzin (1994) show that a fixed price is the solution to the CE problem, and
the fixed-price CE policy is asymptotically optimal. In particular, they show the revenue loss
of the CE pricing policy is O(

√
m)2 when the total demand and the initial inventory are both

scaled by m. Gallego and Van Ryzin (1994) is the first paper to show that, under certain
conditions, a fixed-price CE policy performs close to the optimal policy with continuous price
changes. Since then, a number of papers show similar guarantees for open-loop CE policies. For
instance, Gallego and Van Ryzin (1997) and Jasin (2014) provide performance guarantees for
open-loop CE controls in the network revenue management setting.

One potential weakness of an open-loop policy is that the price (which was computed assum-
ing a representative sample path) is not adjusted to actual demand realizations. To overcome
this, a number of papers examine the effectiveness of using reoptimization and modifying a
CE policy with closed-loop feedback. Some have studied settings in which closed-loop CE poli-
cies do not always outperform open-loop policies, such as in booking limit and bid price controls
for network revenue management (Jasin and Kumar 2013). On the other hand, there are papers
showing that closed-loop policies outperform open-loop policies (Maglaras and Meissner 2006;
Chen and Farias 2013). Jasin and Kumar (2012) show that implementing a closed-loop CE policy
in a probabilistic manner for a network revenue management (NRM) problem can have a rev-
enue loss upper bounded by O(1), which is independent of the problem scale. Bumpensanti and
Wang (2020) establish a similar loss bound by re-solving the deterministic linear program ap-
proximation for the NRM problem under a less restrictive assumption. Reiman and Wang (2008)
propose a closed-loop CE pricing policy where the re-solving time is endogenously determined by
the heuristic. The expected revenue loss of their policy is o(

√
m).

Different from the above settings studied in RM literature, we examine how CE policies per-
form under general state-dependent demand settings where the seller reviews prices periodically.

2Notation O,Ω,Θ are defined in Section 1.2.
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Table 1: An overview of closely related papers in the literature.

State-dependent
demand

Periodic
pricing Stockout

Partial
demand

information
Inventory
decision

Gallego and Van Ryzin (1994) No No No No(a) No

Bitran and Mondschein (1997) No Yes
Lost
sales No Initial

Feng and Gallego (2000) Yes No(b) No No No

Shen et al. (2014) Yes No
Backlog

& lost sales No Replenish
Yang and Zhang (2014) Yes Yes Backlog No Replenish

This paper Yes Yes
Lost
sales Yes Initial

(a) Original paper assumes Poisson demand distribution.
(b) Considers only finitely many price levels.

In particular, we consider the case where demand depends on the cumulative sales and/or on the
remaining inventory. Our analysis does not need to assume a specific demand distribution and is
general enough to include existing demand settings in the RM literature such as continuous-time
Poisson demand arrivals. Accordingly, we contribute to the dynamic literature by providing gen-
eral conditions under which the CE policy can be an effective alternative to solving the original
stochastic optimization problem.

We conclude this section with a table (Table 1) that positions our paper among those we found
closest to our setting. As the reader can see, antecedent models in the dynamic pricing literature
share some (but not all) of the features of our framework. The dynamic pricing literature is
vast, each paper in the table is only representative of a number of papers with related questions,
models, and results.

1.2 Preliminaries

Throughout the paper we use the big O notation in expressions f(x) = O (g(x)) where f and
g are positive real-valued functions if there exists an r ∈ R such that f(x) < rg(x) for x
sufficiently large. Similarly, if f(x) = Ω (g(x)), then f(x) > rg(x). When f(x) = O (g(x)) and
f(x) = Ω (g(x)), it is represented by f(x) = Θ (g(x)).

2 Modeling framework

We present the limited information periodic review pricing problem when the only information
about the stochastic per-period demand is its conditional expectation. In this model, a mo-
nopolist is selling a product with finite inventory α > 0 over a finite horizon. The firm can
dynamically change the price, but these price changes can only occur periodically at certain
price review periods {1, 2, . . . , T}. After the firm chooses a price πt ≥ 0 for period t, a random
variable Dt is realized, representing the demand in period t. After the demand Dt is realized,
it is satisfied to the maximum extent using the remaining inventory. We denote the remaining
inventory at the end of period t as Nt, where N0 = α. Any unmet demand is lost. Goods not
sold by the end of period T are salvaged at a (normalized) value of 0. The firm does not know the
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true distribution of Dt, but it knows the conditional expectation of Dt. Specifically, conditional
on the state at period t and the price, the expectation of Dt is a known function of the price πt,
of the cumulative past sales, and of the remaining inventory.

The challenge when the firm only knows the conditional expectation of demand is that, if it
makes a pricing mistake due to limited information, these mistakes can be costly since future
demand is state-dependent. This is because the demand depends on the past sales and the re-
maining inventory, so any past pricing mistakes can have a lasting effect on future demand. In
this paper, we will present pricing policies that only make use of the information on the condi-
tional expectation of demand and analyze their performance in an asymptotic setting (specified
in Section 4.2). In the asymptotic setting, we scale both the expected demand rate and the initial
inventory by a factor m > 0 while keeping the number of price changes T fixed. This means we
consider the setting where both demand and inventory are large.

2.1 Demand model

We begin by describing the demand model. Let Pt denote the total cumulative demand up to
period t, where Pt =

∑t
s=1Ds. We define Ft = σ(P0, P1, . . . , Pt) to be the smallest σ-field where

variables P0, P1, . . . , Pt are measurable and let F = {F0,F1, . . .} be the associated filtration.
A distinctive feature of our model is that the per-period demand Dt is a random variable

whose distribution may depend on the demand realizations from past periods. However, we
assume that conditional on Ft−1 and the price πt, the distribution of Dt only depends on the
price, on the cumulative sales α − Nt−1, and on the remaining inventory Nt−1. Note that the
cumulative sales α − Nt−1 is not the same as the cumulative demand Pt−1. It is possible that
α −Nt−1 < Pt−1, which happens whenever the seller stocks out due to the cumulative demand
Pt−1 exceeding the initial inventory N0 = α.

This feature of the demand model is formalized next.

Assumption 1. Conditioning on Ft−1 and price πt, the distribution of Dt depends only on πt,
the remaining inventory Nt−1, and the cumulative sales α−Nt−1. Furthermore,

E[Dt | Ft−1] = λ(Nt−1, α) · x(πt) (1)

for some functions λ and x. /

The term λ(Nt−1, α) represents how the remaining inventory Nt−1 and the cumulative sales
α−Nt−1 affect the expected demand in the next period, and so we call λ the sales and inventory
sensitivity (SIS) function. We call x(πt) the price sensitivity function since it represents the
effect of price on the expected demand. We assume that the seller knows the functions λ(·, ·)
and x(·) and that the only information available to the seller about the demand distribution is
the functional form of the conditional expectation.

Assumption 1 states that the expected demand is of a multiplicative form which separates
the effect of the current period price from the effect of past sales and inventory. Many papers
use multiplicative demand functions; for instance, Smith and Agrawal (2017); Bass et al. (1994);
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Notation Description
T number of price review periods
πt price at period t
Dt stochastic demand in period t
Nt remaining inventory at the end of period t
α initial inventory level
x(πt) price sensitivity function of demand
λ(Nt−1, α) sales and inventory sensitivity (SIS) function of demand

Table 2: Notation for modeling framework.

Krishnan et al. (1999). See the review paper Urban (2005) for additional discussion. The
assumption that the mean demand can depend on cumulative sales and available inventory
enables us to capture situations where demand is driven by network effects (e.g., the word-of-
mouth effect) or inventory availability (e.g., the scarcity effect). Table 2 summarizes the notation
of our framework, working from (1) as a primitive.

Assumption 2. The SIS and price-sensitivity functions have the following properties:
(i) x : [0,∞) 7→ [0, 1]. Moreover, there exists a finite choke price πc where x(πc) = 0.
(ii) x is continuously differentiable and strictly decreasing (that is, x′(π) < 0 for all π ≥ 0).

This implies that the inverse x−1 : [0, 1] 7→ [0,∞) exists and is a decreasing function.
(iii) π + x(π)

x′(π) , is increasing in π.
(iv) ρ(π) , πx(π) is continuously differentiable in π and ρ′′(π) exists for all π < πc.
(v) λ : [0,∞)2 7→ [0, λ] for some λ > 0, and λ(n, α) > 0 for any 0 < n ≤ α.
(vi) λ is jointly concave and continuously differentiable in both of its arguments.
(vii) π`(n) , x−1(n/λ(n, α)) is differentiable in n for n ∈ [0,∞). /

Assumption 2(i)-(iv) are standard properties of a price sensitivity function in the revenue
management literature. The condition in Assumption 2(i) that x(π) ≤ 1 is without loss of
generality since, if it does not hold, we can simply scale the λ function correspondingly. Since
x ∈ [0, 1], then x(πt) essentially scales down the maximum expected demand λ(Nt−1, α) according
to the price πt. The existence of the choke price implies that if the price is too high, no one
buys. Assumption 2(iii) is common in the inventory and revenue management literatures, as it
facilitates establishing the concavity of value functions (for a discussion, see Ziya et al. 2004;
Lariviere 2006). Here, π+ x(π)

x′(π) is associated with the virtual value function in mechanism design
literature. If F (·) is the cumulative distribution function of customer valuations and f(·) is the
associated density function, then x(π) acts similarly to 1 − F (π) in scaling demand. Hence,
π + x(π)

x′(π) = π − 1−F (π)
f(π) where the right-hand-side of this equation is the virtual value function,

which is the virtual value of the marginal demand resulting from a marginal price change to π.
Assumption 2(iv) implies that the effective revenue rate ρ is a strictly concave function and so
has a unique maximizer π̄ in [0, πc]. That is, price π̄ provides the optimal effective revenue rate.

Assumption 2(v)-(vi) are not restrictive since they admit a wide range of applications. Many
existing demand models satisfy the concavity assumption. Some examples include the sales-
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dependent demand models proposed by Bass (1969); Bass et al. (1994) and its variations (Shen
et al. 2011, 2014), as well as the inventory-dependent demand models used by Datta and Pal
(1990); Gerchak and Wang (1994); Urban and Baker (1997); Wang and Gerchak (2001); Sapra
et al. (2010); Yang and Zhang (2014); Smith and Agrawal (2017). Moreover, all the existing
papers assuming demand follows a homogeneous Poisson process satisfy our condition, e.g.,
Jasin and Kumar (2012, 2013); Jasin (2014); Gallego and Van Ryzin (1994, 1997); Bumpensanti
and Wang (2020); Lei et al. (2021), etc.

Finally, Assumption 2(vii) is an assumption on both λ and x. It states that the lowest price
π`(n) that can be charged without stocking out a supply of n in expectation is differentiable
in n. It implies x and λ are smooth and guarantees the tractability of the pricing problem.

While technical in nature, our demand model assumptions are not restrictive as a variety of
demand models studied in the existing literature satisfy the conditions of Assumptions 1 and 2.

Example 1 (Sales-dependent demand). The generalized Bass model of Bass et al. (1994) and
Krishnan et al. (1999) describes demand that is influenced by customers who have previously
bought the product. Given a population of size k, the expected demand under this model is
E[Dt | Ft−1] = λ (Nt−1, α)xt, where

λ(Nt−1, α) = (k − α+Nt−1)

(
p+ q · α−Nt−1

k

)
, (2)

and xt captures the effect of advertising or price on the average demand. If xt = x(πt) is a
time-stationary function of price, then it is a price sensitivity function of the form we study in
this paper. Existing literature usually assumes the price sensitivity function x takes the form of
an exponential (Shen et al. 2014) or linear (Raman and Chatterjee 1995) function. In both these
cases, x is consistent with Assumption 2. Note that λ in (2) also satisfies Assumption 2. /

Example 2 (Scarcity effect on demand). Yang and Zhang (2014) and Sapra et al. (2010)
model the scarcity effect in an additive demand model. Note that the assumptions used in
their paper satisfy all of Assumption 2, but their demand format is in additive form, thus vi-
olating Assumption 1. However, the multiplicative version of Yang and Zhang (2014) fits our
framework and assumptions. To see this, the expected demand (written in our notation) is
E[Dt | Ft−1] = λ(Nt−1)x(π), where λ(Nt−1) is twice differentiable and concave decreasing in the
remaining inventory Nt−1. The scarcity effect is captured since λ is decreasing in Nt−1. /

Example 3 (Display effect on demand). Smith and Agrawal (2017) model inventory display
effects through the expected demand function E[Dt | Ft−1] = λ(Nt−1)x(π).3 The display effect
is captured by the fact that λ is an increasing function of Nt−1. A canonical case that leads
to several analytic results in Smith and Agrawal (2017) can be adapted to our framework with

3Smith and Agrawal (2017) consider a multi-location inventory model where inventory is sold to customers in
multiple locations and the seller must decide how to allocate a fixed inventory between locations. Our model is
for a single location, so we adapt the single-location development (in Section 1) of Smith and Agrawal (2017).
Focusing on Smith and Agrawal (2017) was largely an arbitrary choice, any number of display effect demand
models could have been set into our framework (for example, Kopalle et al. 1999; Wang and Gerchak 2001).
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minor modifications as follows:

λ(Nt−1) = k(Nt−1/(kNr))
β (3a)

x(π) = e−γπ/ce − εx, (3b)

where k is a market size, Nr and ce are reference values, and 0 < β < 1, γ > 0, and εx > 0.
Note that λ is concave, reflecting a diminishing marginal rate of return. Including εx in (3b) is a
modification of the model in Smith and Agrawal (2017) (which assumes εx = 0) so that a finite
choke price exists. Since the choice of εx is arbitrary, it does not change the results and insights
of their paper. We can easily verify that these choices for λ and x satisfy Assumption 2. /

While Assumptions 1 and 2 outline the conditions of the conditional expectation of demand,
we also make the following assumption on the variance for asymptotic analysis.

Assumption 3. There exists a constant σ ≥ 0 such that the conditional variance of Dt for every
period t does not exceed σE(Dt | Ft−1).

Assumption 3 implies that, relative to the mean, the variance of demand does not become
too large. This is not a restrictive assumption. Assumption 3 is not any stronger than what is
assumed in classical dynamic pricing literature where it is assumed that demand follows a Poisson
or Bernoulli process (Gallego and Van Ryzin 1994; Jasin 2014) which satisfy Assumption 3. In
fact, we are imposing weaker assumptions than in those works since we are not assuming a specific
demand model for our analysis to work. As we show in the following example, many variations
of demand models where underlying randomness is governed by normal distributions, Poisson
processes, and Markov chains satisfy this assumption. If σ = 0 then demand is deterministic,
which also belongs to the class of demand models considered in this paper.

Example 4. The following are a few distributions that satisfy Assumption 3:
(a) Dt = λ(Nt−1, α)x(πt) + εt, where εt is a random component that has a normal distribution

with zero mean and variance σ,
(b) Dt is a non-homogeneous Poisson process with mean λ(Nt−1, α)x(πt)

(c) Dt is a Poisson process with constant arrival rate λ
(d) Dt is an aggregation of a continuous-time Markov chain with transition rate λ(Nt−1, α)x(πt).

2.2 The dynamic pricing problem with complete information

We first formulate the dynamic pricing problem when the seller has complete information on
the demand process. When the seller does not have explicit information about the demand
distribution, the corresponding stochastic optimization model cannot be solved. However, this
model later serves as a baseline to evaluate the performance of the certainty-equivalent policies
which operate on partial information.

Starting with initial inventory α, the seller chooses a price for each period based on the state.
(We call this a periodic-review pricing policy or simply pricing policy.) By Assumption 1, the
conditional distribution of demand Dt given Ft−1 depends on the remaining inventory Nt−1, and
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the cumulative sales α−Nt−1. Therefore, the remaining inventory Nt−1 is sufficient to describe
the state of the system at time t. Formally, a pricing policy π : [0,∞)×{1, . . . , T} 7→ R+ (where
R+ is the set of nonnegative real numbers) determines the price πt = π(Nt−1, t) to charge at
review period t given state Nt−1. The seller chooses an Ft-adapted pricing policy π to influence
the demand during the selling horizon. The expected total revenue of a pricing policy π is

V π(T ) = E

[
T∑
t=1

π(Nt−1, t)
(
Dt − [Dt −Nt−1]+

)]
. (4)

Note that, in our problem setting, the demand Dt can exceed the inventory Nt−1. Hence, a
demand censoring term is included in the objective function as the total sales cannot exceed the
remaining inventory. It means that, at each period, the revenue is earned only on actual sales
min(Nt−1, Dt) = Dt − [Dt −Nt−1]+. In the next period, the seller will start with the remaining
inventory Nt = [Nt−1 −Dt]

+ for all t ≥ 1, where N0 = α. The expectation in (4) is taken with
respect to a stochastic demand process that is consistent with Assumptions 1 to 3. Since we
examine how the number of price changes (T ) affects the algorithm and resultant profits, we do
not suppress T .

Using the properties of the price sensitivity function x, we can recast the seller’s decision
problem. Assumption 2(ii) allows us to introduce a new variable yt = x(πt) called the induced
demand intensity at price πt (or simply intensity) at review period t. TIts inverse πt = x−1(yt) is
uniquely determined by the intensity yt. Thus, every pricing policy π has an equivalent demand
intensity policy y : [0,∞)× {1, . . . , T} 7→ [0, 1]. Note that for any intensity policy y, we have

E [Dt | Ft−1] = λ(Nt−1, α)y(Nt−1, t), for all t = 1, . . . , T. (Assumption 1) (5)

As in the existing literature (e.g. Gallego and Van Ryzin 1994), intensity control problems are
easier to analyze than pricing problems, and so we recast the problem as one where the seller is
choosing an intensity policy. The expected revenue of an intensity policy y is

V y(T ) , E

[
T∑
t=1

x−1 (y (Nt−1, t))
(
Dt − [Dt −Nt−1]+

)]
. (6)

To complete the description of the seller’s problem, we now define the set of candidate
(feasible) intensity policies. We let Y , {y : [0,∞) × {1, . . . , T} → [0, 1] | Ft-adapted} denote
the set of all feasible policies. The seller’s problem is to choose a feasible intensity policy (and
thus pricing policy) to maximize the expected revenue, which is equivalent to solving the following
problem:

V ∗(T ) , max
y∈Y

V y(T ). (P)

We denote the optimal value of this optimization problem (P) by V ∗(T ). Consistent with our
earlier notation, we keep the number T of price changes allowed as an argument of the function
V ∗(T ).
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3 Certainty-equivalent policies

Solving the stochastic pricing problem (P) requires knowing the demand distribution at all states.
This is not possible when the seller only knows the conditional expectation of the state-dependent
demand through functions λ(·, ·) and x(·). In this section, we introduce pricing policies that only
require this limited information. We refer to these as the certainty-equivalent (CE) policies, since
they rely on solving a deterministic counterpart of the stochastic pricing problem (P).

