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We propose a novel methodology to study kidney exchange. Taking the random graph model of kidney ex-
change introduced in Ashlagi, Garmarnik, Rees and Roth’s “The need for (long) chains in kidney exchange”
(2012), we propose a non-asympotic approach to quantifying the effectiveness of transplant chains in re-
ducing the number of unmatched highly sensitized patients. Our approach is based on a two phase random
walk procedure where random walks are used to allocate chains, followed by allocation via matching in
cycles. The benefit of random walks is that they preserve the probabilistic structure of residual graphs,
greatly facilitating analysis. Our approach allows us to analytically show the benefit of chains, as compared
to transplantation in two-way cycles only, in non-asymptotic (medium-sized) graphs. We also derive useful
analytical bounds that illustrate the performance of our proposed allocation procedure and more general
kidney allocation procedures. Our results complement previous findings on the benefits of chains that in-
cludes analytical results in large (limit) graphs and empirical results based on data from fielded kidney
exchanges.
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1. INTRODUCTION
Allocating donated kidneys to deserving patients with end stage renal disease is an
important challenge in today’s health care system. Kidney exchanges are an integral
part of the allocation system and pertain to the allocation of living donor kidneys. Ex-
changes consist of pools of patients each paired with a loved one willing to donate. A
pair may be incompatible, due to differences in blood type or other tissue sensitivities.
The goal of the exchange is to swap donors among incompatible pairs to allow for more
transplants. Exchanging kidneys among incompatible patient-donor pairs creates cy-
cles of donation within the exchange.

More possibilities for exchange occur in the presence of altruistic donors – individu-
als who are willing to donate their kidney to any patient in need. That is, the kidney
of an altruistic donor is not directed to any particular patient. For this reason, altruis-
tic donors are also called nondirected donors (NDDs). There are alternate uses for the
donated kidney of an NDD. Until recently, the NDD kidneys were directed to the de-
creased donor wait-list managed nationally under the aegis of the United Network of
Organ Sharing (UNOS). However, within kidney exchanges altruistic donors can ini-
tiate donation “chains”. A chain starts with an altruistic donor offering a kidney to a
compatible recipient. The paired donor of that recipient further donates his or her kid-
ney to another compatible recipient, and so on. Since NDDs are not directed towards a
particular recipient, a chain need not “cycle” back.

Allocating NDD kidneys among their alternate uses has sparked ethical and practi-
cal debate, including whether chains are needed at all ([Roth et al. 2007; Ünver 2010;
Ashlagi et al. 2011; Gentry et al. 2009; Woodle et al. 2010]). Theoretical results show
that under certain structures short cycles are sufficient, thus eliminating the need
for chains [Roth et al. 2007; Ünver 2010]. On the other hand, empirical results and
simulations consistently show that short cycles are important in practice. [Ashlagi
et al. 2012] and [Dickerson et al. 2012b] resolve this discrepancy between theory and
practice. Their analytical results reveal that the underlying sparseness of connections
between patients and donors in the exchange is the main driver of the need for chains.
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As the above demonstrates, analytical models of kidney exchange have been helpful
in resolving debates and providing explanations of experimental data. As new empiri-
cal findings and practical issues have arisen, models have been adjusted to meet these
challenges. The standard-bearer of analytical work has been random graph models.
These models approximate exchanges by generating, in a probabilistic fashion, nodes
and arcs that represent recipient-donor pairs and compatibilities, respectively. Recent
papers use asymptotic analysis as their primary theoretical workhorse; that is, the
examine kidney exchange graphs as the number of nodes tends to infinity. The devel-
opment of [Ashlagi et al. 2012] described above is a primary example. Earlier theo-
retical findings (for instance [Roth et al. 2007]) were based on dense random graphs
and were inadequate to explain empirical findings. By revising the standard model to
include sparse random graphs, [Ashlagi et al. 2012] are able to theoretically justify the
observed need for chains in fielded exchanges using asymptotic analysis. Asymptotic
analysis has also been used to derive insights into incentives issues [Toulis and Parkes
2011], the effect of “failed” chains and cycles [Dickerson et al. 2013], myopic versus
forward-looking considerations in dynamically allocating kidneys [Ashlagi et al. 2013;
Dickerson et al. 2012a] and fairness issues [Dickerson et al. 2014].

However, asymptotic analysis has its limitations. Asymptotic results are best inter-
preted in the setting of “large” exchanges with many recipient-donor pairs, something
not usually observed in practice [Melcher et al. 2012]. Researchers in the area of kid-
ney exchange are well aware of this limitation. Indeed, [Ashlagi et al. 2012] states
that analysis in large graphs and “medium” sized graphs should in fact be the target
for analysis.

The goal of this paper is to develop a non-asymptotic methodology that applies to
medium-sized exchanges. The core novelty of our methodology is to employ a ran-
dom walk procedure with two distinct phases. The first phase is to allocate kidneys
in chains via a memoryless random walk. After chains are removed, the second phase
is to allocate via cycles. There are several analytical benefits to using random walks.
First, we maintain an independence structure in the residual graph as we remove
nodes incrementally. This provides useful formulas for the incremental probabilistic
structure of the graph that facilitates the derivation of estimates and bounds.

Second, one of the challenges in analyzing kidney exchange graphs is balancing the
efficiency of chains versus the efficiency of cycles. In our approach, the residual graph
maintains its initial probabilistic density, unaffected by random walk realizations in
the first stage. Since our procedure assigns nodes to chains randomly, it does not target
high-degree nodes that would allow for longer chains at the cost of increased sparsity
at the cycle-formation stage. The probabilistic structure of the residual graph, unaf-
fected by the first stage, facilitates probabilistic comparison with the original graph.
This idea is central to our analysis in Section 4.

Using the random walk procedure as a tool for analysis we achieve the following.
We provide exact formulas and simple non-asymptotic analytical bounds for the tail
probabilities and expectation of the random number of unmatched nodes after the
termination of the first stage. Although non-asymptotic, these bounds can be used to
recover asymptotic results (as demonstrated in Proposition 3.3). These bounds serve
as inputs to further bound the expected number of unmatched nodes after both phases
are implemented, assuming particular algorithms for assigning cycles in the second
stage. These latter bounds allow us to assess the performance of our two stage proce-
dure and quantify the benefits of chains in medium-sized graphs. Finally, we present
results from numerical experiments that explore the tightness of our bounds and an
investigation of the practical impact of assigning chains via random walk.

This paper is organized as follows. In Section 2 we introduce our random graph
model of kidney exchange and propose our two-stage random walk procedure . Sec-
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tion 3 provides analysis of the nature of the graph at the termination of the first stage
Section 4 provides results on the nature of the graph after the termination of the sec-
ond stage. Section 5 describes our numerical experiments. Section 6 concludes.

2. ANALYTICAL FRAMEWORK
2.1. Random graph model
We consider the random graph model of kidney exchange proposed in [Ashlagi et al.
2012]. Similar models are employed in [Ashlagi et al. 2013] and [Dickerson et al. 2013].
Careful justification of this model can be found in these cited papers.

The kidney exchange pool is modeled as a directed graphD which contains two types
of nodes: patient-donor nodes and NDD nodes. A directed arc (u, v) connects nodes u
and v if the patient of node v is compatible with the donor of node u. Following [Ash-
lagi et al. 2012], we suppress the issue of blood type matchings and focus instead on
tissue-type matching of donors and patients. Arc (u, v) appears in the graph with a
probability that depends only on the tissue-type characteristics of node v. Further-
more, patient-donor nodes are classified into two categories: high-sensitization nodes
and low-sensitization nodes. For brevity we call high-sensitization nodes H-nodes and
low-sensitization nodes L-nodes. Arc (u, v) appears in the graph with probability pH
(pL) if v is an H-node (L-node), where u is an arbitrary node (not equal v) in the graph.
Throughout we assume pH < pL. The assumption of two categories of patient-donor
nodes is justified by empirical investigations found in [Ashlagi et al. 2013], where it
is shown that the probability a patient is compatible with a randomly selected donor
follows a bimodal distribution.

Our model considers the possibility that NDDs and bridge donors (donors freed to
donate to extend the length of a chain) renege before the time of transplantation. This
is captured by the probability r. That is, every time a chain is extended there is a
probability r it terminates before the next link in the chain is transplanted.

We use the notation D(h, `, t; pH , pL, r) to represent an exchange pool with h high
sensitization nodes, ` low sensitization nodes, and t NDD donors, along with com-
patibility probabilities pH and pL and renege probability r. The proportion `

`+h of
low-sensitization nodes in the graph is denoted by λ. When certain parameters are
understood as given we drop them in our notation. For instance, when the focus is
on the size of the exchange with probabilities fixed, we will write D(h, `, t) instead of
D(h, `, t; pH , pL, r).

A clearing of the kidney exchange graph is a collection of disjoint cycles and chains
that represent the patients and donors involved in transplantation. Cycles and chains
must be disjoint since each patient can receive at most one kidney and every donor
can give at most one kidney. In practice, the manager of a kidney exchange clears at
regular intervals (weekly, monthly or bimonthly) to balance the objectives of efficiency
and fairness (see [Dickerson et al. 2012b] and [Melcher et al. 2012] for details). Our
model is static and considers only a single decision period. However, the random walk
technique can be adapted to dynamic matchings.

2.2. Random walk procedure
We propose the following two-phase clearing procedure for D(h, `, t; pH , pL, r), illus-
trated in Figure 1.
Phase 1: While there exists at least one NDD, initiate a chain starting from an NDD.
At each step, grow the chain by adding an H-node accessible from the last node of
the chain (referred to as a tail node). If there is more than one accessible H-node,
randomly select one with equal probability. If no H-nodes are accessible, terminate the
chain and remove all selected nodes in the chain (including the initiating NDD donor).

EC’15, June 15–19, 2015, Portland, OR, Vol. X, No. X, Article X, Publication date: February 2015.



X:4 Ding et al.

Repeat until either all H-nodes have been removed or all NDDs have been consumed.
Go to Phase 2.
Phase 2: Apply a cycle packing algorithm on the residual graph that remains at the
termination of Phase 1.

A few remarks on the procedure are in order. First, chains in Phase 1 are executed
within the subgraph of H-nodes and NDD-nodes. There are no L-nodes in the chains
of our procedure. Second, Phase 2 does not specify a cycle packing algorithm. The
random walk procedure supports many possible specifications of Phase 2. Our analysis
in Section 4 provides theoretical bounds for the case where Phase 2 consists of bipartite
matching between H- and L-nodes. Section 5 gives numerical results for when Phase
2 employs both 2- and 3-way cycles.

H� L�

(a) Phase 1: Chain formation in
H-nodes via random walk

H� L�

(b) Phase 2: Cycle packing in the
residual graph

Fig. 1. Random walk procedure. Black disks are H-nodes, triangles are NDDs and red disks are L-nodes.

The analytical power of the above procedure derives from the fact we are able to get
upper bounds on the expected number of unmatched H-nodes after the termination
of the algorithm and compare this to the expected number of unmatched when only
cycles are permitted. There are several steps to this analysis. In Section 3 we analyze
Phase 1, focusing on probabilistic statements about how many H-nodes have been
transplanted. Section 4 explores what happens after Phase 2, leveraging results for
Phase 1.

3. ANALYSIS OF PHASE 1
In this section, we define a two-dimensional-state stochastic process that tracks the
progress of the random walks, both in terms of transplanting H-nodes and consuming
NDD donors. The stochastic process is a Markovian pure death process with absorbing
states. The state vector does not record the L-nodes as they are not involved in Phase
1. Counting arguments yield exact probabilities associated with the random number of
H-modes left unmatched at the end of Phase 1. To yield more useful non-combinatorial
bounds used in Section 4, we later define a potential function and construct martin-
gales to get useful analytical estimates of the expected number of residual unmatched
H-nodes.

Let X(n) denote the number of unmatched H-nodes at the time when n nodes (either
H-nodes or NDD donor nodes) have been removed from the original graph D(h, `, t).
Let t(n) denote the number of remaining NDDs plus the one being used in the cur-
rent chain at the time when n nodes (either H-nodes or NDD donor nodes) have been
removed. The stochastic process is {(X(n), t(n))|n ≥ 0}. Each increment of “time” n
denotes the removal of a node from the graph. When either the donor reneges or there
are no compatible donors an NDD node is removed and t(n) is decremented by one. We
call this a “failure”. When a compatible match is found and a patient gets a transplant
then an H-node is removed and X(n) is decremented by one. We call this a “success”.
By definition, X(0) = h, and t(0) = t.
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This process of node removal eventually terminates. There are two conditions for
termination. The first is that all NDD donors have been consumed, corresponding to
t(n) = 0. The second is that all H-nodes have been transplanted, corresponding to
X(n) = 0. Thus, we can define the random stopping time

τ0 = min{n|t(n) = 0 or X(n) = 0}. (1)

when Phase 1 terminates.
Observe that {(X(n), t(n))|n ≥ 0} is a two-dimensional pure death process with ab-

sorbing states {(X, t)|X = 0 or t = 0}. At each non-absorbing state, the transition
probability is given by

(X(n+ 1), t(n+ 1)) =

{
(X(n)− 1, t(n)) w.p. 1− rX(n)

(X(n), t(n)− 1) w.p. rX(n),

where

ri = r + (1− r)(1− pH)i

gives the probability that either the tail node reneges, or the tail node cannot find an
accessible H-node. From this definition we see that {(X(n), t(n))|n ≥ 0} is Markovian.
Figure 2 provides a visual representation.

removal of one node

t(n)

X(n)

1− rX(n)

rX(n)

X(n)

t(n)− 1

t(n)

X(n)− 1

Stage n Stage n+ 1

Fig. 2. The stochastic process {(X(n), t(n))|n ≥ 0}.

When the graph contains m H-nodes, the number of NDDs consumed reduce the
number of unmatched H-nodes by one is a geometric random variables with success
probability 1 − rm and mean µm := rm

1−rm . For the ease of the subsequent analysis, we
define the following potential function:

T (n) =

h∑
m=n+1

µm. (2)

The function T calculates the expected number of NDDs needed to reduce the number
of H-nodes from h to m. In the special case of r = 0, µm = (1−pH)m

1−(1−pH)m and
∑∞
m=1 µm <∞

and hence the revised potential function

T 0(n) :=

∞∑
m=n+1

µm. (3)

is well defined.
Observe that T is a strictly decreasing function on the discrete domain 0, 1, . . . , h. We

extend T to be defined over the continuous domain [0, h] via piecewise linear interpola-
tion. This makes the inverse function T−1 well-defined on the range [0, T (0)] of T where
T (0) < ∞. For x ≥ T (0), we take T−1(x) = 0, which will not modify the monotonicity
of T−1(·). Under this extension, both T and T−1 are convex functions because T has
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increasing differences: T (m) − T (m − 1) = −µm and µm is decreasing in m since rm is
decreasing in m. See Figure 3 for a visualization.

T (m)

mh

T−1(x)

T (0)

h

xT (0)

Fig. 3. The functions T and T−1.