3.1 A deterministic optimization model

We first introduce a deterministic optimization model referred to as problem (D†):

Problem D†

V D†
(T ;u, α) , max

n∈RT+1

y∈RT

T∑
t=1

x−1(yt) min (λ(nt−1, α)yt, nt−1) (D†a)

s.t. nt = [nt−1 − λ(nt−1, α)yt]
+ for all t = 1, . . . , T (D†b)

n0 = u (D†c)

yt ∈ [0, 1] for all t = 1, . . . , T. (D†d)

Note u and α are parameters of (D†), and we assume that 0 ≤ u ≤ α. Here, u and α can both
be interpreted as inventory levels. Whenever u = α, we can check that (D†) is a deterministic
relaxation of (P), where we replace all random variables Dt with their expectations λ(nt−1, α)yt.
While (P) finds an intensity policy function y : [0,∞) × {1, . . . , T} 7→ [0, 1], model (D†) de-
termines a vector of intensities y = (y1, y2, . . . , yT ). Here, n = (n1, n2, . . . , nT ) is the vector of
remaining inventories under the deterministic demand model. Note that problem (D†) allows
u < α since we will later introduce a closed-loop CE policy that re-solves (D†) in each period
with the updated remaining inventory level u (u < α).

Note that the objective function (D†a) in the deterministic model contains censored terms,
hence it is non-differentiable. Further, (D†b) is a non-convex constraint. The lack of convexity
makes problem (D†) difficult to solve. However, we will overcome this difficulty by showing that
(D†) is equivalent to the following deterministic problem without censoring terms:

Problem D

V D(T ;u, α) , max
n∈RT+1

y∈RT

T∑
t=1

x−1(yt)λ(nt−1, α)yt (Da)

s.t.
T∑
t=1

λ(nt−1, α)yt ≤ u (Db)

nt = nt−1 − λ(nt−1, α)yt for all t = 1, . . . , T (Dc)

n0 = u (Dd)

yt ∈ [0, 1] for all t = 1, . . . , T. (De)
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We refer to the model above as (D). Note that (D) has an additional constraint (Db) which
excludes any solutions (n, y) where the total demand exceeds inventory u. The equivalence
between (D) and (D†) is established in the following theorem:

Theorem 1. For any T and 0 ≤ u ≤ α, the following holds:

V D(T ;u, α) = V D†
(T ;u, α).

Moreover, finding an optimal solution to (D) suffices to solve (D†).

Theorem 1 implies that it suffices to solve problem (D) as the deterministic relaxation of
the stochastic problem (P). Notice that problem (D) is an easier problem to solve since the
objective function (Da) of problem (D) does not have demand censoring terms causing non-
differentiability. We will refer to the optimal value of (D) when u = α simply as V D(T ) to be
consistent with the fact that the optimal value of (P) is V ∗(T ).

We will later introduce two CE policies in Section 3.2, a closed-loop CE policy (CE-CL) and an
open-loop CE policy (CE-OL). These two CE policies set the intensity (and equivalently, price) in
each period based on solutions to the deterministic model (D) for given u and α values. Hence,
the complexity of the CE policies depends on the feasibility and computational effort needed to
solve the nonlinear optimization problem (D). We discuss these properties of (D) next.

At first glance, the deterministic problem in (D) is not necessarily a convex optimization
problem since the objective function is not concave and the constraints are nonlinear in the
decision variables (n, y). This contrasts with the setting of Gallego and Van Ryzin (1994) where
λ(nt, α) is a constant for all nt, resulting in a concave objective function and linear constraints.
However, we can reformulate (D) into an equivalent convex optimization problem with decision
variables d1, . . . , dT through a simple transformation:

d1 = λ(u, α)y1, (9a)

d2 = λ(u− d1, α)y2, (9b)

d3 = λ(u− d1 − d2, α)y3, (9c)
...

dT = λ(u− d1 − d2 − . . .− dT−1, α)yT . (9d)

Here, dt can be interpreted as the deterministic demand in period t, which depends on the
amount of inventory remaining after previous periods, u − d1 − d2 − . . . − dt−1. This allows us
to reformulate (D) into the following optimization problem, which we refer to as (D′):

Problem D′

V D(T ;u, α) = max
d∈RT

T∑
t=1

x−1

(
dt

λ(u− d1 − d2 − . . .− dt−1, α)

)
· dt (D′a)
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s.t.
T∑
t=1

dt ≤ u (D′b)

dt ∈ [0, λ(u− d1 − d2 − . . .− dt−1, α)] for all t = 1, . . . , T. (D′c)

The advantage of (D′) is that it is a convex optimization problem with a unique optimal
solution, as we establish next. Hence, (D′) can be solved efficiently with commercial off-the-
shelf solvers using a standard convex optimization algorithm. This means that we can efficiently
find the solution of the deterministic counterpart (D) when the original stochastic problem (P)
cannot be solved due to insufficient information about demand distribution.

Theorem 2. The following results hold:
(i) The objective function (D′a) is jointly concave in d, and the set of all solutions satisfying

constraints (D′b)–(D′c) is a convex set.
(ii) The value function V D(T ;u, α) is strictly jointly concave in (u, α) for every fixed T .

Observe that (D′) is always feasible since the solution d where dt = 0 for all t is feasible.
(Note that by Assumption 2(ii), an intensity 0 is in the domain of x−1.) Moreover, from our
continuity assumptions on x and λ, the feasible region of (D′) is nonempty and compact, and the
objective function (D′a) is continuous, so at least one optimal solution exists (by Weierstrass’s
Theorem). In fact, (D′) has a unique optimal solution, which we establish in Theorem 3.

Theorem 3 (Uniqueness). For any (u, α) and T with 0 ≤ u ≤ α, problem (D′) has a unique
optimal solution dD = (dD

1 , d
D
2 , . . . , d

D
T ).

Theorem 2 implies that (D′) can be solved efficiently by any standard convex optimization
algorithm (e.g., Newton’s method) or an off-the-shelf commercial solver. In the next result, we
show that the optimal solution to (D′) lies in the interior of the feasible set. This implies that
one can deploy interior point methods to determine the optimal solution.

Theorem 4 (Positive intensity is optimal). If 0 < u ≤ α, then the unique optimal solution dD

to (D′) lies in the interior of the feasible set, i.e., λ(u− dD
1 − . . .− dD

t−1, α) > dD
t > 0 for all t.

3.2 Two certainty-equivalent policies

We next introduce two certainty-equivalent (CE) policies that can be implemented by utilizing
the solution of the deterministic model (D) which sets the intensity in each period. The fact
that the reformulated problem (D′) is well-behaved (Theorem 2) implies that the CE policies can
be computed efficiently.

We first describe an open-loop certainty-equivalent policy (CE-OL). “Open-loop” refers to the
fact that we only solve the deterministic relaxation (D′) once (with u = α) at the beginning
of the selling horizon (time 0). After finding the optimal vector yD, the open-loop certainty-
equivalent intensity policy yOL is determined by setting yOL(Nt−1, t) = yD

t for all inventory
levels Nt−1 ∈ [0, α] and t = 1, . . . , T . Algorithm 1 below describes the CE-OL policy.
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Algorithm 1 Intensity (price) sequence when applying policy yOL.

1: procedure Open-loop Certainty Equivalent Pricing(α, T )
2: dD ← optimal solution of (D′) with u = α

3: for t← 1 to T do
4: yD

t ← dD
t /λ(α− dD

1 − dD
2 − . . .− dD

t−1, α)

5: set intensity yD
t by offering price x−1(yD

t ) . set current intensity (price)

On the other hand, a closed-loop certainty-equivalent policy (CE-CL) re-optimizes the deter-
ministic problem for the remaining horizon given the current state in each period and determines
the price to set in each period.

We denote this policy as yCL. At the start of the selling horizon when the initial inventory
is N0 = α, CE-CL chooses the same price as CE-OL by solving (D′) with u = α and setting
yCL(N0, t = 1) = yD

1 . However, for the subsequent pricing periods, the two policies diverge since
CE-CL determines the next price from re-optimizing (D′) with updated information about the
remaining inventory. In particular, suppose that at the beginning of period t, the remaining in-
ventory is Nt−1. Then CE-CL will solve (D′) with u = Nt−1 and with T − t+ 1 periods, resulting
in an optimal deterministic intensity vector yD = (yD

1 , y
D
2 , . . . , y

D
T−t+1). Note that the length of

this vector is T − t+1, which is the number of remaining review periods. CE-CL will set intensity
yCL(Nt−1, t) = yD

1 . Algorithm 2 below is a description of the CE-CL intensity policy.

Algorithm 2 Intensity (price) sequence when applying policy yCL.

1: procedure Closed-Loop Certainty Equivalent Pricing(α, T )
2: N0 ← α . initialize inventory
3: for t← 1 to T do
4: dD ← optimal solution of (D′) with u = Nt−1 and T − t+ 1 periods
5: yD

1 ← dD
1 /λ(Nt−1, α)

6: set intensity yD
1 by offering price x−1(yD

1 ) . set current intensity (price)
7: observe sales min{Dt, Nt−1} by the end of period t
8: Nt ← Nt−1 −min{Dt, Nt−1} . update available inventory

Although the CE-CL policy requires re-solving (D′) in every period, solving each instance of
(D′) does not require much effort because problem (D′) is a convex optimization problem. In our
numerical experiments on a MacBook Pro with an Intel i5 processor, it takes less than 10 seconds
to solve (D′) with T = 22 using a basic interior-point algorithm coded in Python. Note that in
(D′), the number of variables is T and the number of constraints is T + 1. The CE-CL policy
does not require solving (D′) in all possible states (u, T ). Specifically, the CE-CL policy can be
implemented by solving (D′) on the fly at the start of each period with the current state.

4 Asymptotic analysis of certainty-equivalent policies

Our goal in this section is to analyze the performance of the two policies proposed in Section 3.2.
The main challenge in the analysis is that the demand in period t can depend on the past sales or
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available inventory. As a result, any pricing mistake in the current period affects current demand
and the demand in future periods. Another challenge is that, while our goal is to propose an
algorithm that only utilizes partial information (i.e., conditional mean), the performance analysis
must apply to all demand distributions satisfying Assumptions 1 to 3. The main result of this
section is that the CE policies are asymptotically optimal. Specifically, in the regime where the
initial inventory and the expected demand both scale by a factorm, we will show that the relative
revenue loss of the CE policies compared to the true (unknown) optimal revenue converges to
zero with the rate O(1/

√
m).

Our approach in proving the convergence rate is through two steps. The first step is to show
that the optimal deterministic revenue V D(T ) is an upper bound to the (unknown) optimal
stochastic revenue V ∗(T ), where V D(T ) is the optimal value of (D) when u = α, and V ∗(T ) is
the optimal value of (P). The second step is to establish a rate of convergence for the CE policy’s
expected revenue to its upper-bound V D(T ) in the asymptotic regime of increasing inventory and
expected demand. Due to the non-convexity of the pricing problem in our setting, we cannot
directly use standard techniques (e.g., Jensen’s inequality, Scarf’s bound) that have been used
to prove these bounds for the independent demand case. Hence, we develop a novel analysis
to derive these bounds in a non-convex dynamic pricing setting with state-dependent demand.
We also show that our analysis is tight by deriving lower bounds on the revenue loss of the
CE policies, and showing that these lower bounds match our upper bounds.

Our tight analysis reveals an interesting insight: in a setting of state-dependent demand and
periodic pricing, reoptimization does not improve the CE revenue loss’ order of convergence.

4.1 Upper bound on V ∗(T )

The challenge in proving that V D(T ) is an upper bound for V ∗(T ) in our setting comes from the
fact that demands are state-dependent and prices can only be changed periodically.

To see why, consider a situation where the demand rate is a constant λ (independent of
the state) and price can be changed continuously. Due to continuous price changes, as soon
as the inventory stocks out, any pricing policy can set the choke price and turn off demand.
Therefore, without loss of generality, we can assume that the total demand does not exceed the
initial inventory α, so

∫ T
0 dDt ≤ α. We denote by V λ(T ) the optimal expected revenue. Let

yλ = (yλt ) be the optimal intensity policy. Following the proof technique of Lemma 1 in Gallego
and Van Ryzin 1994, for any µ ≥ 0

V λ(T ) = E
(∫ T

0
x−1(yλt )dDt

)
≤ E

(∫ T

0
x−1(yλt )dDt + µ

(
α−

∫ T

0
λyλt dt

))
≤ max

yt:t∈[0,T ]

(∫ T

0
x−1(yt)λytdt+ µ

(
α−

∫ T

0
λytdt

))
. (11)

The first inequality is from Langrangian relaxation since we know that the expected demand
cannot exceed α. The second inequality is from maximizing pointwise for each t and by Jensen’s
inequality. Note that the right-hand side of (11) is the Lagrangian relaxation of the determin-
istic model. The deterministic counterpart is a convex optimization problem (since x−1(yt)yt is
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concave in yt), so strong duality holds and the right-hand side is equal to V D(T ) when taking
the infimum over µ ≥ 0.

In our setting with state-dependent demand and periodic price changes, this same approach
cannot be used to establish the upper bound. The first issue is that price changes are periodic,
so the stochastic objective (6) has a demand censoring term. This means that the deterministic
relaxation (D†) is a non-convex optimization problem and strong duality does not necessarily
hold. Even though Theorem 1 shows the equivalence of (D†) to the model (D) without censoring,
the constraint (Db) is still non-convex; Thus, strong duality is still not guaranteed even in a
model without the demand censoring terms. A second issue comes from the fact that demand
is state-dependent. As a result, the point-wise maximum in (11) cannot be taken in our setting
since the expected demand in period t depends on the remaining inventory Nt−1, which in turn
depends on previous intensities y1, . . . , yt−1.

Our proof overcomes both issues by establishing the bound, not directly on (D) and (P), but
through mathematical induction on their dynamic programming (DP) counterparts. Specifically,
the DP counterpart of (D) for any u ∈ [0, α] is:

RD(u, T ) , max
y∈[0,1]

x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (12)

s.t. λ(u, α)y ≤ u,

where the base case is RD(u, 0) = 0 for all u ∈ [0, α]. Observe that RD(u, T ) can be thought
of as the deterministic revenue-to-go if the remaining inventory is u and there are T periods
remaining. Hence, we have V D(T ) = RD(α, T ).

Similarly, for any u ∈ [0, α], the stochastic optimization problem (P) has a dynamic pro-
gramming counterpart:

R∗(u, T ) , max
y∈[0,1]

Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T − 1)

]
. (13)

Here, Ey,u is the expectation with respect to the distribution of per-period demand D when
the remaining inventory at the start of the period is u, and y is the current period intensity.
Recall that y, u affect the distribution of D, including but not limited to its conditional mean
λ(u, α)y. The base case is R∗(u, 0) = 0 for all u ∈ [0, α]. Note that R∗(u, T ) can be thought of
as the optimal expected revenue-to-go if the remaining inventory is u and there are T periods
remaining. Hence, V ∗(T ) = R∗(α, T ).

Our focus on the DP formulations overcomes the two issues we identified at the outset of this
subsection. The first issue (potential lack of strong duality) is resolved because if (u, T ) is given,
the constraint in λ(u, α)y ≤ u in (12) is linear in y. Using mathematical induction, we can also
establish that the objective of (12) is strictly concave in y due to the concavity assumption on
λ(·, ·). Hence, strong duality holds for the Lagrangian relaxation of (12). Strong duality is the
crucial step to establishing the upper bound. The second issue (inability to take a pointwise
maximum) is resolved because we take the maximum of (13) only for the revenue-to-go, and the
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effect of current yt on future periods is absorbed in the term R∗([u − D]+, T − 1). Combining
these ideas allows us to prove the upper bound result.

Aided by the DP formulations and this proof idea, the following result establishes that the
optimal expected revenue-to-go is bounded above by the deterministic revenue-to-go.

Proposition 1 (Upper bound). For any T ≥ 1, V ∗(T ) ≤ V D(T ). More generally, for any
0 ≤ u ≤ α, R∗(u, T ) ≤ RD(u, T ).

We prove this result through mathematical induction on T , starting from establishing the
bound for T = 1. The complete proof can be found in Appendix B.6.

4.2 Asymptotic regime

Consider a scaled version of the problem, where we introduce m ∈ Z+ as a scaling factor. Thus,
we scale the initial inventory to be equal to αm. At the same time, for any period t = 1, . . . , T ,
we assume that the scaled random demand, denoted as Dm

t , has a conditional mean satisfying
the following assumption:

Assumption 4. The conditional expectation of the demand Dm
t has an SIS function λm that

scales in m such that

λm(Nm
t−1, αm) = mλ

(
Nm
t−1

m
,α

)
, (14)

where λ is a function that is independent of m and that satisfies Assumption 2(v)–(vi).

Here, Nm
t−1 denotes the inventory level at the start of period t, which is a Ft−1-measurable

random variable. By definition, Nm
0 = αm. Assumption 4, together with Assumption 1, implies

that the conditional expectation of demand scales linearly with m. Note that Assumption 4 is
only required for the proof of asymptotic optimality. Assumption 4 is not restrictive and can
be easily satisfied. For example, if the demand rate is a constant λ such as in a homogeneous
Poisson process, Assumption 4 holds by simply scaling the demand rate as λm.

In the demand model of Example 1, Assumption 4 holds if the market size scales as km.
Indeed, from (2), we have that

λm(Nm
t−1, αm) =

(
km− αm+Nm

t−1

)(
p+ q

αm−Nm
t−1

km

)
= m

(
k − α+

Nm
t−1

m

)(
p+ q

α−Nm
t−1/m

k

)
= mλ

(
Nm
t−1

m
,α

)
.

In the demand model of Example 3, Assumption 4 also holds when the market size scales as
km. From (3a), we have

λm(Nm
t−1) = (km)

(
Nm
t−1

(km)Nr

)β
= m · k

(
(Nm

t−1/m)

kNr

)β
= mλ(Nm

t−1/m).
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Additionally, Assumption 4 holds if, for all m ∈ Z+, we have λm = λ where λ is a
homogeneous function of degree 1. The property by definition means that λ(Nm

t−1, αm) =

mλ(Nm
t−1/m,α).

The scaled version of the pricing problem (denoted by problem Pm) is defined as:

V ∗(m,T ) , max
y∈Y

V y(m,T ), (Pm)

which we denote as (Pm), where the expected revenue V y(m,T ) of policy y is defined as:

V y(m,T ) , E

[
T∑
t=1

x−1
(
y(Nm

t−1, t)
) (
Dm
t − [Dm

t −Nm
t−1]+

)]
. (15)

Recall that Y is the set of all intensity policies y that are Ft-measurable. The dynamics of the
remaining inventory is Nm

t = [Nm
t−1−Dm

t ]+, where Nm
0 = αm is the scaled initial inventory. For

any m, the distribution of Dm
t satisfies Assumptions 1 to 3.

We use (Dm) to denote the scaled counterpart of the deterministic model (D) where α is
replaced with αm and λ(nt−1, α) is replaced by λm(nt−1, αm). Per our discussion in Section 3.1,
if u = αm, then (Dm) is the deterministic counterpart to the scaled stochastic problem (Pm). Let
V D(m,T ) denote the optimal value of (Dm) when we set u = αm. Note that V D(1, T ) = V D(T ).