We seek distributional information on the random number X(τ0) of unmatched H-
node patients termination of Phase 1. To make the dependence on h and t explicit, let
Yh,t denote the value of X(τ0) when the initial graph is D(h, `, t). We are interested
in the following performance metrics: (a) the tail probability Pr(Yh,t ≤ k) for a given
non-negative integer k and (b) the expectation of Yh,t .

THEOREM 3.1. For a random kidney exchange graph D(h, `, t)

(a) Pr(Yh,1 ≤ k) =
∏h
i=k+1(1− ri) when t = 1. When t ≥ 2,

Pr(Yh,t ≤ k) =
h∏

i=k+1

(1− ri)
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij) (4)

where ξk(i) = ri for i > k, and ξ(i) = 1 if i ≤ k.
(b) Moreover,

E(Yh,t) =
h∑
k=0

1−
h∏

i=k+1

(1− ri)
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij)

 .

PROOF. Note that Yh,1 represents the number of unmatched H-nodes after match-
ing with a single chain. The only way for Yh,1 ≤ k is for there to be a string of
consecutive “successes” in extending the chain to reduce the number of unmatched
H-nodes from h to k. Again relying on independence, this happens with probability∏h
i=k+1(1− ri).
The event {Yh,t ≤ k} contains all scenarios where there are no more than t failures

in the course of removing h − k H-nodes. Without loss of generality, we assume there
are t′ < t failures beforeX(n) hits k. We let ij denote the number ofH-nodes remaining
in the graph at the time of the j-th failure. For j = 1, 2, . . . , t′, the failure rate ξk(ij)
at ij is rij ; whereas for j = t′ + 1, . . . , t, we assign ξk(ij) = 1 as these failures do not
contribute to Yh,t ≤ k. Thus, we derive the tail probability for Yh,t as

Pr(Yh,t ≤ k) =
h∏

i=k+1

(1− ri)
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij).

EC’15, June 15–19, 2015, Portland, OR, Vol. X, No. X, Article X, Publication date: February 2015.



A non-asymptotic approach to kidney exchange X:7

The expression for E(Yh,t) directly follows from the equation E[X] =
∑∞
k=0 Pr(X > k)

for nonnegative discrete random variables.

The above combinatorial expressions for tail probabilities and expectation of Yh,t are
precise but difficult to work with. The next result provides bounds that involve the
potential function T and are more amenable to later analysis.

THEOREM 3.2. Pr(Yh,1 ≤ k) ≥ eT (h)−T (k). For t ≥ 2,

P (Yh,t ≤ k) ≥ exp (T (h)− T (k))
(1 +

∑H
i=k+1 ri)

t−1

(t− 1)!
. (5)

In the special case of r = 0,

P (Yh,t ≤ k) ≥ exp

(
− (1− pH)k

pH

)
(1 +

∑H
i=k+1 ri)

t−1

(t− 1)!
. (6)

In the special case of r = 0 and t = 1, the above bound can be further strengthened to

P (Yh,1 ≤ k) ≥ 1− 1

pH

(
(1− pH)k+1 − (1− pH)h+1

)
. (7)

PROOF. Let a(x) = − ln(1−x)
x =

∑+∞
j=1

xj−1

j . Since a is an increasing function of x,
a(ri) is a decreasing series in i. Notice that 1

1+y ≥ e−y for all y ≥ 0, by taking y = x
1−x

we have 1− x ≥ e−
x

1−x for all 1 ≥ x ≥ 0. Hence,

P (Yh,1 ≤ k) =
∏h
i=k+1(1− ri)

≥
∏h
i=k+1 e

−µi

= eT (h)−T (k).

For t ≥ 2, note that the expansion of (1 +
∑h
i=k+1 ri)

t−1 contains terms of the form∏t
j=1 ξk(ij). The coefficient for each term is (t′ − 1)!, where t′ is the number of ξk(ij)

with ij > k. Relaxing t′ to t yields (5). When r = 0, we have

P (Yh,1 ≤ k) ≥ exp

(
−

h∑
i=k+1

µi

)

= exp

(
−

h∑
i=k+1

(1− pH)i

1− (1− pH)i

)

≥ exp

(
−

h∑
i=k+1

(1− pH)i

pH

)

≥ exp

(
− (1− pH)k

pH

)
.

We prove the strengthened bound (7) by backwards induction on k. When k = h,
Pr(Yh,1 ≤ h) = 1 = 1 − 1

pH

(
(1− pH)h+1 − (1− pH)h+1

)
. So (7) holds in the base case of

k = h. We now assume that (7) holds for k + 1 and show it holds for k. We derive an
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upper bound for Pr(Yh,1 ≤ k) as follows:

Pr(Yh,1 ≤ k) = Pr(Yh,1 ≤ k) Pr(Yh,1 ≤ k|Yh,1 ≤ k + 1)

=

(
1− 1

pH
((1− pH)k+2 − (1− pH)h+1)

)(
1− (1− pH)k+1

)
≥ 1− (1− pH)k+1 − 1

pH
(1− pH)k+2 +

1

pH
(1− pH)h+1

= 1− 1

pH
(1− pH)k+1 +

1

pH
(1− pH)h+1

= 1− 1

pH

(
(1− pH)k+1 − (1− pH)h+1

)
where the first equality follows from the random walk procedure, the second equality
follows from the induction assumption on k, and the inequality holds by omitting the
term 1

pH
((1− pH)k+2 − (1− pH)h+1)(1− pH)k+1. This completes the induction.

The above bounds are applicable to exchange graphs of arbitrary size. In particular,
they can be leveraged in asymptotic settings to derive results similar to those in Ash-
lagi et al. [2012, 2013]. The following result demonstrates the approach.

PROPOSITION 3.3. Suppose r = 0, h is in the order of 1
p1+εH

for some ε > 0, and λ =

`
h+` and pL are both fixed positive constants. If t ≥ 1, then with probability approaching
one the exchange graph has a perfect clearing (that is, all nodes are transplanted) as
pH → 0.

PROOF. In (6) suppose k = c
pH

log( 1
pH

) for some constant c > 1. This yields
Pr(Yh,1 ≤ k) ≥ exp(−pc−1H ), which converges to 1 as ph → 0. Thus with probability
approaching one, no matter how large the original graph is, only one NDD is sufficient
to reduce the number of H-nodes to the order of O

(
1
pH

log( 1
pH

)
)

. Since t ≥ 1, with prob-
ability approaching one the number of H-nodes remaining unmatched after Phase 1,
denoted by h′, is in the order of O( 1

pH
log( 1

pH
)). We claim that when pH → 0, with proba-

bility approaching one all of those h′H-nodes can be matched to L-nodes using two-way
cycles.

To prove this claim, we construct an undirected bipartite graph G̃ = (VH ∪
VL, Ẽ) with partitioned node sets VH := {all remaining h′ unmatched H-nodes} and
VL := {all L-nodes}, and an undirected edge set Ẽ = {(vH , vL) | vH ∈ VH , vL ∈
VL, (vH , vL), (vL, vH) ∈ E}. Each edge occurs with probability of pHpL – the proba-
bility to have a 2-way cycle between an H-node and an L-node. According to the Mar-
riage Theorem [Hall 1935], if the H-nodes cannot be matched in G̃, then there exists
a “bad” pair of subsets A ⊂ VH and B ⊂ VL with a = |A| > b = |B| and the set B
contains all vertices adjacent to vertices in A. Without loss of generality, we may as-
sume that (A,B) is a minimal bad pair, which means that there is no bad pair (A′, B′)
with A′ ∪ B′ ⊂ A ∪ B. When (A,B) is a minimal bad pair, we must have b = a − 1.
The probability that any nodes outside B is not linked to any node inside A is given by
(1− pHpL)(`−b)a. Since there at at most Cah′C

b
` candidates for a minimal bad pair (A,B)

of size a and b respectively, the probability that at least one minimal bad pair exists of
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this size can be upper bounded by
h′∑
a=1

Cah′C
a−1
` (1− pHpL)(`−a+1)a ≤

h′∑
a=1

(h′`)a

(a!)2
(1− pHpL)(`−a+1)a

≤
h′∑
a=1

1

a!

[
`h′(1− pHpL)`−a+1

]a
≤ exp

(
`h′(1− pHpL)`−h

′+1
)
− 1

≤ exp (`h′ exp(−pHpL(l − h′ + 1)))− 1

≤ `h′ exp (−pHpL(`− h′ + 1)) . (8)

Note that ` = O( 1
p1+εH

) >> h′, thus ` − h′ + 1 = O( 1
p1+εH

) and pHpL(` − h′ + 1) =

O( 1
pεH

) ≥ 2 log( 1
pH

) when pH is sufficiently small. Therefore, (8) is upper bounded by

`h′ exp
(
−2 log( 1

pH
)
)

= O(p1−εH ), implying that the probability of the occurrence of a
bad pair converges to zero when pH → 0. Therefore, with probability approaching one,
all the H-nodes can be matched by using H-L two-way cycles. After removal of all the
H-nodes, the remaining subgraph contains L-nodes only. Each pair of L-nodes can be
matched with a constant probability of p2L. Because the size of the remaining graph
is ` − h′ = O( 1

p1+εH

) → ∞ as pH → ∞, we know that a perfect matching exists by the
well-known Erdő-Rényi theorem [Erdős and Rényi 1959].

Remark 3.4. When h is order 1
p1+εH

, Theorem 5.6(2) of Ashlagi et al. [2012] prove

that all nodes can be matched using k-way cycles if λ > 1
k , or using chains with length

≤ m if t ≥ 1−λ
m h. Proposition 3.3 states that if we have a single chain of potentially

infinite size (which is a weaker assumption than 1−λ
m h chains each with length ≤ m

with respect to the purpose of matching H-nodes) and a fixed proportion of L-nodes,
we can transplant all nodes. This complements the result of [Ashlagi et al. 2012].

We now turn to deriving non-combinatorial lower and upper bounds on E[Yh,t] for
later analysis. Of course, one could combine Theorems 3.1 and 3.2 to achieve this,
but a different method will yield cleaner bounds. The proof of the following result (in
particular part (c)) is involved and can be found in Appendix A. It uses martingale
theory and convexity properties of the potential function T and its inverse T−1.

THEOREM 3.5. The following conditions hold:

(a) {T (X(n)) + t(n)|n ≥ 0} is a martingale. As a consequence,

E[Yh,t] ≥ T−1(T (h) + t). (9)

(b)
{
X(n)+T−1(T (X(n)+t(n)))

2 |n ≥ 0
}

is a super-martingale. As a consequence,

E[Yh,t] ≤
1

2

(
T−1(T (h) + t) + h

)
. (10)

(c) In the case of r = 0 and pH ≤ 0.1, we have the following strengthened upper bound,

E[Yh,t] ≤
1

pH
log

(
1 +

1

(T 0(n) + 1
4 t)pH

)
(11)

where T 0 was defined in (3).
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Figure 4 plots the actual values of E[Y (h, t)] versus the bounds in Theorem 3.5. The
lower bound from (a) is quite sharp. The upper bound from (b), is not so tight, but
nonetheless helps us to understand the asymptotic behavior of E[Y (h, t)]. In partic-
ular, when r = 0, the strengthened upper bound (11) indicates that the number of
unmatched nodes after Phase 1 is upper bounded by 1

pH
log(C(t,h)

pH
) as long as t ≥ 1.

Also, additional NDDs do not help match many more patients since increasing t only
lowers the constant C(t, h), while the order remains 1

pH
log( 1

pH
).

(a) r = 0.05, pH = 0.03, h = 300 (b) r = 0, pH = 0.03, h = 300

Fig. 4. E[Y (h, t)] and its lower bound (9), upper bound (10), and the strengthened upper bound (11) (appli-
cable only to the r = 0 case).

4. ANALYSIS OF PHASE 2
The goal of this section is to provide analytical bounds on the number of unmatched
H-nodes that are left after termination of both Phase 1 and Phase 2. This analysis pro-
ceeds by comparing against a benchmark, namely the number of unmatched H-nodes
that remain if only Phase 2 was implemented from the beginning. In other words, we
are interested in the net benefit of our procedure to reduce the number of unmatched
H-nodes beyond what could have been transplanted via cycles alone. Our performance
metric does not include the unmatched L-nodes as it is easier to clear all the L-nodes
even using cycles only. Moreover, keeping L-nodes for a later clearing may even be
preferred [Ashlagi et al. 2013]. As in the previous section, the underlying memorlyess
property of the random walk procedure and arguments based on convexity will play a
pivotal role here.

A first challenge is to understand the random structure of the residual graph R that
remains at the termination of Phase 1. We show that this residual graph is again a
graph of the form D(h′, `, t) where parameters `, t, pH , pL and r fixed and h′ ≤ h.
Throughout this section we suppose h′ > 0 and all NDDs are consumed during Phase
1. The case where all H-nodes are matched before all NDDs are consumed is an unin-
teresting special case that is very unlikely to occur in practice and so does not warrant
further analysis.

LEMMA 4.1. Let D = D(h, `, t) denote the initial random graph. Suppose during
Phase 1, h−h′ H-nodes are transplanted and removed and let R(h′) denote conditional
residual graph; that is, the random graph resulting from D by removing exactly h − h′
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H-nodes in chains via Phase 1. Then the edge distribution in R(h′) is identical to the
random graph D′ = D(h′, `, 0).

PROOF. Fix an ordering of the H-nodes in the starting graph D. There are
(
h−h′+t

t

)
scenarios by which one starts with the graph D and ends with a residual graph that
has h′ remaining H-nodes and 0 NDD nodes. Indeed, we simply need to distribute
t failures among h − h′ + t steps of removing either H-nodes or NDDs. Due to the
memoryless property of random walk, each of these residual graphs is isomorphic as a
random graph to D′. Now, consider the conditional random graph R(h′). Since each of
the scenarios is disjoint, we can conclude that the edge distribution in the remaining
graph R(h′) is identical to the random graph D′.

Now, as a first step, we consider a simple instantiation of Phase 2. Construct an
undirected bipartite graph with all the unmatched H-nodes on one side, and all L-
nodes on the other side. An H-node is connected to an L-node if and only if two nodes
form a two-way directed cycle in the original directed graph. The algorithm finds a
maximal matching on this bipartite graph (for instance, using linear programming).
This is admittedly not the optimal choice of algorithm for Phase 2, but it nonetheless
forms a bedrock for analysis that we later extend.

Let f(h) denote the expected number ofH-nodes remaining when nodes are matched
via Phase 2 from the outset (that is, Phase 1 is not implemented) on the original graph
D(h, `, t). In the definition of f , the number of L-nodes and the probabilities pH , pL and
r are all fixed constants. Lemma 4.1 implies the following pivotal corollary.

COROLLARY 4.2. The expected number of unmatched H-nodes after Phase 1 and
Phase 2 is implemented on D(h, `, t), given that Phase 1 eliminates h − h′ H-nodes, is
f(h′).