An immediate consequence of Proposition 1 is that V ∗(m,T ) ≤ V D(m,T ). The implication
of this is that a policy y is asymptotically optimal if, as m increases, the bound on its expected
revenue loss, V D(m,T ) − V y(m,T ), grows at a slower rate than the growth rate of V D(m,T ).
Note that V D(m,T ) grows linearly in m. This is because, due to (14), λm(mn,mα) = mλ(n, α)

for any n ∈ [0, α]. Hence, when we set u = αm for (Dm) and u = α for (D), we can check that
their respective optimal solutions, (nD,m, yD,m) and (nD, yD), have the property that nD,m = mnD

and yD,m = yD. This implies that V D(m,T ) = mV D(T ), hence the linear growth of V D(m,T ).
We will analyze the convergence rate of the expected revenue loss under our proposed policies,

yOL and yCL. For scaling factor m, yOL and yCL are based on solutions to the scaled model (Dm)

instead of (D). Given m, let V OL(m,T ) and V CL(m,T ) denote the expected revenue under the
CE-OL and CE-CL, respectively. Hence, the expected revenue losses under CE-OL and CE-CL are
V D(m,T ) − V OL(m,T ) and V D(m,T ) − V CL(m,T ), respectively. In Section 4.3, we show that
both expected revenue losses are lower bounded by Ω(

√
m). Then, in Section 4.4 we show that

both expected revenue losses are upper bounded by O(
√
m) (i.e., slower than linear). Hence, the

CE policies are asymptotically optimal as m grows large since the relative revenue loss compared
to the true (unknown) optimal policy is O(1/

√
m).

Showing that V D(m,T ) − V OL(m,T ) and V D(m,T ) − V CL(m,T ) are both O(
√
m) does

not immediately follow from standard arguments in the existing literature (e.g., Gallego and
Van Ryzin 1994; Jasin 2014). This is because, in our setting, the demand is a random variable
that depends on the path of remaining inventory through the function λ. Therefore, the deviation
of the expected revenue from V D(m,T ) does not just depend on the expected stock-out level, it
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also depends on deviations of the path of remaining inventory from the optimal inventory solution
(nD,m

0 , . . . , nD,m
T ) of the deterministic counterpart (Dm) when u = αm. Hence, it is crucial to

establish the convergence of the demand inventory paths to their deterministic equivalents (see
Lemmas 1 and 7 below). Assumption 3 is crucial for this step since it implies that the variance
does not grow too fast as the problem scales up, so the normalized demand Dm

t /m can be well
approximated by its mean as m scales up. Most notably, the demand paths and inventory paths
under the certainty-equivalent policies also converge to the deterministic optimal path, making
the relative revenue losses of both CE policies converge to zero.

4.3 Lower bound on CE expected revenue loss

It is known that for the open-loop certainty equivalent policy, a lower bound on V D(m,T ) −
V OL(m,T ) is Ω(

√
m) (Remark 2 in Jasin 2014). In the next result, we formally establish that

in our setting with state-dependent demand, under the closed-loop certainty-equivalent policy,
V D(m,T )− V CL(m,T ) is also lower bounded by Ω(

√
m).

Theorem 5. There exists a distribution satisfying Assumptions 1 to 4 such that the expected
revenue loss under CE-CL is V D(m,T )− V CL(m,T ) = Ω(

√
m).

When demands are independent, Jasin (2014) shows that the CE-CL policy has an O(logm)

bound on the expected revenue loss, which is better than the Ω(
√
m) lower bound in our set-

ting with state-dependent demands. The independence assumption is critical, as it helps with
martingale construction and tight characterization of dual variables in the certainty equivalent
problem. With state-dependent demand, the arguments of Jasin (2014) do not apply. Moreover,
the reduction to O(logm) requires the condition that more inventory strictly improves the rev-
enue (condition µD > 0 in Theorem 1 of Jasin 2014). However, in our setting of state-dependent
demand, more inventory could result in a strictly lower revenue. An example where this could
happen is when scarcity boosts sales, so higher inventory results in a lower demand rate.

4.4 Upper bound on CE expected revenue loss

We next show that the expected revenue loss of the open-loop policy, V D(m,T ) − V OL(m,T ),
and of the closed-loop policy, V D(m,T ) − V CL(m,T ), both grow in the order O(

√
m). Hence

our lower bound result implies that, under a setting with state-dependent demand and periodic
price reviews, both certainty equivalent policies have an expected revenue loss that is Θ(

√
m).

This implies that, under our setting, the re-optimization does not improve the CE revenue loss’
asymptotic order of growth.

We begin by analyzing the loss under the open-loop policy. We introduce some notation.
Observe that the open-loop policy yOL is a static, but time-varying policy. Thus, we use yOL

t

to denote the deterministic period t intensity using the open-loop policy yOL4. For a given m,
let N̄m = (N̄m

0 , . . . , N̄
m
T ) be the stochastic sequence of inventory levels under the open-loop

certainty-equivalent policy yOL. Note that N̄m
0 = αm.

The next lemma states that the normalized inventory N̄m
t /m of the open-loop policy con-

verges in expectation to the deterministic optimal inventory nD
t solution to (D) when u = α.

4Since it is open-loop, yOL
t is independent of demand realization
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Hence, even though the conditional expectation of demand is state-dependent in our setting, this
lemma implies that the expected demand rate of the open-loop policy converges in expectation
to the deterministic optimal demand rate.

Lemma 1 (Convergence of remaining inventory and SIS). If nD = (nD
1 , . . . , n

D
T ) is the solution

to (D) when u = α, then the following hold:

E
∣∣∣∣N̄m

t

m
− nD

t

∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T, (16)

E
∣∣∣∣λ(N̄m

t

m
,α

)
− λ

(
nD
t , α

)∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T. (17)

The proof of this lemma is in Appendix B.8. The challenge in the proof lies in the fact that
the demands across periods are dependent, so we cannot write the remaining inventory N̄m

t as the
sum of independent random variables and use standard convergence results. We overcome this
challenge by constructing an appropriate martingale so that we can apply the Azuma-Hoeffding’s
inequality for martingales to find the gap between N̄m

t and its unconditional expectation E
(
N̄m
t

)
without knowing the functional form of λ and its unconditional distribution.

With the help from Lemma 1, we are able to show that the difference from V D(m,T ) of the
expected uncensored revenue of yOL is order O(

√
m). The uncensored revenue (corresponding

to the first term in (18) below) is computed, assuming all demands can be sold irrespective of
the inventory level. The proof is in Appendix B.9.

Lemma 2 (Convergence of uncensored revenue). The following holds:∣∣∣∣∣E
(

T∑
t=1

x−1
(
yOL
t

)
λm
(
N̄m
t−1, αm

)
yOL
t

)
− V D(m,T )

∣∣∣∣∣ = O
(√
m
)
. (18)

Though the bound in Lemma 2 is for an uncensored setting, we use this result to derive
the loss bound for the expected revenue in the censored setting.5 This, combined with Proposi-
tion 1, establishes the asymptotic bound for the expected revenue loss of yOL (Theorem 6 below).
Specifically, the proof of the next result (in Appendix B.10) shows that the censored revenue
V OL(m,T ) converges to the uncensored revenue as m grows large.

Theorem 6 (Expected revenue loss of open-loop CE policy). The following holds:

1− V OL(m,T )

V ∗(m,T )
≤ 1− V OL(m,T )

V D(m,T )
= O

(
1/
√
m
)
. (19)

The implication of Theorem 6 is that the open-loop policy performs well if the problem scale
m is large. It is important to note that the asymptotic optimality result of Theorem 6 applies
for any demand distribution, as long as Assumptions 1 to 4 hold.

5We use the Scarf bound (Scarf 1958), which establishes the expected difference between a truncated random
variable and itself, to show the difference between the censored revenue and the uncensored revenue.
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The analysis of the expected revenue loss under the closed-loop policy, yCL, proceeds similarly
to that of yOL except with one key difference. The difference is that we need to show yCL(n, t)

is Lipschitz continuous in any n ∈ [0, αm]. This is formalized in the following lemma.

Lemma 3 (Lipschitz continuous policy). There exists Cy such that, for any n, n′ ≥ 0,∣∣∣yCL(n, t)− yCL(n′, t)
∣∣∣ ≤ Cy ∣∣n− n′∣∣ , for all t = 1, . . . , T.

This property is important since, unlike the open-loop policy that has a static price sequence,
yCL results in a stochastic price sequence that dynamically changes based on the past realizations
of demand. Since yCL is a Lipschitz continuous function in n, then the difference in price at two
inventory levels does not grow too fast, compared to the difference in inventory level. This is
desirable since it leads to a relatively stable pricing policy against inventory dynamics.

With this key property, we can establish convergence of the inventory sequence under yCL to
the deterministic inventory sequence. This is formalized in Lemma 7, which is stated and proved
in Appendix B.12. This then allows us to show that the uncensored expected revenue under yCL

has a gap from V D(m,T ) that is O(
√
m). This is formalized in Lemma 8, which is stated and

proved in Appendix B.13. Note that Lemma 7 and Lemma 8 are the counterparts of Lemma 1
and Lemma 2, respectively, for the closed-loop policy.

Hence, as with the open-loop policy, the closed-loop certainty equivalent policy yCL is asymp-
totically optimal to the stochastic periodic pricing problem as the problem scale m grows large.
Its proof is in Appendix B.14.

Theorem 7 (Expected revenue loss of closed-loop CE policy). The following holds:

1− V CL(m,T )

V ∗(m,T )
≤ 1− V CL(m,T )

V D(m,T )
= O

(
1/
√
m
)
. (20)

The asymptotic optimality of the closed-loop policy holds for any demand distribution that
satisfies Assumptions 1 to 4.

4.5 Discussion of our analysis

We would like to point out two distinctive features in our problem that make our analysis of the
CE policies different from earlier works in dynamic pricing literature.

The first feature is that the demand in each period is state-dependent, hence the demands
across periods are dependent. Unlike the case where demands are independent (among many
examples are Gallego and Van Ryzin 1994; Maglaras and Meissner 2006; Jasin and Kumar 2013),
we need to introduce new mathematical machinery to prove the asymptotic optimality of the
CE policies. For example, we establish the upper bound result of Proposition 1 by converting
the problem to dynamic programming formulations of (P) and (D). If the demands were inde-
pendent, this upper bound can be shown by Lagrangian relaxation directly on the multi-period
model. Further, in this setting, the O(

√
m) gap between the CE policy expected revenue and the

deterministic upper bound can be trivially established. But when demands are state-dependent,
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the O(
√
m) bound can only be established if the expected “path” of states (i.e., the inventory

level) under the CE policy converges to the optimal deterministic inventory level. This is non-
trivial to show when demands are state-dependent, since the cumulative sales (and the resultant
inventory level) in the previous periods affect the demand and inventory of the current period.
To prove the convergence of inventory paths, we define a martingale with a bounded difference
and use a martingale concentration inequality, as seen in the proofs of Lemmas 1 and 7.

The second feature is that the prices are reviewed periodically. Hence, the inventory may stock
out during a period, resulting in a demand censoring term in the revenue function. Censored
demands make the analysis non-trivial even if the demands were independent. For example,
when there is no censoring, an upper bound can be established using straightforward arguments
since the deterministic relaxation is a convex problem as we discussed in Section 4.1. Many
existing works in dynamic pricing literature assume continuous price changes (combined with
Poisson demand arrivals), so without loss of generality, demand is uncensored. This is because
any continuous review pricing policy can simply turn off demand by setting a high price once
inventory reaches zero. Due to the uncensored demand, the analysis in those continuous price
review models is tractable. Perhaps a setting resembling limited price changes is Section 5.1
of Gallego and Van Ryzin (1994) which considers a compound Poisson process where, at each
Poisson arrival time, a random demand size is observed. However, they restricted their analysis
to policies where the resulting total demand does not exceed inventory almost surely, so there
is no demand censoring in the objective. With periodic pricing reviews, reasonable policies
could result in lost sales on some demand sample paths. Hence, our analysis of asymptotic
optimality needs to hold in the case of demand censoring. We are able to overcome the challenge
of demand censoring in several steps of the analysis. First, we show the connection of the
censored deterministic relaxation (D†) to a model (D) where deterministic demand cannot exceed
inventory. This property of the deterministic solution is used in several places of the proofs, such
as in establishing the deterministic upper bound (Proposition 1) and in proving the inventory
path convergence of the CE policies (Lemmas 1 and 7). Second, we bound the difference between
the censored and uncensored expected revenues by bounding the expected lost sales using Scarf
(1958), as can be seen in the proofs of Theorems 6 and 7.

5 Extensions

5.1 Joint optimization of starting inventory and pricing

We next study an extension where the seller sets the initial inventory along with prices. At time
0, the seller decides an initial inventory N0 = α by choosing α ≥ 0, and incurs a procurement cost
of c per unit of inventory. Suppose that the demand distribution is dependent on the starting
inventory and is state-dependent, where the state is the current inventory level. Specifically,
the demand distribution satisfies Assumptions 1 to 3. The seller only knows the conditional
expectation of the per-period demand through the functions λ and x.

If the seller knew the distribution of per-period demand, then her goal will be to maximize
the expected profit by jointly optimizing the initial inventory and the periodic-review pricing
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policy. In this case, she will solve a stochastic dynamic optimization problem to decide the
initial inventory α and the pricing policy. The expected profit of a decision (α,y) is

Qα,y(T ) , E

[
T∑
t=1

x−1 (y (Nt−1, t))
(
Dt − [Dt −Nt−1]+

)]
− cα,

where N0 = α and Nt = [Nt−1 −Dt]
+ for all t ≥ 1. Note that Qα,y(T ) = V α,y(T ) − cα, where

we write V α,y(T ) instead of V y(T ) to emphasize that α is a decision variable. Hence, under full
knowledge of the demand distribution, the seller’s decision problem is

Q∗(T ) , max
α≥0

max
y∈Y

Qα,y(T ). (P′)

The only difference from Section 2.2 is that now α is a decision variable.
We now introduce a certainty-equivalent policy that only requires knowledge of the functions

λ and x that specify the conditional expectation of per-period demand. Consider the following
problem:

QD(T ) , max
α≥0

QD,α(T ) := max
α≥0

V D,α(T )− cα, (D′)

where we write V D,α(T ) instead of V D(T ) to emphasize that α is a decision variable that affects
the expected revenue through the inventory constraint and in scaling the demand rate through
λ(n, α). Note that QD,α(T ) in (D′) is the deterministic counterpart of maxy∈YQα,y(T ) in (P′).

The certainty-equivalent policy solves the deterministic counterpart (D′) to set the initial
inventory αCE ≥ 0. Given α = αCE, the policy then sets yCE : [0,∞) × {1, . . . , T} 7→ [0, 1] as
either one of the certainty-equivalent intensity policies described in the previous sections, where
CE ∈ {OL,CL}. We denote the expected profit of the certainty-equivalent policy of the joint
inventory and pricing problem as QCE(T ).

Algorithm 3 gives a description of the CE policy.

Algorithm 3: Setting initial inventory and prices with the CE policy.

1: procedure Certainty Equivalent(T )
2: αCE ← optimal solution of (D′)
3: set N0 = αCE . set initial inventory
4: set prices according to the CE-policy (open-loop or closed-loop) for (αCE, T )

Computing the certainty-equivalent policy for a joint inventory and pricing policy is tractable.
Recall that in Theorem 2(ii), we prove that the deterministic value function V D(T ;u, α) is jointly
concave in (u, α) for a given T . This implies that solving for the certainty-equivalent market
coverage αCE can be simply done by gradient methods like the Newton algorithm.

Consider a setting where we scale by a factor m both the initial inventory and the expected
demand by (14). We denote the optimal expected profit as Q∗(m,T ) and the expected profit of
the certainty-equivalent policy is QCL(m,T ). As in the case with the certainty-equivalent pricing
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policies, we show that the expected profit loss under Algorithm 3 grows sub-linearly in m –
this means that our proposed joint decision policy is asymptotically optimal. This is formally
established in Theorem 8. The proof is in Appendix C.1.

Theorem 8 (Expected profit loss of CE policies). The following holds:

1− QCE(m,T )

Q∗(m,T )
= O

(
1/
√
m
)
. (21)

This result shows that the CE policy guarantees a close-to-optimal expected profit when the
scale of inventory and demand is large. This result is somewhat surprising since αCEm is not
necessarily equal to the optimal initial inventory of the mth stochastic problem (which we denote
by α∗m). Hence, the fact that the CE policy may choose a different initial inventory implies that
the asymptotic optimality in Theorem 8 does not follow immediately from Theorems 6 and 7. But
the implication of Theorem 8 is that when m is large enough, the scaled-down initial inventory
α∗ is close to αCE.

5.2 Analysis of a fixed-price policy

When the demand rate is time-stationary and independent, a fixed-price policy (i.e., setting the
same price for all time periods) is known to be asymptotically optimal (Gallego and Van Ryzin
1994). We next analyze the performance of such a policy under our problem setting with state-
dependent demand.

Given the initial inventory α ≥ 0, we first define the fixed-price policy yFP. If α is sufficiently
large, the fixed-price policy fixes a price corresponding to intensity ȳ, where ȳ ∈ [0, 1] is the
unique maximizer of the revenue function, i.e., ȳ , arg maxy∈[0,1] x

−1(y)y. In other words, if the
inventory constraint is nonbinding, the policy chooses the intensity that maximizes the current
period revenue only, without considering the effects of inventory and sales on demand. If the
inventory constraint is binding, the policy instead chooses the intensity so that the expected
total demand equals the initial inventory, i.e., the fixed point yso of the equation (the superscript
“so” stands for “stockout price”):

ȳso =
α∑T

t=1 λ
(
nȳ

so

t−1, α
) ,

where, for any y ∈ [0, 1], (ny0, n
y
1, . . . , n

y
T ) is defined as the deterministic sequence with ny0 = α

and nyt = nyt−1 − λ(nyt−1, y)y for all t ∈ T . Note that ȳso can be found by fixed-point iteration.
Mathematically, given any initial inventory α ≥ 0, the fixed-price policy yFP is defined for

every (n, t) ∈ (0, α]× T as:

yFP (n, t) = yFP ,

{
ȳ, if α ≥

∑T
t=1 λ

(
nȳt−1, α

)
ȳ,

ȳso, otherwise.
(22)

To implement this, the seller will charge the price yFP for all T periods.
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Under the joint inventory and pricing problem, the fixed-price policy sets initial inventory
αFP by solving

QD′
(T ) , max

α≥0
V D′,α(T )− cα, (S)

where V D′,α is the deterministic revenue with initial inventory α and fixed-price policy yFP.
Specifically,

V D′,α(T ) ,
T∑
t=1

x−1
(
yFP
)
λ(nFP

t−1, α)yFP, (23)

where nFP
0 = α and nFP

t = nFP
t−1− λ(nFP

t−1, α)yFP for all t ≤ T . Then given αFP, it sets yFP as the
fixed-price policy just described with α = αFP. The fixed-price policy is outlined in Algorithm 4.

Algorithm 4: Setting the initial inventory and prices based on fixed-price policy.

1: procedure Fixed Policy(T )
2: αFP ← optimal solution of (S)
3: set N0 = αFP . set initial inventory
4: set prices with Fixed Pricing(αFP, T )

5:

6: procedure Fixed Pricing(α, T )
7: yFP ← ȳ or ȳso based on cases in (22) for α
8: for t← 1 to T do
9: set intensity yFP by offering price x−1(yFP) . set current intensity (price)

We next state the main result of this subsection which describes the performance of the fixed-
price policy under our setting. Under the setting where the expected demand and the initial
inventory are scaled by m, we denote the expected profit of the fixed-price policy (mαFP,yFP) as
QFP(m,T ). For any α ≥ 0, we denote V FP,α(m,T ) as the expected revenue under the stochastic
model of the fixed-price policy yFP with initial inventory mα, and V ∗,α(m,T ) as the expected
revenue under the optimal pricing policy with initial inventory mα.

Proposition 2 (Profit loss of the fixed-price policy). When T ≥ 2, if the following conditions
hold for a fixed α ≥ 0:

(i) ∂
∂yV

D (T − 1;α− λ(α, α)y, α)
∣∣∣
y=ȳ
6= 0, and

(ii) α ≥
∑T

t=1 λ(nȳt−1, α)ȳ,

then V ∗,α(m,T )−V FP,α(m,T ) = Ω(m). If (i)–(ii) hold for α = αFP, thenQ∗(m,T )−QFP(m,T ) =

Ω(m).

The proof is in Appendix C.2. Condition (i) of Proposition 2 implies the myopic optimal
intensity ȳ is not the optimal first-period price for deterministic model V D(T ). Condition (ii)
implies that the initial inventory is sufficiently large. Proposition 2 shows that both profit loss
and revenue loss of a fixed-price policy grows at least linearly in the scaling factor m.
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One may think that the reason that the fixed-price policy performs poorly is that it may
not start with the optimal initial inventory, i.e., αFP 6= α∗. However, Proposition 2 shows that,
regardless of the initial inventory level, the profit loss grows at least at a linear rate in the scaling
factor as long as the initial inventory level is sufficiently large. This shows that the inability to
adjust the price results in a much greater loss when demand depends on inventory and cumulative
sales.

In contrast, the certainty-equivalent policies allow the seller to adjust price, even if the price
sequence is static (i.e., open-loop policy). Thus, whether the future demand is driven by past
sales or by inventory availability (or both), the seller can account for the current revenue as well as
the future revenue when setting prices. The difference in the fixed pricing policy and a certainty-
equivalent policy can be demonstrated when T = 2. Proposition 2 shows that a fixed price results
in a loss growing at least at a linear rate in the scaling factor. By contrast, the revenue and
profit loss of certainty-equivalent policies are order O(

√
m), which implies asymptotic optimality

(see Theorems 6 to 8). This means, even a single opportunity to change the price (based on the
sales and inventory) can substantially reduce the revenue or profit loss.

6 Numerical Studies

In this section, we conduct several numerical experiments to demonstrate the performance of the
certainty-equivalent policies (CE-OL and CE-CL). We first illustrate the analytic properties of the
deterministic value function V D(T ). In Section 6.2, we show the CE-OL and CE-CL converge fast
numerically and can achieve close-to-optimal performance even in instances with a small scaling
factor m. In Section 6.4, we experiment on the number of price changes and demonstrate the
value of increased flexibility in pricing.

6.1 The deterministic revenue V D,α(T ) and the initial inventory problem

We illustrate the deterministic revenue function V D,α(T ) with a concrete example. Following
Example 3, we choose price sensitivity function x(π) = e−γπ − cx. We consider a case where the
demand is influenced by both the past purchases and inventory availability by setting the SIS
function to be a mixture of the SIS functions in Examples 1 and 3, respectively. In particular,

λ(n, α) =
(
wλ(1)(n, α) + (1− w)λ(2)(n, α)

)
∆t, (24)

where λ(1)(n, α) =
(
(n− α2 + 1)/Nr

)β (cf. (3a)) and λ(2)(n, α) = (1− (α− n)) (p+ q(α− n))

(cf.(2)), and ∆t is the constant length of each time period. (We include the constant ∆t because
later on we examine the effect of changing ∆t to change the number of price change opportunities
within a fixed time.) Note that we modified (3a) so that λ(n, α) is jointly concave in (n, α).
These modifications have no effect on the qualitative properties of the optimal prices in Smith
and Agrawal (2017). Here λ(n, α) in (24) is jointly concave in (n, α). The parameters used in
this example are (p, q,Nr, β, γ, cx, T,∆t) = (0.4, 0.6, 25, 0.6, 0.001, 0.01, 10, 2).

Figure 1 plots the optimal value function V D,α(T ) as a function of the initial inventory α
with different weights w of the SIS function (24). Without loss of generality, we normalize the
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Figure 1: The deterministic revenue function (D) plotted against the initial inventory α, for
different values of w in (24).

demand so that we impose the constraint α ∈ [0, 1]. The figure illustrates that V D,α(T ) is
concave in α, which agrees with item (ii). When w = 0, only the network effect (the positive
effect of sales on demand) comes into play, and so it is optimal to serve the market fully (α = 1).
When w = 1, only scarcity effects are felt and the optimal initial inventory is α = 0.68. When
w = 0.5 (network effect, saturation effect, and scarcity effect are all present), the optimal choice
of inventory is α = 0.84. This complex example with all three effects present shows that we
should choose α < 1 in the presence of a scarcity effect of inventory.

6.2 Revenue loss of the certainty-equivalent policy

We next illustrate the performance of the CE policies on the demand pattern considered in
Section 6.1. We set w = 0.5 in (24) so that both display and word-of-mouth effects are present.
From the previous experiments, the CE policy sets initial inventory αCE = 0.84. The dynamic
pricing policy yCL is based on reoptimizing (D) in each period with updated inventory levels.
The policy yOL does not reoptimize the revenue in each period but sets time-varying prices.

We vary the inventory and demand scaling factor m from 100 to 3000, with discretizations
shown in the horizontal axis of Figure 2. For each m, we randomly generate 2 × 104 demand
sample paths following a bounded support Poisson distribution; we implement the dynamic
pricing policies yOL and yCL, and record the realized revenue on each path. The revenue averaged
over the sample paths, which we denote by V̄ OL(m,T ) and V̄ CL(m,T ), are the approximations
for the expected revenue of the certainty-equivalent policies, V αCE,yOL

(m,T ) and V αCE,yCL
(m,T )

respectively. We also note the 95% confidence intervals of this sample average.
Since the optimal revenue V ∗(m,T ) is impossible to compute for problems with an un-

known distribution, we compute V D(m,T ) (which is an upper bound of V ∗(m,T )) for com-
parison. Based on our sample approximation for V OL(m,T ) and V CL(m,T ) for each m, we
compute an upper bound for the revenue losses of the CE-OL and CE-CL policies as (V D(m,T )−
V̄ OL(m,T ))/V D(m,T ) and (V D(m,T ) − V̄ CL(m,T ))/V D(m,T ), which are shown as the points
in Figure 2. The figure also shows the 95% confidence intervals of the revenue loss bound. From
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Figure 2: Upper bound on the percentage revenue loss of the certainty-equivalent policies against
the optimal value of the stochastic problem. The fixed-price policy has a bound on percentage
revenue loss that is at least 30% (not shown in graph).

Theorem 7, we know that the upper bound on the revenue loss is O(1/
√
m), which is tightly

traced by the 1/
√
m fit, shown with a dashed line in Figure 2. We further observe that the

revenue losses by implementing both yOL and yCL are very small (∼ 0.15% when m = 3000).
This implies that, for a product with scaling factor even as small as 100–3000 (small expected
demand per period), the certainty-equivalent policies perform well. One may wonder how well
the best fixed-price policy performs for the same problem. In all our examples, the fixed-price
policy has a percentage revenue loss greater than or equal to 30% (we omit this from the figure
to better highlight the difference between CE-OL, CE-CL, and the optimal policy).

6.3 The benefit of reoptimization in a non-asymptotic setting

In contrast to the open-loop policy CE-OL, the closed-loop policy CE-CL reoptimizes the deter-
ministic model (D) in each price review period with updated state information. In our asymp-
totic analysis, we show that reoptimization does not reduce the convergence order of CE revenue
loss. Through a numerical study comparing the two policies, we will examine the benefit of
reoptimization in a non-asymptotic setting when m = 20.

Figure 3 shows how the gain from reoptimization is affected as the number of price changes
T increases. In this example, demand follows a Poisson distribution and the Bass SIS function
defined in (2) with p fixed at 0.01, when q = 1.0, and k = 20. The figure shows that more frequent
reoptimization is beneficial as more opportunities to adjust prices reduces the probability of an
early stock-out during the selling horizon and generates more revenue out of the remaining
inventory. We note that the benefit of reoptimization has an increasing trend if there are more
opportunities for changing prices.

Figure 4, on the other hand, shows how the gain from reoptimization changes by changing
q while keeping everything else the same. Since −∂2λ

∂n2 ∝ q, changing q is equivalent to changing
the concavity of λ. Our example shows that the gain increases as the SIS function becomes
more concave. This is because when the SIS function is highly non-linear and concave, the static
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Figure 4: Value of resolving by increasing the
concavity of the SIS function

CE-OL current price typically deviates more from the optimal policy. For instance, if the SIS
function follows a Bass function, as defined in (2), the second-order derivative with respect to
inventory decreases with q, where q is the imitation parameter in Bass terminology. This means
that as q increases (i.e., more people imitate), the seller will lose significant revenue by not
reoptimizing (D).

We next discuss the intuition on why a revenue gap between CE-OL and CE-CL exists. The
closed-loop policy reoptimizes the price in each period so, given state information, its expected
demand does not exceed the remaining inventory. Hence, the conditional expectation of its
inventory path, E(Nt | Ft−1) = Nt−1 − λ(Nt−1, α)yCL(Nt−1, t), does not significantly deviate
from its deterministic counterpart, nD

t = nD
t−1 − λ(nD

t−1, α)yD
t . In contrast, policy CE-OL does

not guarantee that the conditional expectation of Nt is close to nD
t . This is because, given the

inventory state, the open-loop price can result in an expected demand that is greater than the
inventory, so E(Nt | Ft−1) 6= Nt−1 − λ(Nt−1, α)yOL

t . This explains why the revenue loss relative
to the deterministic upper bound is greater under CE-OL.

6.4 Revenue loss due to limited price changes

The certainty-equivalent policies we consider are discrete-time policies that assume that the
underlying demand is modeled as a discrete-time process. Hence, an interesting question to
ask is: how much revenue can the discrete-time policy lose if the true demand is a continuous-
time process? To answer this question, we use one of the CE policies, CE-CL, to illustrate the
performance. We run experiments on demand that is modeled as a continuous-time Markov
chain with the state variable Nm, where Nm = αm,αm − 1, ..., 0. If n is the current inventory
level, the transition rate is λ(n, αm)x(π)/∆t, with λ(n, αm) given in (24). That is, conditional
on current inventory level n, the probability of having one sale during a time period of length
o(t) is

P
(
Nm
t+o(t) = n+ 1 |Nm

t = n
)

= λ (n, αm) o(t)
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Table 3: The expected revenue of the discrete-time policy normalized with the expected revenue
of a continuous-time policy

T: Number of
price changes 1 2 4 5 10 17 22 35 45

95 % CI
lower bound 70.3% 95.6% 97.9% 98.4% 99.4% 99.6% 99.8% 99.9% 100.0%

Expected
normalized revenue 70.3% 95.6% 97.9% 98.5% 99.4% 99.7% 99.8% 100.0% 100.0%

95 % CI
upper bound 70.3% 95.7% 98.0% 98.5% 99.4% 99.7% 99.9% 100.0% 100.0%

and there is o(t) probability of having more than one sale during a time period of length o(t).
To see the loss due to the discrete approximation, we experiment with different values for

∆t, the length of time between price changes. We do this while keeping the total planning
horizon length T̄ = T∆t unchanged. In particular, the case when ∆t approaches zero represents
continuous price changes, which serves as a benchmark for the discrete-time model. For a given
(T,∆t) pair, we compute the CE-CL policy (αCE,yCL) and implement the discrete-time policy in
8× 103 sample paths simulated from the continuous-time Markov chain process.

For the various values of T , Table 3 reports the average revenue (and 95% confidence in-
tervals) of the certainty-equivalent policy normalized against the average revenue with T = 45

price changes (i.e., the continuous-time policy benchmark). Notice that we can see diminishing
marginal returns when increasing the number of price changes. Consistent with Section 6.2, we
observe a sharp increase in revenue when the number of price changes increases from 1 to 10.
However, we observe that 10 price changes are almost as good as continuous price changes.

These results provide numerical evidence that a few price changes are good enough to capture
the revenue from changing price continuously (which is very costly in practice). A small number
of prices go a long way. We believe the most important reason for this is the fact that the SIS
function λ(n, α) is assumed to be jointly concave in (n, α) so that the demand rate is relatively
“flat” compared to other convex forms. Moreover, because of the concavity of λ, in Lemma 3, we
found that the deterministic optimal policy is Lipschitz continuous in the remaining inventory.
This means the difference in the two policies is not too large when the inventory level changes,
which implies the deterministic optimal policy is a relatively stable pricing policy. With the
optimal price path to be relatively stable, a well-designed policy with one price change in the
middle can have the ability to roughly trace the optimal path, which can recover most of the
revenue. However, we note that such policy (piecewise constant pricing) is not asymptotically
optimal in the face of a continuous-time dependent demand model.

7 Conclusion

Certainty equivalent (CE) policies are widely used in practice because they are easy to compute
and require a minimal amount of information. The performance guarantee of CE policies has
been extensively studied in the literature under settings where demand is independent across
periods and prices can be changed continuously. In contrast to the demand models studied in
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the previous literature on CE policies, our demand model is able to capture two distinct forces
that critically influence future demand. The first force is that future demands are influenced
by past sales. The word-of-mouth effect is an example of this force. The second force is that
future demand is influenced by inventory availability. This force is often manifested in one of
two forms: the scarcity effect (in case of luxury or fad items) and the billboard effect, which are
found in many markets today. Moreover, we consider a periodic review pricing policy, which is
commonly practiced in reality.

We analyze two CE pricing policies: an open-loop CE policy (CE-OL) and a closed-loop CE
policy (CE-CL). We show that as the scaling factor m increases, both CE pricing policies are
asymptotically optimal with a regret rate of O(

√
m) when compared with the optimal policy.

The regret upper bound is tight as we show the revenue loss of a CE policy is lower bounded
by Ω (

√
m). Our theoretical results show that when future demand is state-dependent, reopti-

mization may not necessarily improve the CE revenue loss’ convergence order. In contrast, when
demands are independent, one can expect that reoptimization reduces revenue loss to O(logm).
We then extend our results to the case where the seller chooses initial inventory along with price
in each period. We also show that when demand depends on time, cumulative sales, and/or
inventory availability, the asymptotic performance of CE policies does not change.

To further explore the difference of dynamic pricing under sales and inventory dependent
demand against traditional demand assumptions used in the dynamic pricing literature, we also
evaluate the performance of the static pricing policy (which was proven to be optimal in classical
settings). We show that the revenue loss from static pricing can be huge and it grows at least at
the rate of a linear function when demand is dependent on cumulative sales and inventory.

An accompanying numerical study shows the performance and implementability of both CE
pricing policies. We also show that the CE-CL policy performs close optimality even in cases where
the scaling factor is not large. Furthermore, we show that significant revenue improvement can
be achieved by just a few price changes.

There are several future directions for our work. One is to extend the framework to the multi-
product case where those products share the same market. Another extension is to consider
strategic customers. The customers can strategically wait until there is a discount. Sapra et al.
(2010) touch on this with the wait-list effect, where here it may be that a customer registers
some interest in the product (follows on Twitter) but is waiting for a sale. Another direction is to
incorporate learning into our model. In this paper, we assume that the conditional expectation
of the demand is known. It is possible to approximate the expectation using available data
throughout the selling horizon.
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Online Companion

Appendix A Companion results
Lemma 4. Define r(y) := x−1(y)y. Under Assumption 2, the following hold:

(i) r(y) is continuously differentiable, strictly concave and r′′ exists for all y ∈ [0, 1],
(ii) there exists a unique optimal solution ȳ to the optimization problem maxy∈[0,1] r(y), and
(iii) yh(n) , n/λ(n, α) is differentiable in n for n ∈ [0, α]. (yh(n) is the highest intensity not causing

lost sales in expectation.)

Proof. We prove r(y) is strictly concave in y first. Using the product and inverse differentiation rules,
and the fact that π = x−1(y), yields

d2

dy2
[x−1(y)y] =

2− x′′(π)y

x′(π)2

x′(π)
.

By Assumption 2(ii) the denominator is negative. Assumption 2(iii) implies, after taking derivatives, that
2 − x′′(π)x(π)

x′(π)2 > 0. Since yi ∈ [0, 1], this implies that the numerator is positive. Thus, d2

dy2 [x−1(y)y] < 0

and the strict concavity of r(y) follows.
Besides the concavity of r(y), the other properties are immediate from the relationships y = x(π),

ρ(π) = r(y), the properties of x−1, and Assumption 2(iv),(vii).

Appendix B Section 3 proofs

B.1 Proof of Theorem 1

Proof. Any feasible solution to (D) is also feasible in (D†), so V D(T ;u, α) ≤ V D†(T ;u, α). To show “≥”,
we will show that any feasible solution y to (D†) where total demand exceeds inventory can be converted
to a feasible solution with no stockout, and whose objective (D†a) is at least as large as that of y.

Let y = (y1, y2, . . . , yT ) be any policy that has positive lost sales (n can be accordingly determined
by y), i.e., λ(nt−1, α)yt > nt−1 for some period t. Let s be the index of the last period with lost sales.
We will modify policy y into a policy y′ with one less period of lost sales, where the objective function
(D†a) under y′ is no worse than that under y. More specifically, set y′s = ns−1

λ(ns−1,α) , and y
′
t = yt for all

t 6= s. Note that y′ is feasible to problem (D) and y′s < ys.
The only difference between the objective value (D†a) under y′ and that under y is the revenue in

period s. We have the difference to be

x−1(y′s) min (λ(ns−1, α)y′s, ns−1)︸ ︷︷ ︸
revenue under y′s

−x−1(ys) min (λ(ns−1, α)ys, ns−1)︸ ︷︷ ︸
revenue under ys

= x−1(y′s)ns−1 − x−1(ys)ns−1 ≥ 0

where the last inequality comes from the fact that x−1(·) is a decreasing function by Assumption 2(ii).
Hence, the objective of y′ is no worse than that of y. We next modify the solution y′ so that there is one
less period with lost sales, and the objective is no worse. We do this until there are no more periods with
lost sales. This completes our proof.

B.2 Proof of Theorem 2
Proof. (i) We first show that the objective function (D′a) is jointly concave in d. To this end, we

define the effective revenue function r(y) := x−1(y)y, so the objective function (D′a) is equivalent

36

Electronic copy available at: https://ssrn.com/abstract=3502478



to

T∑
t=1

λ(u− d1 − d2 − . . .− dt−1, α) · r
(

dt
λ(u− d1 − d2 − . . .− dt−1, α)

)
. (25)

To proceed, we require the following claim.

Claim 1. The function (d′, λ) 7→ λ · r
(
d′

λ

)
is strictly concave in (d′, λ).

Claim 1 follows from Boyd and Vandenberghe (2004) page 39 (convexity of the perspective func-
tion).