Thus, the value of implementing chains versus not implementing chains can be par-
tially understood by comparing E[f(h′)] to f(h), where h′ is now a random variable that
represents the number of H-nodes remaining in the graph D after Phase 1 terminates;
that is, h′ = Yh,t where Yh,t is defined as in Section 3. The expectation in E[f(Yh,t)] is
over the distribution of unmatched H-nodes after Phase 1. Whereas we do not have an
explicit characterization of f (making a direct evaluation of E[f(Yh,t)] difficult), Sec-
tion 3 does provide good estimates of E[Yh,t]. On order to leverage these estimates, we
show (in Lemma 4.3 below) that the function f is convex. The proof of the lemma is
in Appendix B. It involves the linear programming formulation of bipartite matching
and submodularity arguments.

LEMMA 4.3. The expected number f(h) of unmatched H-nodes remaining after run-
ning the bipartite matching algorithm described above to D(h, `, t) is convex in h.

We leverage the convexity of f to bound the performance of the random walk proce-
dure when Phase 2 implements bipartite matching.

THEOREM 4.4. Let ν∗C(h, t) := E[f(Yh,t)] denote the expected number of unmatched
H-nodes after completion of both Phase 1 and the bipartite matching algorithm in
Phase 2 on D(h, `, t) (when there is no ambiguity as to values of h and t we simply
write ν∗C(h, t) = ν∗C). The following holds:

ν∗C ≤
f(h)

h
E[Yh,t]

≤ 1

h

(
(h− `)+ +

(1− pLpH)|h−`|+1 − (1− pLpH)max{h,`}+1

pLpH

)
E[Yh,t]. (12)
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h′

f(h)

f(h′)

f(h)
h
h′

f(h)
h

h

Fig. 5. Leveraging the convexity of f in the proof of Theorem 4.4.

PROOF. By Lemma 4.3, we know f(h′) ≤ f(h)
h h′ for any fixed h′ ≤ h since f is convex.

See Figure 5 and observe that f(0) = 0. Then by the monotonicity of expectation we
have

E[f(Yh,t)] ≤ E
[
f(h)

h
Yh,t

]
=
f(h)

h
E[Yh,t]. (13)

This is the first inequality in (12).
The second inequality comes from bounding f(h) from above. We derive the bound by

analyzing the following naı̈ve algorithm to match H-nodes. When h > `, sequence the
L-nodes in an arbitrary order. For each L-node, attempt to match to an H-node using
available edges (which correspond to 2-way cycles in the directed graph). If successful,
remove the matched pair and proceed to the next L-node. The algorithm terminates
when all the L-nodes have been matched. According to this algorithm, there are at
least h − i + 1 unmatched H-nodes when the i-th L-node is next to be matched. Thus,
the probability of matching the i-th L-node is at least 1 − (1 − pHpL)h−i+1. Summing
up these probabilities, we derive a lower bound for the expected number of pairs∑̀

i=1

(
1− (1− pHpL)h−i+1

)
= `− (1− pHpL)h−`+1 − (1− pHpL)h+1

pHpL
.

This leads to the upper bound on unmatched H-nodes

f(h) ≤ h− `+ (1− pHpL)h−`+1 − (1− pHpL)h+1

pHpL
. (14)

When h < `, we propose a similar algorithm. This time we use two-way cycles to
match the H-nodes sequentially. When the algorithm tries to match the i-th H-node,
there are at least `−i+1 unmatched L-nodes remaining, so the probability of matching
the i-th H-node is at least 1− (1−pHpL)`−i+1. Using a similar logic as above, we derive
the upper bound

f(h) ≤ (1− pHpL)`−h+1 − (1− pHpL)`+1

pHpL
, (15)

Together, (14) and (15) imply the following upper bound on f(h) that applies to both
cases (h > ` and h < `):

f(h) ≤ (h− `)+ +
(1− pLpH)|h−`|+1 − (1− pLpH)max{h,`}+1

pLpH
.
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Plugging this upper bound into (13) yields the second inequality in (12).

Of course, one may wonder how Phase 1 and Phase 2 as currently specified compare
in performance to more sophisticated clearing algorithms. The next result shows how
to bound the performance of an optimal 2-way cycle packing algorithm applied to the
original graph in comparison to the performance using the random walk procedure
with bipartite matching in Phase 2.

THEOREM 4.5. Let ν∗2 denote the expected number of unmatched nodes when apply-
ing an optimal 2-way cycle packing algorithm to the original random graph D(h, `, t).
Recall, λ = `

h+` , then

ν∗C
ν∗2
≤ E[Yh,t]

h

1− 2λ

1− 2λ− (1− λ)2p2H(h+ `)
(16)

where v∗C is defined as in the statement of Theorem 4.4 and assuming the denominator
in the right-hand-side is positive.

PROOF. Suppose when running the optimal matching algorithm using 2-way cy-
cles, the number of H-nodes that are matched by H-H cycles and H-L cycles are n1
and n2 respectively. The expected number of H-nodes matched in H-H-cycles is upper
bounded by the expected total number ofH-H cycles in theH-subgraph. Hence, E[n1] ≤
h(h− 1)p2H ≤ p2Hh

2. Clearly, E[n2] ≤ h− f(h). Therefore, E[n1 + n2] ≤ h− f(h) + p2Hh
2.

Thus, ν∗2 ≥ f(h)− p2Hh2. By the definition of f(h), since there are at most λ
1−λh L-nodes,

f(h) ≥ (1− λ
1−λ )h. This implies

ν∗C
ν∗2
≤ ν∗C
f(h)

f(h)

ν∗2

≤ E[Yh,t]
h

f(h)

f(h)− (p2Hh)h

≤ E[Yh,t]
h

(1− λ
1−λ )h

(1− λ
1−λ − p

2
Hh)h

=
E[Yh,t]
h

1− 2λ

1− 2λ− (1− λ)2p2H(h+ `)

where the second inequality uses Theorem 4.4.

Using bounds from Theorem 3.5 for E[Yh,t] allows us to derive insights from The-
orem 4.5 into the value of chains in reducing the number of unmatched H-nodes as
compared to using cycles only. The ratio v∗C

v∗2
measures performance using chains as

compared to using 2-cycles from the outset. The smaller is this ratio, the greater the
marginal value of using chains. The bound (16) gives a guarantee on the expected
marginal value of chains. Theorem 3.5 reveals that EYh,t

h even when pH is small. In the
case of r = 0, even with one NDD, EYh,t can be upper bounded by 1

pH
log( c

pH
) no matter

how large of h (see (11)). Therefore, the ratio ν∗C
ν∗2

is small as long as 1−2λ−(1−λ)p2Hh is
not close to zero. Thus when both the proportion of L-nodes λ and the graph size h+ `
are of small to moderate size, the benefits of using NDDs (chains) is most substantial.

4.1. Connections to integer programming formulations
In this subsection we further underscore the possibility that our bounds in Theorem 4.4
can be used to bound the performance of more sophisticated implementations of the
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Phase 2 cycle packing algorithm. One example is the following integer linear program-
ming (ILP) method for the clearing problem, formulated as:

µ∗ILP := max
∑

c∈C(M)

wcxc

s.t.
∑

{c∈C(M), v∈c}

xc ≤ 1, ∀ vertices v (17)

xc ∈ {0, 1}

where w(c) denotes the weight of cycle c, C(M) denotes a set of cycles with sizes no more
thanM and chains of arbitrary sizes. The ILP (17) was first proposed by Abraham et al.
[2007] and improved upon in subsequent studies [Dickerson et al. 2012b, 2013]. This
ILP serves as the basis of the allocation scheme currently used by UNOS in clearing
its exchange.