We now show that each term in the summation of (25) is jointly concave in (d1, d2, . . . , dT ).
Consider any θ ∈ [0, 1], d1 = (d1

1, d
1
2, . . . , d

1
T ) and d2 = (d2

1, d
2
2, . . . , d

2
T ). We define the vector

d̄ , θd1 + (1− θ)d2, where d̄t = θd1
t + (1− θ)d2

t .
Consider an arbitrary index t. Because λ(n, α) is jointly concave in (n, α) by Assumption 2(vi),
then

λ(u− d̄1 − d̄2 − . . .− d̄t−1, α)

≥ θλ(u− d1
1 − d1

2 − . . .− d1
t−1, α) + (1− θ)λ(u− d2

1 − d2
2 − . . .− d2

t−1, α)︸ ︷︷ ︸
λ̄

. (26)

From the definition of r, we have that

λ(u− d̄1 − d̄2 − . . .− d̄t−1, α) · r
(

d̄t
λ(u− d̄1 − d̄2 − . . .− d̄t−1, α)

)
= d̄t · x−1

(
d̄t

λ(u− d̄1 − . . .− d̄t−1, α)

)
≥ d̄t · x−1

(
d̄t
λ̄

)
= λ̄ · r

(
d̄t
λ̄

)
> θλ(u− d1

1 − . . .− d1
t−1, α) · r

(
d1
t

λ(u− d1
1 − . . .− d1

t−1, α)

)
+ (1− θ)λ(u− d2

1 − . . .− d2
t−1, α) · r

(
d2
t

λ(u− d2
1 − . . .− d2

t−1, α)

)
where the first inequality follows from the fact that x−1 is a monotone decreasing function and from
(26). The second inequality follows Claim 1. Hence, this shows that each term in the summation
(25) is jointly concave in d = (d1, . . . , dT ). This proves that the objective function (D′a) is a jointly
concave function in d.
We next show that the set of solutions d that satisfy constraints (D′b)–(D′c) is a convex set. To
show this, we want to show that for any feasible d1 = (d1

1, d
1
2, . . . , d

1
T ), d2 = (d2

1, d
2
2, . . . , d

2
T ) and

any θ ∈ [0, 1], that d̄ = θd1 + (1− θ)d2 is also feasible. Clearly, (D′b) is a linear constraint in d, so
we only need to check that d̄t ≤ λ(u− d̄1 − . . .− d̄t−1, α) for all t.

d̄t = θd1
t + (1− θ)d2

t

≤ θλ(u− d1
1 − . . .− d1

t−1, α) + (1− θ)λ(u− d2
1 − . . .− d2

t−1, α)

≤ λ(u− d̄1 − . . .− d̄t, α),

where the first inequality follows from the feasibility of d1 and d2, and the second inequality follows
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from (26). This completes the proof.
(ii) We prove the strict concavity of V D(T ;u, α) through a reformulation of (D) using the transforma-

tion dt = λ(nt−1, α)yt to yield:

V D(T ;u, α) = max
n,d

T∑
t=1

x−1

(
dt

λ(nt−1, α)

)
· dt

s.t.
T∑
t=1

dt ≤ u

nt = nt−1 − dt for all t ≥ 1

n0 = u

0 ≤ dt ≤ λ(nt−1, α) for all t ≥ 1.

(27)

For any (u1, α1) ≥ 0 and (u2, α2) ≥ 0, we denote the optimal solution of V D(T ;u1, α1) and
V D(T ;u2, α2) by (n1, d1) and (n2, d2), respectively. We may assume, without loss of generality,
that (n1, d1) 6= (n2, d2). Given any θ ∈ (0, 1), our goal is to construct a new solution from
(n1, d1), (n2, d2) that is feasible to (27) with u = ū , θu1 + (1 − θ)u2 and α = ᾱ , θα1 + (1 −
θ)α2, and whose objective value is strictly greater than θV D(T ;u1, α1) + (1 − θ)V D(T ;u2, α2).
Since V D(T ; ū, ᾱ) is no smaller than the objective value of any feasible solution, V D(T ; ū, ᾱ) >

θV D(T ;u1, α1) + (1− θ)V D(T ;u2, α2). This proves the strict concavity of V D in (u, α).
Set n̄ , θn1 + (1− θ)n2 and d̄ , θd1 + (1− θ)d2. It is easy to check that (n̄, d̄) is feasible to (27)
with u = ū and α = ᾱ. It remains to show that this solution has a strictly better revenue than
θV D(T ;u1, α1) + (1− θ)V D(T ;u2, α2). The revenue under (n̄, d̄) for period t is

g(d̄t, n̄t) , x−1

(
θd1
t + (1− θ)d2

t

λ(θn1
t + (1− θ)n2

t , θα1 + (1− θ)α2)

)
·
(
θd1
t + (1− θ)d2

t

)
.

Accordingly, our goal becomes showing

T∑
t=1

g(d̄t, n̄t) > θ ·
T∑
t=1

x−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ) ·

T∑
t=1

x−1

(
d2
t

λ(n2
t , α2)

)
d2
t

= θV D(α1, T ) + (1− θ)V D(α2, T ).

(28)

In fact, we will show that there is a dominance of revenue in every period:

g(d̄t, n̄t) > θx−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ)x−1

(
d2
t

λ(n2
t , α2)

)
d2
t . (29)

To show (29), we note that g(d, n) = λ(n, α) · r
(

d
λ(n,α)

)
, where r is the effective revenue function

r(y) := x−1(y)y defined in Appendix A.

We now show (29), because λ(n, α) is jointly concave in (n, α) by Assumption 2(vi), hence λ(n̄t, ᾱ) ≥
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θλ(n1
t , α1) + (1− θ)λ(n2

t , α2). Then because x−1 is a monotone decreasing function, we have

g(d̄t, n̄t) ≥ x−1

(
θd1
t + (1− θ)d2

t

θλ(n1
t , α1) + (1− θ)λ(n2

t , α2)

)
·
(
θd1
t + (1− θ)d2

t

)
=
(
θλ(n1

t , α1) + (1− θ)λ(n2
t , α2)

)
· r
(

θd1
t + (1− θ)d2

t

θλ(n1
t , α1) + (1− θ)λ(n2

t , α2)

)
> θλ(n1

t , α1)r

(
d1
t

λ(n1
t , α1)

)
+ (1− θ)λ(n2

t , α2)r

(
d2
t

λ(n2
t , α2)

)
= θx−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ)x−1

(
d2
t

λ(n2
t , α2)

)
d2
t ,

where the first equality is from the definition of r, and the last inequality is from Claim 1. This
establishes (29), which in turn yields (28). This completes the proof.

B.3 Proof of Theorem 3
Proof. We first show (D) has a unique solution. Then via the transformation in (D′), this implies that
(D′) has a unique optimal solution.

We prove this result through a dynamic programming reformulation of the deterministic program (D).
(Note that in practice this DP does not need to be solved to determine V D, which can be found more
efficiently using interior-point methods as we discuss in Section 3. This DP is only used for the purpose
of analysis and proof.)

Fix α. For any u ∈ [0, α], consider the following dynamic programming counterpart of (D):

RD(u, T ) = max
y

x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (30a)

s.t. λ(u, α)y ≤ u, (30b)

where the base case is RD(u, 0) for all u ∈ [0, α]. Note that V D(T ;u, α) = RD(u, T ). Further, we can
construct an optimal solution (D) by solving the dynamic programming equations (30). Hence, to show
that (D) has a unique solution, we need to show that (30) has a unique solution. Since the feasible set of
(30) is compact, to show that (30) has a unique solution, it suffices to show that the objective function,

RD,y(u, T ) , x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (31)

is strictly concave in y.

Claim 2. RD,y(u, T ) is strictly concave in y.

The first term of RD,y(u, T ) is strictly concave in y from Lemma 4(i). To see that the second term is also
concave, its second-order derivative with respect to y is

λ(u, α)
2 ∂2

∂u′2
RD(u′, T − 1)

∣∣∣
u′=u−λ(u,α)y

≤ 0,

where |u′=u means the term is evaluated at u′ = u, and the inequality comes from Theorem 2(ii) and the
fact that RD(u′, T − 1) = V D(T ;u′, α).
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B.4 Proof of Theorem 4
The proof requires the following lemma.

Lemma 5. Let (n, y) be a feasible solution to (D), where y 6= 0. If yi = 0 for some index i, there exists
a feasible solution (n′, y′) with (n′, y′) 6= (n, y) and whose objective value is the same as (n, y).

Proof of Lemma 5. We define the following procedure to move yi = 0 to the last period T to yield a
solution (n′, y′) that gives the same objective value as (n, y).

Algorithm 5

1: procedure Move(i, n, y)
2: (n′t = nt, y

′
t = yt) for all t ≤ i− 1

3: (n′t = nt+1, y
′
t = yt+1) for all i ≤ t ≤ T − 1

4: (n′T = nT , y
′
T = 0)

5: return (n′, y′)

Since y 6= 0, the new policy generated from MOVE(i, n, y) for an appropriately chosen i results in
(n′, y′) 6= (n, y). (This is not true if the only nonzero entry of y is the first index; in which case, we
modify the move procedure so that yi = 0 is moved to the first period.) It is easy to check that (n′, y′)

is a feasible solution to (D) since (n, y) is feasible.
Finally, we show that (n′, y′) has the same objective value as (n, y). Notice that n′ is constructed by

shifting every nt with t ≥ i+ 1 to one index smaller. The ending period remaining inventory is n′T = nT .
Hence,

T∑
t=1

x−1(yt)λ(nt−1, α)yt =

i−1∑
t=1

x−1(yt)λ(nt−1, α)yt +

T∑
t=i+1

x−1(yt)λ(nt−1, α)yt

=

i−1∑
t=1

x−1(y′t)λ(n′t−1, α)y′t +

T−1∑
t=i

x−1(y′t)λ(n′t−1, α)y′t.

Here, the first equality comes from yi = 0. The second equality comes from how Algorithm 5 (MOVE(i))
constructs y′.

Now we can proceed with the proof of the theorem.

Proof of Theorem 4. We denote the unique optimal solution to (D) by (nD, yD) where nD = (nD
0 , n

D
1 , . . . , n

D
T )

and yD = (yD
1 , . . . , y

D
T ). We first show (D) has the following properties:

(i) the optimal solution is strictly positive (i.e., dD > 0), and
(ii) the remaining inventory nD is a strictly decreasing sequence.

Then via the transformation in (D′), this implies that the optimal solution dD to (D′) lies in the interior
of the feasible set (i.e., λ(u− d1 − . . .− dt−1, α) > dD

t > 0).
We first claim that for any u ∈ (0, α], the optimal partial solution yD of (D) is such that yD 6= 0. This

is because the objective value of y = 0 is 0. However, the objective value for y′ where y′1 = u/λ(u, α) and
y′i = 0 for i 6= 1 is x−1 (u/λ(u, α))u > 0. Note that y′ is feasible since y′1 is the intensity that depletes all
remaining inventory u. Hence, y = 0 cannot be optimal, so yD 6= 0.

We prove that yD > 0 using contradiction. Assume there exists an i such that yD
i = 0. Then,

according to Lemma 5, we can construct a different solution with the same objective value. This contra-
dicts Theorem 3 that the optimal solution of (D) is unique.
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B.5 Strong duality of dynamic programming counterpart of (D)
For a fixed α, note that RD(u, T ) in (30) is the dynamic programming counterpart of (D). We next
establish a strong duality result for the DP formulation. This result is used in later proofs, notably
Proposition 1.

Lemma 6. Fix α. For any u ∈ (0, α],

RD(u, T ) = inf
µ≥0

LD,µ(u, T ), (32)

where, for any µ ≥ 0, LD,µ(u, T ) is defined as:

LD,µ(u, T ) , max
y∈[0,1]

{
x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) + µ (u− λ(u, α)y)

}
. (33)

Proof. We use Slater’s condition for convex programming duality (see page 226 in Boyd and Vandenberghe
2004). Recall, to invoke the Slater condition, we need to show that (30) is a convex optimization problem
with a feasible point that satisfies its constraints strictly. Observe that all the constraints in (30) are
affine in y. The objective function is concave in y, as established in Claim 2. Hence, (30) is a convex
optimization problem

The next step is to demonstrate that there exists a feasible solution to (30) that satisfies the inequality
constraint (30b) strictly. Notice that any y ∈ (0,min{1, u/λ(u, α)}) is strictly feasible to (30) because
since u > 0 and with Assumption 2(v), u/λ(u, α) > 0. Hence, Slater’s condition implies (32) holds.

B.6 Proof of Proposition 1
Proof. We first introduce the dynamic programming counterpart of (D†) for any u ∈ [0, α]:

RD0(u, T ) , max
y∈[0,1]

x−1(y) min (λ(u, α)y, u) +RD0

(
[u− λ(u, α)y]

+
, T − 1

)
.

Fix α. We will make use of mathematical induction on T to prove R∗(u, T ) ≤ RD0(u, T ) = RD(u, T )

for any u ∈ [0, α]. If we are able to prove this, this proves the rest of the proposition since V ∗(T ) =

R∗(α, T ) and V D(T ) = RD(α, T ).
For the base case with T = 1, we define the optimal expected revenue R∗(u, 1) for any given remaining

inventory u ≤ α as:

R∗(u, 1) , max
y∈[0,1]

Ey,u
[
x−1 (y) min (D,u)

]
(34a)

For a given y, let us denote the objective value (34a) as V y(u, 1).
Consider any y ∈ [0, 1]. We have that

V y(u, 1) = Ey,u
[
x−1(y) min (D,u)

]
≤ max
y0∈[0,1]

Ey0,u
[
x−1(y0) min (D,u)

]
= max
y0∈[0,1]

x−1(y0)Ey0,u [min(D,u)]

≤ max
y0∈[0,1]

x−1(y0) min (Ey0,u(D), u) (35)

= max
y0∈[0,1]

x−1(y0) min (λ(u, α)y0, u) . (36)
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Here, (35) comes from min(D,n) is a concave function of D and Jensen’s inequality. (36) comes from
Ey0,u(D) = λ(u, α)y0. From the definition of RD0(u, 1), the right-hand side of (35) is equal to RD0(u, 1).
Therefore, we have that

V y(u, 1) ≤ RD0(u, 1). (37)

The last step to finish the base case of induction is to take the supremum of the left-hand side of (37)
over all y ∈ [0, 1]. This yields R∗(u, 1) ≤ RD0(u, 1) = RD(u, 1).

For the inductive step, assume that for any T ≤ T ′, we have R∗(u, T ) ≤ RD0(u, T ) for any given
u ≤ α. We prove R∗(u, T ′ + 1) ≤ RD0(u, T ′ + 1) for all u ≤ α to finish the inductive step.

Note that we can reformulate R∗(u, T ′ + 1) as:

R∗(u, T ′ + 1) = max
y∈[0,1]

Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T ′)

]
(38a)

s.t. Ey,u(D) = λ(u, α)y. (38b)

Claim 3. The maximization problem (38) is feasible and R∗(u, T ′ + 1) is bounded.

We know y = 0 is a feasible solution. Moreover, the objective function (38a) is bounded below by zero
and bounded above by x−1(ȳ)λ(u, α)ȳ + maxu∈[0,1]R

D0(u, T ′) < ∞, where ȳ is defined in Lemma 4(ii).
This concludes the claim.

Now, consider any y ∈ [0, 1] feasible to (38b). We denote its objective value (38a) as V y(u, T ′ + 1).
Then for any γ, we have that

V y(u, T ′ + 1) ≤ Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T ′)

]
+ γ (Ey,u(D)− λ(u, α)y) (39a)

≤ max
y0∈[0,1]

Ey0,u
[
x−1(y0)

(
D − [D − u]+

)
+R∗([u−D]+, T ′) + γ (D − λ(u, α)y0)

]
(39b)

≤ max
y0∈[0,1]

Ey0,u
[
x−1(y0)

(
D − [D − u]+

)
+RD0([u−D]+, T ′) + γ (D − λ(u, α)y0)

]
. (39c)

Here, (39c) comes from the inductive hypothesis. Since (39) is true for all feasible y, taking the supremum
of V (y;u, T ′ + 1) over y ∈ [0, 1] satisfying (38b), we have that R∗(u, T ′ + 1) is bounded above by (39c).

Note that (39c), and hence R∗(u, T ′ + 1), is bounded above by

max
y0∈[0,1],
d∈<

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0)

}
. (40)

Note that (40) is an upper bound because d, being a decision variable that can take any value, results
in a larger value than (39c). Since (40) is an upper bound to V y(u, T ′ + 1) for any values of γ, we take
the infimum over all possible values resulting in the upper bound (41) as follows:

R∗(u, T ′ + 1) ≤ inf
γ

max
y0∈[0,1],
d∈<

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0)

}
. (41)

Next, we will prove that the right-hand side of (41) equals RD(u, T ′ + 1). Note that γ = 0 is the
solution to (41) because otherwise, d can be chosen such that the value of (41) is +∞. Then, for the
problem in (41), it suffices to restrict d ≤ u, since any d > u does not improve the value of the objective
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function. Thus, we know for any µ ≥ 0, the right-hand side of (41) is upper bounded by

inf
γ

max
y0∈[0,1],
d≤u

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0) + µ(u− d)

}
. (42)

Because (42) is the upper bound of (41) for any µ ≥ 0, we can take the infimum of (42) and yield the
final upper bound of (41) as follows

R∗(u, T ′ + 1) ≤ inf
γ,µ≥0

max
y0∈[0,1],
d≤u

{
x−1(y0)d+RD0(u− d, T ′) + γ (d− λ(u, α)y0) + µ(u− d)

}
. (43)

Since RD is equivalent to RD0 , we observe that the right-hand side of (43) is the dual problem of RD and
according to Lemma 6, we can simplify (43) as

R∗(u, T ′ + 1) ≤ max
y0∈[0,1]

{
x−1(y0)λ(u, α)y0 +RD(u− λ(u, α)y0, T

′)
}

= RD(u, T ′ + 1).

This finishes our inductive step.

B.7 Proof of Theorem 5
Proof. It suffices to consider a two-period setting (T = 2) and we set α = λ(α, α)yD

1 + λ(nD
1 , α)yD

2 where
yD

2 = arg maxy∈[0,1] x
−1(y)y and α > λ(α, α)yD

1 +
√
λ(α, α)yD

1 . This α is a fixed point such that when
demand is deterministic, under the optimal deterministic policy, it uses up all the inventory.

Let λ(·, ·) be a general homogeneous function with degree 1. Hence, λ(nm,αm) = mλ(n, α). So, if
we let λm = λ for all m, then Assumption 4 is satisfied.

Suppose that demand follows a three-point distribution such that for any t = 1, 2, given yt and Ft−1,
the conditional probability of Dm

t is:

P
(
Dm
t = λ(Nm

t−1, αm)yt −
√
λm(Nm

t−1, αm)yt | Ft−1

)
= 1/3,

P
(
Dm
t = λ(Nm

t−1, αm)yt | Ft−1

)
= 1/3,

P
(
Dm
t = λ(Nm

t−1, αm)yt +
√
λ(Nm

t−1, αm)yt | Ft−1

)
= 1/3.

By construction, E[Dm
t | Ft−1] = λ(Nm

t−1, αm)yt and this distribution satisfies Assumption 3 because
Var(Dm

t |Ft−1) = 2
3λ

m(Nm
t−1, αm)yt.

We prove the theorem by analyzing the expected revenue loss under each outcome of Dm
1 . Note that,

by definition of policy CE-CL, we have yCL
1 = yD

1 . Also, Nm
0 = αm.

Let E0 denote the event {Dm
1 = λ(Nm

0 , αm)yCL
1 } = {Dm

1 = λ(αm,αm)yD
1 }. Under E0, there is no

stockout in period 1 due to our choice of α, so the period 1 revenue of CE-CL is equal to x−1(yCL
1 )Dm

1 =

x−1(yD
1 )λ(αm,αm)yD

1 . Note that this coincides with the period 1 revenue in V D(m,T ). So given event
E0, the period 1 revenue loss of CE-CL is zero.

Under E0, since there is no period 1 stockout, then together with the constraints of (D) and the fact
that λ is homogeneous with degree 1, we have:

Nm
1 = αm−Dm

1 = αm− λ(αm,αm)yD
1 = m

(
α− λ(α, α)yD

1

)
= mnD

1 . (44)

Recall that nD,m
1 = mnD

1 . So, under CE-CL, the remaining inventory at the end of period 1 is the same as
that under the deterministic model V D(m,T ). This implies that, under event E0, we have that yCL

2 = yD
2 .
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Combining these observations, we know that under E0, the conditional expected revenue loss of CE-
CL is equal to:

0 + E
[
x−1(yD

2 )λ(mnD
1 , αm)yD

2 − x−1(yCL
2 ) min(Dm

2 , N
m
1 ) | E0

]
= x−1(yD

2 )λ(mnD
1 , αm)yD

2 − x−1(yD
2 )E

[
Nm

1 − [Nm
1 −Dm

2 ]+ | E0
]
.

(45)

From (44), Nm
1 = m(α−λ(α, α)yD

1 ) on E0, which implies from our choice of α thatNm
1 = mλ(nD

1 , α)yD
2 =

λ(mnD
1 , αm)yD

2 . Thus, (45) reduces to

x−1(yD
2 )λ(mnD

1 , αm)yD
2 − x−1(yD

2 )λ(mnD
1 , αm)yD

2 + x−1(yD
2 )E

(
[Nm

1 −Dm
2 ]+ | E0

)
= x−1(yD

2 )E
(
[λ(mnD

1 , αm)yD
2 −Dm

2 ]+ | E0
)

= x−1(yD
2 )E

(
[λ(Nm

1 , αm)yD
2 −Dm

2 ]+ | E0
)

=
1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 = Θ(

√
m). (46)

Hence, given E0, the conditional expected revenue loss of CE-CL is Θ(
√
m).

Denote the two events:{
Dm

1 = λ(αm,αm)yCL
1 −

√
λ(αm,αm)yCL

1

}
and

{
Dm

1 = λ(αm,αm)yCL
1 +

√
λ(αm,αm)yCL

1

}
as E1 and E2, respectively. Let r1 and r2 denote the conditional expected revenue of CE-CL given E1 and
E2, respectively. Here, the conditional expectation is with respect to the three-point demand process.

Consider a new demand process. For t = 1, demand follows a two-point distribution such that given
yt, the conditional probability of Dm

1 is:

P
(
Dm

1 = λ(Nm
0 , αm)y1 −

√
λ(Nm

0 , αm)y1 | F0

)
= 1/2,

P
(
Dm

1 = λ(Nm
0 , αm)y1 +

√
λ(Nm

0 , αm)y1 | F0

)
= 1/2.

For t = 2, demand follows the three-point distribution introduced earlier.
Note that the difference between the old and the new demand processes is only the demand distribu-

tion in period 1. So, given the period 1 demand realization, the conditional expected revenue of CE-CL
is the same under both processes. Hence, r1 (r2) is also the conditional expected revenue of CE-CL given
E1 (E2) under the new demand process. Since now Ω = E1 ∪ E2, then r1/2 + r2/2 is the expected revenue
of CE-CL under the new process.

Hence, if r∗ is the optimal expected revenue under the new demand process, then:

1

3
r1 +

1

3
r2 =

2

3

(r1

2
+
r2

2

)
≤ 2

3
r∗ ≤ 2

3
V D(m,T ). (47)

Here, the last inequality comes from Proposition 1 and from the fact that V D(m,T ) is also the determin-
istic model under the new process.

Therefore, putting (46) and (47) together, we have the expected revenue loss of CE-CL satisfies

V D(m,T )− V CL(m,T ) =
1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 +

1

3
(V D(m,T )− r1) +

1

3
(V D(m,T )− r2)

≥ 1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 + 0 = Θ(

√
m).

This completes the proof.
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B.8 Proof of Lemma 1
Proof. When demand is deterministic, Lemma 1 holds trivially.

When demand is not deterministic, we prove the lemma by induction. Defining Īmt = N̄m
t /m, let

Īm = (Īm0 , . . . , Ī
m
T ) be the stochastic sequence of normalized inventory under policy yOL. The base

case is t = 0, where all policies start with Īm0 = α = nD
0 , and hence λ

(
Īm0 , α

)
= λ(nD

0 , α) = λ(α, α).
Therefore, (16) and (17) hold for t = 0.

For the induction step, assume that (16) and (17) hold for t− 1, i.e.,

E
∣∣Īmt−1 − nD

t−1

∣∣ ≤ Θ(1/
√
m) (48)

E
∣∣λ(Īmt−1, α)− λ(nD

t−1, α)
∣∣ ≤ Θ(1/

√
m). (49)

We prove that both properties hold for t.
To prove (16) for t, notice that by adding and subtracting E

(
Īmt
)
,

E
∣∣Īmt − nD

t

∣∣ = E
∣∣Īmt − E

(
Īmt
)

+ E
(
Īmt
)
− nD

t

∣∣ ≤ E
∣∣Īmt − E

(
Īmt
)∣∣+

∣∣E (Īmt )− nD
t

∣∣ . (50)

We will show that both terms in (50) are O(1/
√
m).

Consider first term, E
∣∣Īmt − E

(
Īmt
)∣∣. Note that P

(
Īmt = k/m

)
is the probability that the remaining

inventory at time t is equal to k. For a given Nm
t , let ξ1(t), . . . , ξm(t) be identically distributed stochastic

processes such that
∑m
i=1 ξi(t) = N̄m

t . By this construction, we know E(ξi(t) | N̄m
t = k) = k

m . Therefore,
we observe

E
(
Īmt
)

=

αm∑
j=0

j

m
· P
(
Īmt =

j

m

)
=

αm∑
j=0

E
(
ξi(t) | Īmt =

j

m

)
· P
(
Īmt =

j

m

)
= E(ξi(t)).

We further view ξ1(t), ξ2(t), . . . , ξm(t) to be randomly sampled (without replacement) from a population
X, where X = {ξ1(t), . . . , ξM (t)} for some large M . Here, ξ1(t), ξ2(t), . . . , ξM (t) are M identically
distributed processes such that

∑M
i=1 ξi(t) = ME

(
Īmt
)
.

Given t, we define the new random variables

ηi , ξi(t)− E
(
Īmt
)
, for i = 1, . . . ,m.

From our definition of process ξi(t) above, we have E(ηi) = 0. Let Yk ,
∑k
i=1 ηi for k = 1, . . . ,m, and

let Y0 = 0. Observe that

E (ξk(t) | Yk−1) =
ME

(
Īmt
)
−
∑k−1
i=1 ξi(t)

M − (k − 1)

=
ME

(
Īmt
)
− Yk−1 − (k − 1)E(Īmt )

M − (k − 1)

=
−Yk−1

M − (k − 1)
+ E(Īmt ).

(51)

Here, the first equality is because
∑M
i=1 ξi(t) = ME(Īmt ) and ξk(t), ξk+1(t), . . . , ξM (t) are identically

distributed. The second equality comes from the definition of Yk−1 =
∑k−1
i=1 ξi(t)− (k − 1)E(Īmt ).

We further define Zk , Yk
M−k , which implies

Zk =
Yk−1

M − k
+

ηk
M − k

=
M − k + 1

M − k
Zk−1 +

ηk
M − k

. (52)
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Now, we analyze the conditional expectation of ηk
M−k , which is

E
(

ηk
M − k

|Z0, . . . , Zk−1

)
= E

(
ηk

M − k
|Y0, . . . , Yk−1

)
=

−Yk−1

(M − (k − 1)) (M − k)
= − Zk−1

M − k
. (53)

Plugging (53) into (52), we have

E(Zk | Z0, . . . , Zk−1) =
M − k + 1

M − k
Zk−1 −

Zk−1

M − k
= Zk−1.

Therefore, {Zk, k = 0, . . . ,m} is a martingale with respect to the filtration (σ(Z0, . . . , Zk))k=0,1,2,...,m−1

where σ(Z0, . . . , Zk) is the σ-algebra generated by Z0, . . . , Zk.
Since |Zk − Zk−1| ≤ 2α

M−k+1 almost surely, the Hoeffding inequality (applied to martingale) yields

P
(
|Zm| ≥

m

M −m
ε

)
≤ 2 exp

(
− m2ε2

8m
(
1− m−1

M

)
α2

)
for any ε ≥ 0 (54)

where the bound of
∑m
k=1

4α2

(M−k+1)2 comes from Lemma 2.1 in Serfling (1974). By integrating (54) over
ε ≥ 0, we have

E
(
M −m
m

|Zm|
)
≤
√

8πα2

√
m

.

This implies that

E

∣∣∣∣∣∣
m∑
j=1

ξj(t)−mE
(
Īmt
)∣∣∣∣∣∣ ≤

√
8πmα2.

Because Īmt = N̄m
t /m, the first term on the RHS of (50) is O(m−

1
2 ).

For the second term in (50), we want to bound the difference between E
(
Īmt
)
and nD

t . From the
definition of Īmt , we know

E
(
Īmt | Ft−1

)
= E

([
Īmt−1 −

Dm
t

m

]+

| Ft−1

)
=

1

m
E
([
N̄m
t−1 −Dm

t

]+ | Ft−1

)
.

A well-known result by Scarf (1958) is that for any random variable X with mean µ and standard
deviation σ,

E([a−X]+) ≤ 1

2

(√
σ2 + (µ− a)2 − (µ− a)

)
.

Note E(Dm
t | Ft−1) = λm

(
N̄m
t−1, αm

)
yOL
t and, by Assumption 3, Var(Dm

t | Ft−1) ≤ σλm
(
N̄m
t−1, αm

)
yOL
t .

Since N̄m
t−1 is not random when conditioning on the filtration Ft−1, and from (14) we have

E
(
Īmt | Ft−1

)
≤ 1

2

√σλ(Īmt−1, α)yOL
t

m
+ (λ(Īmt−1, α)yOL

t − Īmt−1)2 −
(
λ(Īmt−1, α)yOL

t − Īmt−1

)
≤ 1

2

√σλ(Īmt−1, α)yOL
t

m
+
∣∣λ(Īmt−1, α)yOL

t − Īmt−1

∣∣− (λ(Īmt−1, α)yOL
t − Īmt−1

) ,

where the equality is because Īmt = (Imt−1 −Dm
t /m)+.
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Taking the expectation on both sides conditional on F0, we get

E
(
Īmt | F0

)
≤ 1

2
E

√σλ(Īmt−1, α)yOL
t

m
+
∣∣λ(Īmt−1, α)yOL

t − Īmt−1

∣∣− (λ(Īmt−1, α)yOL
t − Īmt−1

)
| F0


≤ 1

2

(
Θ(m−

1
2 ) + nD

t−1 − λ(nD
t−1, α)yD

t + nD
t−1 − λ(nD

t−1, α)yD
t

)
= Θ(m−

1
2 ) + nD

t−1 − λ(nD
t−1, α)yD

t . (55)

The last inequality comes from the inductive hypotheses (48),(49). In addition to this upper bound, we
know that E(Īmt | F0) = E

([
Īmt−1 −Dm

t /m
]+) is lower bounded by

E
(
E
(
Īmt−1 −

Dm
t

m
| Ft−1

))
= E

(
Īmt−1 − λ

(
Īmt−1, α

)
yOL
t

)
≥ nD

t−1 − λ(nD
t−1, α)yD

t −Θ(m−
1
2 ), (56)

where the equality follows from (14). The inequality is from the inductive hypothesis. Hence, (55) and
(56) imply that ∣∣E(Īmt )− nD

t

∣∣ =
∣∣E(Īmt )− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣ = O(m−
1
2 )

Therefore, we can conclude that the RHS two terms of (50) are both bounded by O(m−
1
2 ), thus

giving us (16) for all t. For a given t, (17) follows by the Lipschitz continuity of λ and (16):

E
∣∣λ (Īmt , α)− λ(nD

t , α)
∣∣ ≤ CλE ∣∣Īmt − nD

t

∣∣ = O
(
m−

1
2

)
.

This concludes the proof.

B.9 Proof of Lemma 2
Proof. Let (nD, yD) be the optimal solution of (D) with initial inventory α and u = α. We can easily check
that, because λm(mn,mα) = mλ(n, α) for any n ∈ [0, α] because of (14), (D) with an initial inventory
mα will have an optimal solution (mnD, yD). Therefore, V D(m,T ) =

∑T
t=1 x

−1(yD
t )mλ(nD

t−1, α)yD
t . By

factoring out m, we can write the LHS of (18) as

m

∣∣∣∣∣E
[
T∑
t=1

(
x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

)]∣∣∣∣∣
≤ mE

∣∣∣∣∣
T∑
t=1

(
x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

)∣∣∣∣∣
≤ m

T∑
t=1

E
∣∣∣∣x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

∣∣∣∣
= m

T∑
t=1

x−1(yD
t )yD

t E
∣∣∣∣λ(N̄m

t−1

m
,α

)
− λ(nD

t−1, α)

∣∣∣∣ . (57)

Here, the first inequality comes from |EX| ≤ E|X| as a result of Jensen’s inequality. The second inequality
comes from the triangle inequality and the linearity of expectation. To prove the proposition, since T is
a finite number, it is sufficient to show each term inside the summation of (57) is O(m−

1
2 ).
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This is true because, from (17) of Lemma 1, we know for any t,

E
∣∣∣∣λ(N̄m

t−1

m
,α

)
− λ(nD

t−1, α)

∣∣∣∣ = O(m−
1
2 ).

This concludes the proof.

B.10 Proof of Theorem 6
Proof. First, we note that V ∗(m,T ) is greater or equal to the revenue from a single-price policy and so
is strictly positive. To prove the theorem, it is sufficient to show that

1− V OL(m,T )

V D(m,T )
≤ 1− (1− k)

(
1− C

2

√
σ

m
− k
)
, (58)

where k = Θ(1/
√
m) and C is some constant that is independent of m.

Let N̄ = (N̄m
0 , . . . , N̄

m
T ) be the stochastic sequence of remaining inventories under yOL and define

Īmt , N̄m
t /m. From (6), we have

V OL(m,T ) = E

[
T∑
t=1

E
[
x−1

(
yOL
t

)
(Dm

t − [Dm
t − N̄m

t−1]+) | Ft−1

]]
. (59)

Note that N̄m
t−1 and Īmt−1 are not random when conditioning on the filtration Ft−1. Furthermore,

we have E(Dm
t | Ft−1) = mλ(Īmt−1, α)yOL

t and, by Assumption 3, Var(Dm
t | Ft−1) ≤ σmλ(Īmt−1, α)yOL

t .
Hence, by applying the Scarf bound and from (14), we get

E
[[
Dm
t − N̄m

t−1

]+ | Ft−1

]
≤

√
σmλ

(
Īmt−1, α

)
yOL
t +

(
N̄m
t−1 −mλ

(
Īmt−1, α

)
yOL
t

)2
2

−
(
N̄m
t−1 −mλ

(
Īmt−1, α

)
yOL
t

)
2

≤ 1

2

√
σmλ

(
Īmt−1, α

)
yOL
t +

1

2

∣∣N̄m
t−1 −mλ(Īmt−1, α)yOL

t

∣∣− 1

2

(
N̄m
t−1 −mλ(Īmt−1, α)yOL

t

)
. (60)

Taking the expectation conditioning on F0 on both sides of (60), we have

E
[
E
[[
Dm
t − N̄m

t−1

]+ | Ft−1

]
| F0

]
≤ E

[
1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

]
+O(

√
m) +

1

2

∣∣mnD
t−1 −mλ(nD

t−1, α)yD
t

∣∣− 1

2

[
mnD

t−1 −mλ(nD
t−1, α)yD

t

]
= E

[
1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

]
+O

(√
m
)
. (61)

Here, the first inequality comes from Lemma 1 and since yOL
t = yD

t for all t. The equality is because
nD
t = nD

t−1 − λ(nD
t−1, α)yD

t due to constraint (Dc), and nD
t ≥ 0 due to the no-stockout constraint (Dc).

Therefore, using (14) and plugging (61) into the RHS of (59) yields

V OL(m,T ) ≥ E

[
T∑
t=1

x−1
(
yOL
t

)(
mλ

(
Īmt−1, α

)
yOL
t −

1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

)]
−O(

√
m)

= E

[
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

]
− 1

2

√
σm E

[
T∑
t=1

x−1
(
yOL
t

)√
λ
(
Īmt−1, α

)
yOL
t

]
−O(

√
m)
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= E

[
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

]

×

1− 1

2

√
σ

m

E
[∑T

t=1 x
−1
(
yOL
t

)√
λ
(
Īmt−1, α

)
yOL
t

]
E
[∑T

t=1 x
−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

]
︸ ︷︷ ︸

(∗∗)

−O
(
1/
√
m
)
 . (62)

We get the first equality by multiplying x−1 term inside. The second equality comes from pulling out
the first expectation term.

We first derive a lower bound for the first term in (62). Note that yOL does not scale with m since
it is constructed from solutions of (D), which do not depend on m. From Lemma 2, we know that the
difference between the first term in (62) and V D(m,T ) scales in O(

√
m). This is slower than the speed

of scaling Θ(m) of V D(m,T ). Hence,

E

(
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

)
≥ V D(m,T )(1− k), (63)

where k = Θ(m−
1
2 ).

Next, we derive an upper bound for the term (∗∗), which results in a lower bound for the middle
term in (62). Note that from Cauchy-Swartz inequality, the numerator of (∗∗) is bounded above by

E


√√√√ T∑

t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

√√√√ T∑
t=1

x−1
(
yOL
t

) ≤ E


√√√√ T∑

t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

√Tx−1 (0)

≤

√√√√E

[
T∑
t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

]√
Tx−1 (0),

where the first inequality comes from Assumption 2(ii), and the last inequality comes from Jensen’s
inequality and the fact that

√
z is a concave function. Hence,

(∗∗) ≤

√√√√ Tx−1(0)

E
[∑T

t=1 x
−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

] ≤√ Tx−1(0)

V D(α, T )(1− k)
,

where the last inequality comes from (63).
Since Θ(m−

1
2 ) decreases as m grows, we know there exists some constant Θ(1), unaffected by m, such

that Θ(m−
1
2 ) ≤ Θ(1). Therefore, we know√

1

1− k
=

√
1

1−Θ(m−
1
2 )
≤

√
1

1−Θ(1)
= Θ(1).

Hence, we have that

(∗∗) ≤

√
Tx−1(0)

V D(T )
Θ(1) , C. (64)
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Finally, we take (63) and (64) into (62), resulting in

V OL(m,T ) ≥ V D(m,T )(1−O(1/
√
m))

(
1− 1

2

√
σ

m
C −O(1/

√
m)

)
.

This completes the proof.

B.11 Proof of Lemma 3
Proof. We prove the lemma by showing that yCL(n, t) has a bounded derivative with respect to n for
n ∈ [0, α] because

∣∣yCL(n, t)− yCL(n′, t)
∣∣ =

∣∣∣∣∫ n

n′

∂yCL(u, t)

∂u
du

∣∣∣∣ ≤ max
u∈[n′,n]

∣∣∣∣∂yCL(u, t)

∂u

∣∣∣∣ |n− n′|.
Because the analysis for t = T (i.e., the last period) is different from the analysis for t < T , we analyze
the two cases separately.

When t = T , we define the following partitions of the set [0, α]:

S1 =

{
n ∈ [0, α] :

n

λ(n, α)
< ȳ

}
and S2 =

{
n ∈ [0, α] :

n

λ(n, α)
≥ ȳ
}
.