One challenge of using this method is that the number of chains in C(M) is exponen-
tially increasing with the graph size, so the ILP fails for graph of sizes > 200 [Dicker-
son et al. 2012b]. For this reason, the current UNOS solver uses a column generation
method to strategically add potentially valuable chains and cycles in to the collection
C(M) [Dickerson et al. 2013]. If Phase 1 of our procedure is used to generate chains in
C(M), then whatever allocation obtained after Phase 1 and Phase 2 is a feasible solu-
tion to the ILP (17). Therefore, if the objective of the ILP is to minimize the unmatched
number of H-nodes, then as long as C(M) contains the t random walks generated in
Phase 1, it must do at least as well as our two-phase algorithm. Thus, Theorem 4.4
provides an analytical lower bound for optimal value of the ILP.

COROLLARY 4.6. Let wc denote the number of H-nodes contained in the cycle or
chain c, and assume C(M) contains the t random walks that are generated during Phase
1. Then when cycles of at least length two are permitted in (17) (that is, M ≥ 2) we have

µ∗ILP ≥ H − ν∗C(T )

≥ 1

hpH

(
(h− `)+ +

(1− pLpH)|h−`|+1 − (1− pLpH)max{h,`}+1

pLpH

)
log(1 +

1

(T 0(n) + 1
4 t)pH

).

Note that we have used the strengthened upper bound (11) for E[Yh,t] since this is the
r = 0 case. Maximizing the total number of H nodes is a reasonable strategy as the
L-nodes are much easier to be matched.

5. NUMERICAL EXPERIMENTS
The random walk procedure presented in Section 2.2 is simple by design. It handles
the issue of chains in as simple a way as possible (via random assignment) so that the
probabilistic implications of allocating chains is minimal. The primary purpose of this
was to aid in analysis. This section serves as a reality check. Numerical tests will give
us some confidence in the strength of our analysis and how our procedure compares to
other procedures implemented in the literature and in practice.

This numerical section has two related components. The first is to numerically test
the strength of the bounds derived in Section 4. The second purpose of this numer-
ical section is to provide some sense of the practical cost of using the random walk
procedure.

Due to the specification of the random walk procedure and to fit our purposes, we
conduct our numerical tests on simulated random graphs based on the model in Sec-
tion 2.1 instead of the more complicated setting of a fully simulated kidney-exchange
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Table I. Sharpness of bounds in Section 4.

No. nodes No. NDDs ν∗C via simulation Bound (12) ν∗C
ν∗2

via simulation Bound (16)
40 0 26.67 27.08
40 1 25.53 25.79 0.88 0.95
40 5 20.88 21.94 0.61 0.69
60 0 37.09 37.76
60 1 34.82 35.23 0.85 0.93
60 5 27.50 29.19 0.49 0.63
80 0 47.91 48.83
80 1 43.20 45.68 0.75 0.94
80 5 33.41 36.66 0.42 0.60
100 0 56.75 58.01
100 1 50.51 54.10 0.69 0.95
100 5 36.92 42.08 0.35 0.57

or using data based on fielded exchanges. A more thorough numerical investigation
undertaken with more realistic data is left for future work.

In our first numerical experiment we compare the actual performance of the two-
phase procedure with bipartite matching in Phase 2 on simulated random graphs with
the theoretical upper bounds for ν∗C derived in Theorem 4.4. We test random graphs
with 40, 60, 80, and 100 nodes. In all those graphs, we set parameter values of pH = 0.05,
pL = 0.45 and λ = 0.27. We tested three values for the number of NDD donors, t = 0, 1,
and 5. This gives a total of 12 different random graph specifications.

For each random graph specification, we generate 1, 000 graphs and apply Phases 1
and 2 on the realized graphs and record the number of unmatchedH-nodes at termina-
tion. This yields a total of 12, 000 observations. We average the number of unmatched
H-nodes across all 1, 000 generated graphs in each specification and record those aver-
ages in the third column on Table I. We calculate the upper bounds using (12) and (10)
and record these values in the fourth column of Table I. The simulated values are all
within 10% of the upper bounds. If we compare across the different values for t, we find
a significant reduction in the number of unmatched H-nodes when chains are allowed
(t > 0). This demonstrates the marginal contribution by allowing chains in the match-
ing. We repeated the experiment for different parameters values for pH , pL, λ and reach
similar conclusions. The fifth and sixth columns of Table I provide a comparison of sim-
ulated values for the ratio ν∗C

ν∗2
and our bound in Theorem 4.5. We tried two different

heuristics to proxy v∗2 and chose the minimal result. We do not conduct the tests when
there were no NDDs, since we know that v∗2 is clearly superior to v∗C when there are no
cycles. The theoretical bound is reasonably close to simulated values, confirming the
strength of our bounds.

In the second set of experiments we compare the performance of the random walk
procedure to heuristic clearing algorithms that are commonly used. Our specific goal
is to compare to the results given in Table 5 of [Ashlagi et al. 2012], which records
the number of matched H-nodes after running their heuristic algorithm, and so we
choose the same parameter settings. Their matching algorithm uses three-way cycles,
and so to make the comparison fair, we also allow three-way cycle matching in the
Phase 2 of the algorithm. The comparison is displayed in Table II, where the third
column records the average number of unmatched H-nodes using Phase 1 and Phase
2 of our procedure across 1000 randomly generated graphs in each setting, and the
right-most columns records the number of unmatched H-nodes inferred by Table 5 of
[Ashlagi et al. 2012]. These results are encouraging. Although performance degrades
as NDDs are added, the performance is comparable to that of [Ashlagi et al. 2012].
Of course, our goal is not to advocate that the random walk procedure be used in
practice, instead our motivation is to show that a very simple allocation of chains in the
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Table II. Performance of random walk procedure compared to heuristic in [Ashlagi et al.
2012].

No. nodes No. NDDs Random walk procedure [Ashlagi et al. 2012] Table 5
40 0 23.46 23.81
40 1 22.20 22.80
40 5 18.52 19.97
60 0 28.68 30.79
60 1 26.47 27.21
60 5 22.91 21.98
80 0 33.54 36.59
80 1 31.17 29.68
80 5 24.17 21.87
100 0 36.11 40.67
100 1 31.70 29.91
100 5 24.46 19.13

first stage remains comparable to more elaborate methods. In personal communication
(2014), John Dickerson confirmed that allocating cycles to NDD donors via random
walk performs surprisingly well as compared the optimal ILP algorithms (within 5%
of optimal). This illustrates that the analytical gain to using random walk does not
overly compromise the practical impact of no longer choosing chain optimally. Further
investigation into the use of random walks in practical implementations is left for
future work.

6. DIRECTIONS FOR FUTURE WORK
In this paper we have developed a non-asymptotic approach to analyzing kidney ex-
change graphs that complements previous work that relies on asymptotic analysis. We
demonstrate the power of this approach by providing analytical performance bounds
on a random walk procedure for matching donors and recipients, and demonstrate how
these bounds allow us to analytically show the benefit of chains in “medium-sized”
(that is, non-limit) graphs.

We developed this approach in the stylized setting introduced by [Ashlagi et al. 2012]
and one additional restrictions in our procedure to facilitate analysis. The chains our
procedure produces consist entirely of H-nodes (initiated, of course, by an NDD donor).
We did this to maintain the stochastic independence structure of residual graphs that
was leveraged at several points in our proofs. Nonetheless, extending to “mixed chains”
of both H- and L-nodes is approachable by adjusting our methodology and is a topic of
further investigation.

Of course, there are several important assumptions inherent in the random graph
model of [Ashlagi et al. 2012] itself. Discussion of the validity of these assumptions and
the possibility of extension is well-documented (see, for instance [Ashlagi et al. 2012,
2013; Dickerson et al. 2012b, 2013]). A test bed for the power of our non-asymptotic
approach is to systematically attempt to relax certain assumptions and see what
tractability remains. Since our approach has important distinctions with the standard
asymptotic methods, it is conceivable that we can achieve further generality in ways
that are not amenable to other methods. Some promising avenues include embedding
the random walk procedure in a dynamic setting of kidney exchange within an evolv-
ing patient and donor base. We feel the memoryless properties of random walks should
prove useful in a dynamic setting.