When t = T , we have

yCL(n, t) =

{
n

λ(n,α) if n ∈ S1

ȳ if n ∈ S2

,

where ȳ is defined in Lemma 4(ii). When n ∈ S1, yCL(n, t) has bounded derivative w.r.t. n because
of Lemma 4(iii). For n ∈ S2, the function is constant, so the derivative is 0.

Now consider t < T . We will prove that the derivative of yCL(n, t) w.r.t. n is bounded for n ∈ [0, α].
By definition, yCL(n, t) = yD

0 (n, T − t+ 1) where

yD
0 (n, T − t+ 1) = arg max

y≤ n
λ(n,α)

RD,y(n, T − t+ 1),

where RD,y(n, T ′) = x−1(y)λ(n, α)y + V D(T ′;n− λ(n, α)y, α) was defined in (31).
By Claim 2, RD,y(n, T − t+ 1) is strictly concave in y for a given (n, α, T − t+ 1). Let ȳt,n to be the

value that satisfies

∂

∂y
RD,y(n, T − t+1)

∣∣∣
y=ȳt,n

= λ(n, α)
∂

∂y

(
x−1(y)y

) ∣∣∣
y=ȳt,n

−λ(n, α)
∂V D(T − t;n′, α)

∂n′

∣∣∣
n′=n−λ(n,α)ȳt,n

= 0,

so
∂

∂y

(
x−1(y)y

) ∣∣∣
y=ȳt,n

=
∂V D(T − t;n′, α)

∂n′

∣∣∣
n′=n−λ(n,α)ȳt,n

. (65)

Then, by defining

S′1 =

{
n ∈ [0, α] :

n

λ(n, α)
< ȳt,n

}
and S′2 =

{
n ∈ [0, α] :

n

λ(n, α)
≥ ȳt,n

}
,

we know

yCL(n, t) =

{
n

λ(n,α) if n ∈ S′1
ȳt,n if n ∈ S′2.
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From Lemma 4(iii), the derivative of yCL(n, t) w.r.t. n is bounded when n ∈ S′1. When n ∈ S′2, the
derivative of yCL(n, t) = ȳt,n w.r.t. n. To this, differentiate (65) with respect to n through chain rule.
We let λ1(n, α) denote the first-order partial derivative of λ(n, α) w.r.t. n. Specifically, we have

∂ȳt,n
∂n

(
x−1(y)y

)′′ ∣∣∣
y=ȳt,n

=

(
1− λ1(n, α)ȳt,n − λ(n, α)

∂ȳt,n
∂n

)
∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

. (66)

Rearranging terms in (66) yields the following relationship:

∣∣∣∣∂ȳt,n∂n

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(1− λ1(n, α)ȳt,n)

∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

(x−1(y)y)
′′
∣∣∣
y=ȳt,n

+ λ(n, α)
∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

∣∣∣∣∣∣∣∣ . (67)

The term on the RHS of (67) is bounded (i.e., the denominator is nonzero) because r′′(y) < 0 is defined for
y ∈ [0, 1] according to Lemma 4(i), ∂2V D (T − t;n′, α)/∂n′

2
< 0 is defined for n′ ∈ [0, 1] (Theorem 2(ii)),

and λ(n, α) is continuous differentiable for n ∈ [0, α] and finite α ≥ 0. This concludes our proof.

B.12 Lemma 7 and proof
Before stating the lemma, we begin with introducing new notation.

For a given m, we define the stochastic sequence of inventory levels under the closed-loop policy as
N̂m = (N̂m

0 , N̂
m
1 . . . , N̂m

T ), where N̂m
0 = αm. Recall that yCL sets the price in period t by optimizing the

deterministic problem (Dm) on a rolling horizon, by replacing T with T − t and setting u = N̂m
t−1. (As

we discussed in Section 4.2, (Dm) is the scaled version of (D). Hence, by the inventory constraint (Db),
the period t conditional expected demand under policy CE-CL would never exceed Nm

t−1.)

Lemma 7 (Convergence of remaining inventory and SIS). If nD = (nD
1 , . . . , n

D
T ) is the solution to (D)

when u = α, then the following hold:

E

∣∣∣∣∣N̂m
t

m
− nD

t

∣∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T (68)

E

∣∣∣∣∣λ
(
N̂m
t

m
,α

)
− λ

(
nD
t , α

)∣∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T (69)

Proof. The proof is analogous to that of Lemma 1 in Appendix B.8. We start by defining the sequence of
random variables (Îm0 , Î

m
1 , . . . , Î

m
T ), where Îmt = N̂m

t /m is the normalized remaining inventory at time t
under the closed-loop policy yCL when the initial inventory and the expected demand are scaled by m.
Note that Îm0 = α.

We will prove the lemma by induction. The base case is t = 0, where we note that Îm0 = nD
0 = α, and

hence λ(Îm0 , α) = λ(nD
0 , α) = λ(α, α). Therefore, (68) and (69) hold for t = 0. For the induction step, we

assume that (68) and (69) hold for t− 1. Specifically,

E
∣∣∣Îmt−1 − nD

t−1

∣∣∣ = O
(
1/
√
m
)
, (70)

E
∣∣∣λ(Îmt−1, α

)
− λ

(
nD
t−1, α

)∣∣∣ = O
(
1/
√
m
)
, (71)

We will show these properties (68),(69) hold for t.
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To prove (68) for t, notice that by adding and subtracting E(Îmt ),

E
∣∣∣Îmt − nD

t

∣∣∣ = E
∣∣∣Îmt − E

(
Îmt

)
+ E

(
Îmt

)
− nD

t

∣∣∣ ≤ E
∣∣∣Îmt − E

(
Îmt

)∣∣∣+
∣∣∣E(Îmt )− nD

t

∣∣∣ . (72)

We will show that both terms in the right side of (72) are O(1/
√
m).

Following the similar argument from the proof of Lemma 1 in Appendix B.8 until (54), we have the
first term on the RHS of (72) is O(1/

√
m). For the second term in (72), we want to bound the difference

between E(Îmt ) and nD
t . From the definition of Îmt , we know

E(Îmt | Ft−1) = E

([
Îmt−1 −

Dm
t

m

]+

| Ft−1

)
=

1

m
E
([
N̂m
t−1 −Dm

t

]+
| Ft−1

)
.

Note E(Dm
t | Ft−1) = λm

(
N̂m
t−1, αm

)
yCL

(
N̂m
t−1, t

)
and, by Assumption 3, we also have a bound on

the variance Var(Dm
t | Ft−1) ≤ σλm(N̂m

t−1, αm)yCL(N̂m
t−1, t). Therefore since N̂m

t−1 is not random when
conditioning on the filtration Ft−1, and using the Scarf bound and (14), we have

E(Îmt | Ft−1)

≤ 1

2

√σλ(Îmt−1, α)yCL(N̂m
t−1, t)

m
+
(
λ(Îmt−1, α)yCL(N̂m

t−1, t)− Îmt−1

)2

−
(
λ(Îmt−1, α)yCL(N̂m

t−1, t)− Îmt−1

)
≤ 1

2

√σλ(Îmt−1, α)yCL(N̂m
t−1, t)

m
+
∣∣∣λ(Îmt−1, α)yCL(N̂m

t−1, t)− Îmt−1

∣∣∣− (λ(Îmt−1, α)yCL(N̂m
t−1, t)− Îmt−1

)
≤ Îmt−1 − λ(Îmt−1, α)yCL(N̂m

t−1, t) +
1

2

√
σλ(Îmt−1, α)yCL(N̂m

t−1, t)

m
.

The last inequality comes from the fact that given inventory level N̂m
t−1 at time t, the next price chosen

by policy yCL always satisfies N̂m
t−1 − λ(N̂m

t−1, αm)yCL(N̂m
t−1, t) ≥ 0 since it resolves (D) with updated

inventory level u = N̂m
t−1 which has a constraint (Db) that the total expected demand cannot exceed

inventory N̂m
t−1. Therefore, we have

E(Îmt | Ft−1) ≤ Îmt−1 − λ(Îmt−1, α)yCL(N̂m
t−1, t) + Θ(m−

1
2 ). (73)

Taking the expectation on both sides conditioning on F0, we have the upper bound

E(Îmt ) ≤ E
(
Îmt−1 − λ(Îmt−1, α)yCL(N̂m

t−1, t)
)

+ Θ(1/
√
m)

We also have a lower bound from the following arguments:

E(Îmt ) = E

((
Îmt−1 −

Dm
t

m

)+
)

≥ E
(
Îmt−1 −

Dm
t

m

)
= E

(
E
(
Îmt−1 −

Dm
t

m
| Ft−1

))
= E

(
Îmt−1 − λ(Îmt−1, α)yCL(N̂m

t−1, t)
)
,

where the last relationship uses (14). Hence,

0 ≤ E
(
Îmt − Îmt−1 + λ(Îmt−1, α)yCL(N̂m

t−1, t)
)
≤ Θ(1/

√
m). (74)
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This implies that∣∣∣E(Îmt )− nD
t

∣∣∣ =
∣∣∣E(Îmt )− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣∣
≤
∣∣∣E(Îmt−1 − λ(Îmt−1, α)yCL(N̂m

t−1, t)
)
− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣∣+ Θ(1/
√
m) (75)

≤ E
∣∣∣Îmt−1 − λ(Îmt−1, α)yCL(N̂m

t−1, t)− nD
t−1 + λ(nD

t−1, α)yD
t

∣∣∣+ Θ(1/
√
m) (76)

≤ E|Îmt−1 − nD
t−1|+ E|λ(Îmt−1, α)yCL(N̂m

t−1, t)− λ(nD
t−1, α)yD

t |+ Θ(1/
√
m) (77)

≤ E
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ E
∣∣∣λ(Îmt−1, α)yCL(N̂m

t−1, t)− λ(nD
t−1, α)yCL(N̂m

t−1, t)
∣∣∣︸ ︷︷ ︸

(∗)

+ E
∣∣∣λ(nD

t−1, α)yCL(N̂m
t−1, t)− λ(nD

t−1, α)yD
t

∣∣∣︸ ︷︷ ︸
(∗∗)

+Θ(1/
√
m), (78)

where (75) follows from (74), (76) is from Jensen’s inequality, (77) is from triangle inequality and mono-
tonicity of expectation, (78) is derived by subtracting and adding λ(nD

t−1, α)yCL(N̂m
t−1, t) and using the

triangle inequality.
To analyze the bound for (∗), we know λ is Lipschitz continuous. This is because λ is continuously

differentiable in its two variables (Assumption 2(vi)), so there exists a Cλ such that |λ(n, α)− λ(n′, α)| ≤
Cλ|n− n′| for all n, n′, and fixed α. Also, we know yCL(N̂m

t−1, t) ≤ 1 by Assumption 2(i). Therefore,

(∗) ≤ 1 · CλE
∣∣∣Îmt−1 − nD

t−1

∣∣∣
To analyze the bound for (∗∗), we know from Lemma 3 that yCL(n, t) is Lipschitz continuous in n with
some Lipschitz constant Cy. Furthermore, observe that yCL(mnD

t , t) = yD
t . Another important property

of yCL we need is that yCL(mn, t;mα) under initial inventory is mα is the same as yCL(n, t;α) under
initial inventory is α. This is because yCL solves optimization model (D) where the optimal intensity is
invariant under scaling since, for any n ∈ [0, α], λ(mn,mα) = mλ(n, α) due to (14). Therefore,

(∗∗) = E
∣∣∣λ(nD

t−1, α)yCL(N̂m
t−1, t;mα)− λ(nD

t−1, α)yCL(mnD
t , t;mα)

∣∣∣
= E

∣∣∣λ(nD
t−1, α)yCL(Îmt−1, t;α)− λ(nD

t−1, α)yCL(nD
t , t;α)

∣∣∣
≤ λ̄CyE

∣∣∣Îmt−1 − nD
t−1

∣∣∣ (79)

where the inequality is due to the Lipschitz continuity of yCL(n, t) in n, and because λ is upper bounded
by λ̄ according to Assumption 2(v). Therefore, we conclude∣∣∣E(Îmt )− nD

t

∣∣∣ ≤ E
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ 1 · CλE
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ λ̄CyE
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ Θ(1/
√
m),

= O
(
1/
√
m
)
, (80)

where (80) comes from the inductive hypothesis (70).
Therefore, we can conclude that the RHS two terms of (72) are both bounded by O (1/

√
m), thus

giving us (68) for all t by induction. For a given t, (69) follows by the Lipschitz continuity of λ and (68):

E
∣∣∣λ(Îmt , α)− λ(nD

t , α)
∣∣∣ ≤ CλE ∣∣∣Îmt − nD

t

∣∣∣ = O
(
1/
√
m
)
.

This concludes the proof.
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B.13 Lemma 8 and proof
An important implication of Lemma 7 is that the intensity policy yCL converges to the deterministic
sequence yD since, with Lemma 3, we know that yCL is Lipschitz continuous. These properties allow us
show that the uncensored expected revenue under yCL has a gap from V D(m,T ) that is O(

√
m). This is

formalized in the lemma below.

Lemma 8 (Convergence of uncensored revenue).∣∣∣∣∣E
(

T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)
λm(N̂m

t−1, αm)yCL(N̂m
t−1, t)

)
− V D(m,T )

∣∣∣∣∣ = O
(√
m
)
. (81)

Proof. By definition of V D and from property (14) of λm, V D(m,T ) =
∑T
t=1 x

−1(yD
t )mλ(nD

t−1, α)yD
t .

Hence, defining Îmt−1 = N̂m
t−1/m, we can write the LHS of (81) as

m

∣∣∣∣∣E
[
T∑
t=1

(
x−1

(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

)]∣∣∣∣∣
≤ mE

∣∣∣∣∣
T∑
t=1

(
x−1

(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

)∣∣∣∣∣
≤ m

T∑
t=1

E
∣∣∣x−1

(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

∣∣∣ . (82)

Here, the first inequality comes from |EX| ≤ E|X| as a result of Jensen’s inequality. The second inequality
comes from triangle inequality and linearity of expectation. To prove the proposition, since T is a finite
number, it is sufficient to show each term inside the summation of (82) is O (1/

√
m).

Note that for any t,

E
∣∣∣x−1

(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

∣∣∣
= E

∣∣∣r (yCL(N̂m
t−1, t)

)
λ(Îmt−1, α)− r(yD

t )λ(nD
t−1, α)

∣∣∣ , (83)

where r(y) = x−1(y)y is the per-period revenue rate. Our goal is to show that (83) is O(1/
√
m).

We first prove the Lipschitz continuity of the function r(y). From Lemma 4(i), r(y) is concave in y
and is continuously differentiable for y ∈ [0, 1]. Therefore, there exists Cr such that

|r(y)− r(y′)| ≤ Cr|y − y′|. (84)

Additionally, r(y) ≤ f̄ = r(ȳ) where ȳ is defined in Lemma 4(ii). Hence, if we subtract and add the term
r(yCL(N̂m

t−1, t))λ(nD
t−1, α) inside the absolute value in (83), by triangle inequality, (83) is upper bounded

by

E
∣∣∣r (yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)− r

(
yCL(N̂m

t−1, t)
)
λ(nD

t−1, α)
∣∣∣

+ E
∣∣∣r (yCL(N̂m

t−1, t)
)
λ(nD

t−1, α)− r(yD
t )λ(nD

t−1, α)
∣∣∣

≤ f̄ E
∣∣∣λ(Îmt−1, α)− λ(nD

t−1, α)
∣∣∣+ λ̄Cr E

∣∣∣yCL(N̂m
t−1, t)− yD

t

∣∣∣ , (85)

where the second term of (85) comes from (84) and Assumption 2(v). Hence, it suffices to show the two
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terms in (85) are bounded by O(1/
√
m). This is true because, from (69) of Lemma 7, for any t,

E
∣∣∣λ(Îmt−1, α)− λ(nD

t−1, α)
∣∣∣ = O

(
1/
√
m
)
.

Moreover, by definition, yCL results from re-optimizing the deterministic equivalent at each time period,
hence we have that yCL(mnD

t−1, t) = yD
t . We use the property of yCL that yCL(mn, t;mα) under initial

inventory is mα is the same as yCL(n, t;α) under initial inventory is α. This is because yCL solves
optimization model (D) where the optimal deterministic intensity solution is invariant under scaling
since (14) implies that, for any n ∈ [0, α], λm(mn,mα) = mλ(n, α). Therefore,

E
∣∣∣yCL

(
N̂m
t−1, t

)
− yD

t

∣∣∣ = E
∣∣∣yCL

(
N̂m
t−1, t;mα

)
− yCL(mnD

t−1, t;mα)
∣∣∣

= E
∣∣∣yCL

(
Îmt−1, t;α

)
− yCL (nD

t−1, t;α
)∣∣∣

≤ CyE
∣∣∣Îmt−1 − nD

t−1

∣∣∣ = O
(
1/
√
m
)
,

where the inequality is from Lemma 3, and the last equality is from (68) of Lemma 7. This concludes
the proof.

B.14 Proof of Theorem 7
Proof. First, we note that V ∗(m,T ) is greater or equal to the revenue from a single-price policy and so
is strictly positive. To prove the theorem, it is sufficient to show that

1− V CL(m,T )

V D(m,T )
≤ 1− (1− k)

(
1− C

2

√
σ

m

)
, (86)

where k = Θ(1/
√
m) and C is some constant that is independent of m.

Recall N̂m = (N̂m
0 , . . . , N̂

m
T ) is the stochastic sequence of remaining inventories under yCL, where

initial inventory is N̂m
0 = αm. Then from (6), we have

V CL(m,T ) = E

[
T∑
t=1

E
[
x−1

(
yCL(N̂m

t−1, t)
)

(Dm
t − [Dm

t − N̂m
t−1]+) | Ft−1

]]
. (87)

We next define random variable Îmt , N̂m
t /m for all t, where Îm0 = α. Note that N̂m

t−1, Î
m
t−1 are

not random when conditioning on the filtration Ft−1. Further, E(Dm
t | Ft−1) = mλ(Îmt−1, α)yCL(N̂m

t−1, t)

and, by Assumption 3, Var(Dm
t | Ft−1) ≤ σmλ(Îmt−1, α)yCL(N̂m

t−1, t). Therefore, by the Scarf bound and
from (14) we have

E
[
[Dm

t − N̂m
t−1]+ | Ft−1

]
≤ 1

2

(√
σmλ(Îmt−1, α)yCL(N̂m

t−1, t) +
(
N̂m
t−1 −mλ(Îmt−1, α)yCL(N̂m

t−1, t)
)2

−
(
N̂m
t−1 −mλ(Îmt−1, α)yCL(N̂m

t−1, t)
))

If we multiply the numerator and denominator of the right-hand side by the same term√
σmλ(Îmt−1, α)yCL(N̂m

t−1, t) +
(
N̂m
t−1 −mλ(Îmt−1, α)yCL(N̂m

t−1, t)
)2

+
(
N̂m
t−1 −mλ(Îmt−1, α)yCL(N̂m

t−1, t)
)
,
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then we have the following:

E
[
[Dm

t − N̂m
t−1]+ | Ft−1

]
≤ 1

2

σmλ(Îmt−1, α)yCL(N̂m
t−1, t)√

σmλ(Îmt−1, α)yCL(N̂m
t−1, t) + (N̂m

t−1 −mλ(Îmt−1, α)yCL(N̂m
t−1, t))

2 +
(
N̂m
t−1 −mλ(Îmt−1, α)yCL(N̂m

t−1, t)
)

≤ 1

2

σmλ(Îmt−1, α)yCL(N̂m
t−1, t)√

σmλ(Îmt−1, α)yCL(N̂m
t−1, t) + (N̂m

t−1 −mλ(Îmt−1, α)yCL(N̂m
t−1, t))

2

≤ 1

2

√
σmλ(Îmt−1, α)yCL(N̂m

t−1, t). (88)

The second inequality holds because, conditional on Ft−1, N̂m
t−1 − λ(N̂m

t−1, αm)yCL(N̂m
t−1, t) ≥ 0. This is

because, at time t the closed-loop policy solves the deterministic problem (D) with parameter u = N̂m
t−1

and initial inventory αm, which has a constraint that the expected demand cannot exceed u.
Therefore, plugging (88) into the RHS of (87), we observe that

V CL(m,T ) ≥ E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)(

mλ(Îmt−1, α)yCL(N̂m
t−1, t)−

1

2

√
σmλ(Îmt−1, α)yCL(N̂m

t−1, t)

)]

= E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCL(N̂m

t−1, t)

]

− 1

2

√
σm E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)√

λ(Îmt−1, α)yCL(N̂m
t−1, t)

]

= E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCL(N̂m

t−1, t)

]

×

1− 1

2

√
σ

m

E
[∑T

t=1 x
−1
(
yCL(N̂m

t−1, t)
)√

λ(Îmt−1, α)yCL(N̂m
t−1, t)

]
E
[∑T

t=1 x
−1
(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)
]

︸ ︷︷ ︸
(∗∗)

 . (89)

We get the first equality by multiplying x−1 term inside. The second equality comes from pulling out
the first expectation term.

We first derive a lower bound for the first term in (89). Note that yCL does not scale with m since it
is constructed from the intensity solution of (D) which is scale-invariant due to property (14) of λ. From
Lemma 8, we know that the difference between the first term in (89) and V D(m,T ) scales in O(

√
m).

This is slower than the speed of scaling Θ(m) of V D(m,T ). Hence,

E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCL(N̂m

t−1, t)

]
≥ V D(m,T )(1− k) (90)

where k = Θ(1/
√
m).

Next, we want to derive an upper bound for the term (∗∗), which results in a lower bound for the
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second term in (89). From Cauchy-Swartz inequality, the numerator of (∗∗) is bounded above by

E


√√√√ T∑

t=1

x−1
(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)

√√√√ T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)

≤ E


√√√√ T∑

t=1

x−1
(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)

√Tx−1 (0)

≤

√√√√E

[
T∑
t=1

x−1
(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)

]√
Tx−1 (0),

where the first inequality comes from Assumption 2(ii), and the last inequality comes from Jensen’s
inequality and the fact that

√
z is a concave function. Hence,

(∗∗) ≤

√√√√ Tx−1(0)

E
[∑T

t=1 x
−1
(
yCL(N̂m

t−1, t)
)
λ(Îmt−1, α)yCL(N̂m

t−1, t)
] ≤√ Tx−1(0)

V D(T )(1− k)
,

where the last inequality comes from (90).
Since Θ(1/

√
m) decreases as m grows, we know there exists some constant Θ(1) unaffected by m such

that Θ(1/
√
m) ≤ Θ(1). Therefore, we know√

1

1− k
=

√
1

1−Θ(1/
√
m)
≤

√
1

1−Θ(1)
= Θ(1).

Hence, we have that

(∗∗) ≤

√
Tx−1(0)

V D(T )
Θ(1) , C. (91)

Finally, we take (90) and (91) into (89), resulting in

V CL(m,T ) ≥ V D(m,T )(1− k)

(
1− 1

2

√
σ

m
C

)
.

This completes the proof.

Appendix C Section 5 proofs

C.1 Proof of Theorem 8
Proof. We denote as (α∗,y∗) the optimal inventory and pricing policy of the stochastic problem (P′) for

some demand process that satisfies Assumptions 1 to 3. Because QCE(m,T ) = V α
CE,yCE

(m,T )−cαCEm,

we first analyze the bound for V α
CE,yCE

(m,T ) and then get QCE(m,T ) by subtracting cαCEm.
Let (Nm

0 , N
m
1 , . . . , N

m
T ) be the sequence of stochastic remaining inventories under the joint initial

inventory and pricing policy (mαCE,yCE). Define Imt , Nm
t /m. From (89) and (91), we know

V α
CE,yCE

(m,T ) ≥ E

(
T∑
t=1

x−1
(
yCE (Nm

t−1, t
))
mλ

(
Imt−1, α

CE)yCE (Nm
t−1, t

))(
1− 1

2

√
σ

m
C

)
. (92)

57

Electronic copy available at: https://ssrn.com/abstract=3502478



Note that Lemmas 2 and 8 implies that

E

(
T∑
t=1

x−1
(
yCE (Nm

t−1, t
))
mλ

(
Imt−1, α

CE)yCE (Nm
t−1, t

))
≥ m

(
V D,αCE

(T )− k
)
, (93)

where k = O (1/
√
m) and k ≥ 0. Therefore, subtracting both sides of (92) by cαCEm, and using (93), we

have

V α
CE,yCE

(m,T )− cαCEm︸ ︷︷ ︸
QCE(m,T )

≥ m
(
V D,αCE

(T )− k
)(

1− 1

2

√
σ

m
C

)
− cαCEm. (94)

Now we analyze the RHS of (94) to connect it to Q∗(m,T ). Define k1 = 1
2

√
σ
mC where C is defined

in (91) with α = αCE.
Factoring out m (1− k1) in the RHS of (94) results in

m(1− k1)

(
V D,αCE

(T )− k − cαCE

1− k1

)

= m(1− k1)

V D,αCE
(T )− cαCE︸ ︷︷ ︸

QD,αCE
(T )

−k + cαCE − cαCE

1− k1

 subtracting and adding cαCE

≥ m(1− k1)

V D,α∗(T )− cα∗︸ ︷︷ ︸
QD,α∗(T )

−k − cαCE k1

1− k1

 definition of αCE so QD,αCE
(T ) ≥ QD,α∗(T )

= (1− k1)

(
V D,α∗(m,T )− cα∗m−mk − cαCEm

k1

1− k1

)
multiplying m inside

≥ (1− k1)

(
V α
∗,y∗(m,T )− cα∗m−mk − cαCEm

k1

1− k1

)
from Proposition 1

= (1− k1)

V α∗,y∗(m,T )− cα∗m︸ ︷︷ ︸
Q∗(m,T )

−(m+ cαCEm)k2

 (95)

with k2 = Θ (1/
√
m) because

k1

1− k1
= Θ

(
1√
m− 1

)
.

Dividing (94) and the RHS of (95) by Q∗(m,T ) = V α
∗,y∗(m,T )− cα∗m yields

QCE(m,T )

Q∗(m,T )
≥ (1− k1)

(
1− k2 ·

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

)
.

Hence, to prove (21), it suffices to show

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

= O(1).
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This is true because

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

=
m
(
1 + cαCE

)
m (V D(T )−O(1/

√
m)− cα∗)

= Θ

(
1 + cαCE

V D(T )− cα∗

)
,

which is constant in m. This concludes the proof.

C.2 Proof of Proposition 2
Since it is not possible to characterize the exact revenue difference between the optimal and the fixed
price policy, to prove Proposition 2, we utilize the bound established by V D. To see this, an implication
of our results in Section 3 is 0 ≤ V D(m,T )− V ∗(m,T ) ≤ O(

√
m) (Proposition 1, Theorem 7). In other

words, V D(m,T ) is a good approximation of the optimal revenue in an asymptotic regime. Hence, if we
are able to show for any α ≥ 0 that

V D,α(m,T )− V FP,α(m,T ) = Ω(m), (96)

then this establishes the first statement in Proposition 2. Note that this also proves the second statement
since the profit loss of the fixed price policy (αFP,yFP) is bounded below by the revenue loss of yFP with
α = αFP.

We need two key results to prove (96). The first key result in establishing (96) is to show that
V D,α(m,T )− V D′,α(m,T ) = Θ(m), where V D′,α(m,T ) is the deterministic revenue under the fixed price
defined in (23) when the initial inventory is αm. This is formalized in the following lemma (whose proof
is in Appendix C.3) that states that the difference grows at a linear rate in m.

Lemma 9 (Revenue loss of the fixed price policy for deterministic problems). When T ≥ 2, for a fixed
α ≥ 0, if

(i) ∂
∂yV

D (T − 1;α− λ(α, α)y, α)
∣∣∣
y=ȳ
6= 0, and

(ii) α ≥
∑T
t=1 λ(nȳt−1, α)ȳ,

then V D,α(m,T )− V D′,α(m,T ) = Θ(m).

Condition (i) of Lemma 9 implies the myopic optimal intensity ȳ is not the optimal first-period price
the deterministic model V D(T ). Condition (ii) means that we have a sufficient amount of initial inventory
if we use to set the price at x−1(ȳ).

The second key piece is the following lemma, which can be established from results in Section 3, is
that the gap between the expected revenue V FP,α(m,T ) and the deterministic revenue V D′,α(m,T ) is
O(
√
m). Note that by V FP,α(m,T ) we mean the expected revenue of the fixed price policy under the

stochastic problem. The proof is in Appendix C.6.

Lemma 10. For a fixed α ≥ 0,

V FP,α(m,T ) ≤ V D′,α(m,T ) +O(
√
m).

Now we are ready to prove the proposition.

Proof of Proposition 2. From the definition that Q∗(m,T ) is the optimal profit, we know Q∗(m,T ) ≥
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V ∗,α
FP

(m,T )−mαFPc. Then,

Q∗(m,T )−QFP(m,T ) ≥
(
V ∗,α

FP
(m,T )−mαFPc

)
−
(
V FP,αFP

(m,T )−mαFPc

)
= V ∗,α

FP
(m,T )− V FP,αFP

(m,T ).

Hence, to prove the proposition, it suffices to show V ∗,α(m,T )−V FP,α(m,T ) = Ω(m) for any fixed α ≥ 0.
We know that V ∗,α(m,T ) is bounded below by V CL,α(m,T ). Hence, by Theorem 7, we have that

V ∗,α(m,T ) ≥ V D,α(m,T )−O(
√
m). This and Lemma 10 result in

V ∗,α(m,T )− V FP,α(m,T ) ≥ V D,α(m,T )−O(
√
m)− V D′,α(m,T )−O(

√
m). (97)

Moreover, according to Lemma 9, we know the RHS of (97) equals to Θ(m) − O(
√
m), which is Ω (m).

This concludes the proof.

C.3 Proof of Lemma 9
Proof. Consider an arbitrary α ≥ 0 satisfying the conditions of the lemma. Recall the definition RD(u, T )

in (30), where V D(T ) = RD(α, T ).
Due to condition (ii) of the lemma and from (22), we have that yFP = ȳ. Define the recursive

equations

RD′(u, T ) = x−1(ȳ)λ(u, α)ȳ +RD′(α− λ(u, α)ȳ, T − 1),

where RD′(u, 0) = 0 for all u ∈ [0, α]. Note that V D′(T ) = RD′(α, T ).
We next define

RD,y(u, T ) , x−1(y)λ(u, α)y +RD(α− λ(u, α)y, T − 1) and

RD′,y(u, T ) , x−1(y)λ(u, α)y +RD′(α− λ(u, α)y, T − 1),

where RD(u, T ) is defined in (30). Note that RD,y(u, T ) is the objective in (30). From the definition of
yD

1 , when u = α, RD,y(α, T ) achieves its maximum value V D(T ) when y = yD
1 . We observe that

V D(T )− V D′(T ) = RD,yD
1 (α, T )−RD,ȳ(α, T )︸ ︷︷ ︸

(a)

+RD,ȳ(α, T )−RD′,ȳ(α, T )︸ ︷︷ ︸
(b)

. (98)

In (98), (b) ≥ 0 because

(b) = RD (α− λ(α, α)ȳ, T − 1)−RD′ (α− λ(α, α)ȳ, T − 1) ≥ 0

since RD(·, ·) = V D(·, ·) defined in (D), and RD′(·, ·) is the objective value of model (D) when yt = ȳ for
all t (we can check that ȳ is feasible to (D)). Therefore, the RHS of (98) is lower bounded by (a).

Because RD,y is strictly concave in y (Claim 2) and since yD
1 > 0 (Theorem 4), then we know

∂RD,y(α, T )

∂y

∣∣∣
y = yD

1

=
∂

∂y
x−1(y)λ(α, α)y

∣∣∣
y = yD

1︸ ︷︷ ︸
(c)

+
∂

∂y
RD(α− λ(α, α)y, T − 1)

∣∣∣
y = yD

1︸ ︷︷ ︸
(d)

= 0. (99)

Condition (i) of Lemma 9 states that (d) 6= 0 which, combined with (99), implies that (c) 6= 0. Since ȳ
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is the unique value that can make ∂
∂yx
−1(y)λ(α, α)y equal to zero (Lemma 4(ii)), we conclude yD

1 6= ȳ.
Therefore, by the mean value theorem, there exists a y′ ∈

(
min{ȳ, yD

1 },max{ȳ, yD
1 }
)
such that

(a) = RD,yD
1 (α, T )−RD,ȳ(α, T ) =

∂RD,y(α, T )

∂y

∣∣∣
y=y′

(yD
1 − ȳ). (100)

Note that (a) ≥ 0 because yD
1 is the maximizer of RD,y(α, T ). Note that the derivative term in (100) is

nonzero because y′ 6= yD
1 and yD

1 is the unique maximizer of RD,y(α, T ) (Lemma 4(ii)). Further, since
yD

1 6= ȳ, we have that (a) > 0. Hence, V D(T )− V FP(T ) > 0. This implies that V D(m,T )− V FP(m,T ) =

m
(
V D(T )− V FP(T )

)
= Θ(m). This concludes our proof.

C.4 Corollary 1 and proof
Corollary 1. Given α ≥ 0, let (Nm

0 , N
m
1 , . . . , N

m
T ) denote the sequence of stochastic remaining inventory

under policy yFP with Nm
0 = αm. Define Imt , Nm

t /m. Let nD′ = (nD′
0 , . . . , nD′

T ) be the deterministic
sequence of remaining inventory when fixing y = (yFP, . . . , yFP) with initial inventory α. Then the
following hold:

E
∣∣∣Imt − nD′

t

∣∣∣ = O
(
1/
√
m
)

and
E
∣∣∣λ (Imt , α)− λ

(
nD′
t , α

)∣∣∣ = O
(
1/
√
m
)
.

Proof. The only difference between Corollary 1 and Lemma 7 is the gap between the stochastic inten-
sity sequence and the deterministic intensity sequence. In Lemma 7 (using the notation in the proof
of Lemma 7), we apply yCL to the stochastic problem and accordingly get normalized inventory (Îmt )t;
and we apply yD to the deterministic problem and accordingly have nD. However, in Corollary 1, we
apply (yFP, . . . , yFP) to the stochastic problem and accordingly get normalized inventory (Imt )t; and we
apply the same (yFP, . . . , yFP) to the deterministic problem and accordingly have nD′ . As a result, the
key difference between the proofs of Lemma 7 and Corollary 1 is the logic to have the same (∗∗) in (78)
upper bounded by (79). Note that the definition of yFP in (22) also guarantees that inventory constraint
is satisfied in expectation, so the logic in the proof stays the same as Lemma 7.

In Lemma 7, (using the notation in the proof of Lemma 7) we have the gap between yCL and yD is

E
∣∣∣yCL

(
N̂m
t−1, t

)
− yD

t

∣∣∣ ≤ λ̄CyE ∣∣∣Îmt−1 − nD
t−1

∣∣∣ = O
(
1/
√
m
)
. (101)

Note that (101) is the key to have (∗∗) ≤ (79) in the proof of Lemma 7. To get (101), the crucial part
is the Lipschitz continuity of policy yCL proved in Lemma 3. Therefore, in Corollary 1, if we also have
the gap between y sequences applied to the stochastic and deterministic problems is O(1/

√
m), then we

are done. In fact, for Corollary 1, we apply the same sequence (yFP, . . . , yFP) to both stochastic and
deterministic problems, so clearly

E
∣∣yFP (Nm

t−1, t
)
− yFP

∣∣ = 0,

thus is O(1/
√
m). Therefore, we get the same bound as (79) in the proof of Lemma 7. Then, Corollary 1

holds by applying the same logic as the proof of Lemma 7.
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C.5 Corollary 2 and proof
Corollary 2. Given α ≥ 0, let (Nm

0 , N
m
1 , . . . , N

m
T ) denote the sequence of stochastic remaining inventory

under policy yFP with Nm
0 = αm. Define Imt , Nm

t /m. Then,∣∣∣∣∣E
(

T∑
t=1

x−1
(
yFP(Nm

t−1, t)
)
λ
(
Imt−1, α

)
yFP(Nm

t−1, t)

)
− V FP(α, T )

∣∣∣∣∣ = O
(
1/
√
m
)
.

Proof. Similar to the proof of Corollary 1 (see Appendix C.4), the only difference between Corollary 2
and Lemma 8 is the gap between the stochastic intensity sequence and the deterministic intensity se-
quence. In Lemma 8 (using the notation in the proof of Lemma 8), we apply yCL to the stochastic
problem and accordingly get the remaining inventory (N̂m

t )Tt=0 and the expected revenue

E

(
T∑
t=1

x−1
(
yCL

(
N̂m
t−1, t

))
λm
(
N̂m
t−1, α

)
yCL

(
N̂m
t−1, t

))
;

and we apply yD to the deterministic problem (D) and accordingly have nD and the deterministic revenue
V D(α, T ). However, in Corollary 1, we apply (yFP, . . . , yFP) to the stochastic problem and accordingly
get the normalized inventory (Imt )t and the expected revenue

E

(
T∑
t=1

x−1(yFP)λm
(
Nm
t−1, α

)
yFP

)
;

and we apply the same (yFP, . . . , yFP) to the deterministic problem (D) and accordingly have nD′ and
the deterministic revenue V D′(α, T ).

The proof of Corollary 2 follows exactly the same logic of the proof of Lemma 8. Whenever we
use Lemma 7 in the proof of Lemma 8, we replace these with Corollary 1. Whenever we use Lemma 3 to
bound E

∣∣∣yCL
(
N̂m
t−1, t

)
− yD

t

∣∣∣, we do not need them because we have zero gap between two sequences of

y, that is E
∣∣yFP

(
Nm
t−1, t

)
− yFP

∣∣ = 0.

C.6 Proof of Lemma 10
Proof. Given α ≥ 0, let (Nm

0 , N
m
1 , . . . , N

m
T ) denote the sequence of stochastic remaining inventory under

policy yFP with Nm
0 = αm. Define Imt , Nm

t /m.
First we notice that

V α,y
FP

(m,T ) ≤ mE

(
T∑
t=1

x−1(yFP)λ
(
Imt−1, α

)
yFP

)
(102)

because the RHS is the expected revenue under yFP without the inventory constraint.
According to Corollary 2 (see Appendix C.5), we know

mV FP(α, T )−O(
√
m) ≤ mE

(
T∑
t=1

x−1(yFP)λ
(
Imt−1, α

)
yFP

)
≤ mV FP(α, T ) +O(

√
m). (103)

Plugging (103) into RHS of (102), we get

V α,y
FP

(m,T ) ≤ mV FP,α(T ) +O(
√
m) = V FP,α(m,T ) +O(

√
m).
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