Finally, although we introduced our procedure primarily for analytical investigation,
we feel it is useful to comment on the practicality of the approach. Allocating organs
on the basis of random walks may strike practitioners and patients alike as somewhat
arbitrary and unfair. However, there is some flexibility in our procedure that could
make it more palatable in practice. One can specify a priority by which to process the
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nodes. This priority could increase the likelihood that a given patient (potentially a
very deserving one) could get a kidney sooner than others. One way of doing this is
to evaluate the potential of each vertex on the kidney exchange graph, as proposed
in [Dickerson and Sandholm 2015]. Of course, a benefit of the random walk approach
is its scalability, as opposed to complicated optimization algorithms proposed by other
researchers. Investigation into how one might adapt our procedure in practice (or even
decide if it has any practical merit) is also a potential avenue of future research.
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A. PROOF OF THEOREM 3.5
PROOF. (a) At a given non-absorbing state (X(n), t(n)), compute T (X(n+1))+t(n+1)

by the transition probabilities as

E[T (X(n+ 1)) + t(n+ 1)] = rX(n)(T (X(n)) + t(n)− 1) + (1− rX(n))(T (X(n)− 1) + t(n))

= rX(n)(T (X(n)) + t(n)− 1) + (1− rX(n))

(
T (X(n)) +

rX(n)

1− rX(n)
+ t(n)

)
= T (X(n)) + t(n).

This invariant tells us along any random sample path, the expectation of E[T (X(n)) +
t(n)] is T (h) + t, its value in the initial state. Recall that τ0 corresponds to the time at
which either X(n) hits zero or t(n) hits zero, and so the optional stopping theorem for
martingales

T (h) + t = Pr(t(τ0) = 0)E[T (Yh,t) + 0] + (1− Pr(tτ0 = 0))E[T (Yh,t) + t(τ0)]

= E[T (Yh,t)] + (1− Pr(tτ0 = 0))t(τ0)

≥ E[T (Yh,t)]
which implies that E[T (Yh,t)] ≤ T (h)+ t. By the convexity of T (·) and Jenson’s inequal-
ity, T (E[Yh,t]) ≤ E[T (Yh,t)] ≤ T (h) + t, which implies inequality (9) by the decreasing
property of the inverse function T−1.

(b) By the transition of the Markov chain, we have

E
[
X(n+ 1) + T−1[T (X(n+ 1)) + t(n+ 1)]

2

]
=(1− rX(n))

X(n)− 1 + T−1[T (X(n)− 1) + t(n)]

2
+ rX(n)

X(n) + T−1[T (X(n)) + (t(n)− 1)]

2

≤X(n) + T−1[T (X(n)) + t(n)]

2
−

1− rX(n)

2
+ rX(n)

T−1[T (X(n)) + (t(n)− 1)]− T−1[T (X(n)) + t(n)]

2

≤X(n) + T−1[T (X(n)) + t(n)]

2
−

1− rX(n)

2
+
rX(n)

2

1

µX(n)

=
X(n) + T−1[T (X(n)) + t(n)]

2
.

where the last inequality follows since the slope of T−1(x) is upper bounded by 1
µX(n)

for x > T (X(n)).
Then the optional stopping theorem implies

E
[
X(τ0) + T−1(T (X(τ0)) + t(τ0))

2

]
≤ h+ T−1(h+ t(0))

2
.

Note that when t(τ0) > 0 then X(τ0) must be zero whence T−1(T (0) + t(0)) = 0 (since
t(0) ≥ 0), so the left-hand-side always equals E

[
Yh,t+T

−1(T (Yh,t)+0)
2

]
= E[Yh,t] as in the

statement of the theorem. When t(τ0) = 0 this same property follows automatically.
Therefore, we have proved (10).

(c) We prove (11) by induction on t and h. We first prove two base cases: (1) h = 1 and
t ≥ 0; (2) h ≥ 1 and t = 0.

If h = 1, the unmatched number of H-nodes is either 1 (the H-node cannot be
matched by any NDD) or 0 (the H-node can be matched by at least one NDD). Thus,
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E[Y1,t] = (1− pH)t. Note that T 0(1) =
∑∞
k=2

(1−pH)k

1−(1−pH)k
≤ 1

pH

∑∞
k=1(1− pH)k ≤ 1−pH

p2H
. So

we have

pH ≤
1

1 + T 0(1)pH
. (18)

Since (1− pH)t ≤ e−pHt for all t ≥ 0 and epHt ≥ 1 + pHt, we have

(1− pH)t ≤ 1

1 + tpH
. (19)

Multiplying (18) and (19) leads to pH(1− pH)t ≤ 1
1+T 0(1)pH

1
1+tpH

≤ 1
1+(T 0(1)+t)pH

, which
further implies that exp(pH(1− pH)t) ≤ 1 + 1

(T 0(1)+t)pH
by the inequality exp(x) ≤ 1

1−x
for x ∈ (0, 1). Rearranging, we get

E[Y1,t] = (1− pH)t ≤ 1

pH
log

(
1 +

1

(T 0(1) + t)pH

)
≤ 1

pH
log

(
1 +

1

(T 0(1) + 1
4 t)pH

)
,

which is exactly inequality (11).
If t = 0, then Yh,0 ≡ h. So it suffices to prove that h ≤ 1

pH
log(1 + 1

T 0(h)pH
). To see this

note

T 0(h) :=
∑

m=h+1

(1− pH)m

1− (1− pH)m

≤ 1

1− (1− pH)h+1

∞∑
m=h+1

(1− pH)m

=
1

pH

(1− pH)h+1

1− (1− pH)h+1
(20)

≤ 1

pH

e−pH(h+1)

1− e−pH(h+1)

where the last inequality follows from 1 − pH ≤ e−pH and x
1−x is increasing in x over

(0, 1). The above inequality implies that h+1 ≤ 1
pH

log(1+ 1
T 0(h)pH

), which verifies (11)
in the t = 0 case.

To prove (11) for the general cases of h ≥ 2 or t ≥ 1, we need to use induction. The
induction step actually reduces to verifying a single inequality, which is detailed below.

To simplify the notation, define functions F (x) := log(1 + 1
x ) and x(t, h) := (T 0(h) +

1
4 t)pH . Under this notation, proving (11) is equivalent to proving

E[Yh,t] ≤ F (x(t, h)). (21)

Suppose (11) holds for E[Yh−1,t] and E[Yh,t−1] with h, t ≥ 2. Then the random walk
procedure implies that

E[Yh,t] = (1− (1− pH)h)E[Yh−1,t] + (1− pH)hE[Yh,t−1]

≤ (1− (1− pH)h) log

(
1 +

1

(T 0(h− 1) + 1
4 t)pH

)
+ (1− pH)h log

(
1 +

1

(T 0(h) + 1
4 (t− 1))pH

)
= (1− (1− pH)h)F (x(t, h− 1)) + (1− pH)hF (x(t− 1, h)).
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Therefore, in order to prove (21), it suffices to establish

0 ≤ F (x(t, h))−
(
(1− (1− pH)h)F (x(t, h− 1)) + (1− pH)hF (x(t− 1, h))

)
= (1− (1− pH)h)(F (x(t, h))− F (x(t, h− 1))) + (1− pH)h(F (x(t, h))− F (x(t− 1, h)))

(22)

Since F ′(x) = − 1
x(x+1) < 0, using convexity of F (·), we have

(1− pH)h(F (x(t, h))− F (x(t− 1, h))) ≥ (1− pH)hF ′(x(t, h− 1))(x(t, h)− x(t− 1, h))

= − (1− pH)hpH
4x(t− 1, h)(x(t− 1, h) + 1)

, (23)

and

(1− (1− pH)h)(F (x(t, h))− F (x(t, h− 1)))

≥(1− (1− pH)h)F ′(x(t, h− 1))(x(t, h)− x(t, h− 1))

=− 1− (1− pH)h

x(t, h− 1)(x(t, h− 1) + 1)
pH(T 0(h)− T 0(h− 1))

=
(1− pH)hpH

x(t, h− 1)(x(t, h− 1) + 1)
(24)

where the last equality follows from (T 0(h)− T 0(h− 1))(1− (1− pH)h) = −µh(1− (1−
pH)h) = −(1− pH)h. Therefore, in order to prove inequality (22), it suffices to to verify
that the RHS of (23) and (24) has a positive sum, which is equivalent to the following
condition,

x(t, h− 1)(x(t, h− 1) + 1)

x(t− 1, h)(x(t− 1, h) + 1)
≤ 4. (25)

Therefore, the induction step reduces to verifying (25). We call (25) the induction con-
dition.

We next prove (11) by discussing various sub-cases of t ≥ 1 or h ≥ 2. In each case, we
either directly prove (21), or verify the induction condition (25).

(1) t = 1, h = 2.
In this case, we prove (21) directly. Using (20), we deduce

T 0(h) ≤ 1

pH

(1− pH)h+1

1− (1− pH)h+1

=
1− pH
pH

(1− pH)h

1− (1− pH)h+1

≤ 1− pH
pH

(1− pH)h

1− (1− pH)h

=
1− pH
pH

µh
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Plugging h = 2 into the above inequality yields

T 0(2)pH + 1 ≤ 1 + (1− pH)
(1− pH)2

1− (1− pH)2

≤ pH(2− pH) + (1− pH)3

pH(2− pH)

=
1− (1− pH)2 + (1− pH)3

pH(2− pH)

=
1− (1− pH)2pH
pH(2− pH)

≤ 1− pH/2
pH(2− pH)

≤ 1− pH/2
pH(2− pH)

=
1

2pH
.

Thus,

(1 + T 0(2)pH + 1
4pH)pH(2− p2H)(1− pH) ≤ ( 1

2pH
+ 1

4pH)2pH(1− pH)

≤ (1 + 1
2p

2
H)(1− pH)

= 1− pH + 1
2p

2
H − 1

2p
3
H

≤ 1 (26)

where the last inequality follows from pH ≤ 0.1. Using the concavity of log(x), we
know that log(x + 1) − log(x) ≥ 1

1+x . Thus, by replacing x with T 0(2)pH + 1
4pH , we

get

1

1 + T 0(2)pH + 1
4pH

≤ log

(
1 +

1

T 0(2)pH + 1
4pH

)
. (27)

According to the random walk procedure, E[Y2,1] = 2r2+1(1−r2)r1+0(1−r2)(1−r1) =
(2− p2H)(1− pH). Therefore, using (26) and (27),

E[Y2,1] =
1

(1 + T 0(2)pH + 1
4pH)pH

(
(1 + T 0(2)pH + 1

4pH)pH(2− p2H)(1− pH)
)

(28)

≤ 1

pH
log

(
1 +

1

T 0(2)pH + 1
4pH

)
= F (x(1, 2)). (29)

(2) t = 1, T 0(h) ≤ 1
e −

1
4 , h ≥ 3.
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We still prove (21) directly in this case. Let n0 := d 1
pH

log( 1
pH

)e. Using the upper
bound on Pr(Yh,1 ≤ k) given in (7), we have

E[Yh,1] =
h∑
k=0

(1− Pr(Yh,1 ≤ k))

≤ n0 − 1 +
1

pH

h∑
k=n0−1

(
(1− pH)k+1 − (1− pH)h+1

)
≤ n0 − 1 +

1

pH

∞∑
k=n0−1

(1− pH)k+1 − h− n0 + 1

pH
(1− pH)h+1

= n0 − 1 +
(1− pH)n

0

p2H
− h− n0 + 1

pH
(1− pH)h+1

≤ n0 − 1 +
(1− pH)n

0

p2H
≤ 1

pH
log( 1

pH
) + 1

pH
(30)

When T 0(h) < 1
e−

1
4 , log

(
1 + 1

(T 0(h)+ 1
4 )pH

)
> log( e

pH
) = 1+log( 1

pH
). Thus, (30) implies

E[Yh,1] ≤ 1
p

(
log
(

1
pH

)
+ 1
)
<

1

pH
log

(
1 +

1

(T 0(h) + 1
4 )pH

)
.

(3) t = 1, T 0(h) ≥ 1
e −

1
4 , h ≥ 3.

We proceed by verifying the induction condition (25). First, we show that µh ≤
11
18T

0(h) for h ≥ 3. This follows from the following inequality that holds for all m ≥ k

µm+1

µm
= (1− pH)

1− (1− pH)m

1− (1− pH)m+1
= (1− pH)

(
1− pH(1− pH)m

1− (1− pH)m+1

)
≥ (1− pH)

(
1− pH(1− pH)m

1− (1− pH)m

)
= (1− pH)(1− µmpH) ≥ (1− pH)(1− µkpH).

Thus,

T 0(h) =

∞∑
k=h+1

µk ≥

( ∞∑
m=0

(1− pH)m(1− µhpH)m

)
µh

=

(
1

1− (1− pH)(1− µhpH)
− 1

)
µh (31)

Since (1 − pH)h ≤ e−pHh ≤ 1
1+pHh

, we derive an upper bound for µh as µh =
(1−pH)h

1−(1−pH)h
≤ 1

pHh
. Plugging this bound for µh into (31) leads to an lower bound for

T 0(h) as

T 0(h) ≥
(

1

1− (1− pH)(1− 1
h )
− 1

)
µh

≥ (h− 1)(1− pH)

1 + (h− 1)pH
µh.
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Since pH ≤ 0.1, when h ≥ 3, the above inequality implies that T 0(h) ≥
0.9(h−1)

1+0.1(h−1)µh ≥
18
11µh. Using the inequality µh ≤ 11

18T
0(h), we upper bound the LHS

of (25) as follows,

x(t, h− 1)(x(t, h− 1) + 1)

x(t− 1, h)(x(t− 1, h) + 1)
=

(
T 0(h) + µh +

1
4

T 0(h)

)(
1 + (T 0(h) + µh +

1
4 )pH

1 + T 0(h)pH

)
≤
( 29

18T
0(h) + 1

4

T 0(h)

)(
1 + ( 2918T

0(h) + 1
4 )pH

1 + T 0(h)pH

)

=

( 29
18T

0(h) + 1
4

T 0(h)

) 29
18T

0(h) + 1
4

T 0(h)
+

1−
29
18T

0(h)+ 1
4

T 0(h)

1 + T 0(h)pH

 .

(32)

It is straightforward to check that the RHS in the second row in (32) is increasing in
pH . Thus, it suffices to prove that when pH = 0.1, the RHS of (32) is upper bounded
by 4, which is equivalent to showing

g(T 0(h)) :=

(
29

18
T 0(h) +

1

4

)(
1 + 0.1

(
29

18
T 0(h) +

1

4

))
− 4T 0(h)

(
1 + 0.1T 0(h)

)
≤ 0.

It is not difficult to verify that g′(x) ≤ 0 for all x ≥ 0, and g( 1e −
1
4 ) = −0.0178 ≤ 0.

Since T 0(h) ≥ 1
e −

1
4 , we deduce that g(T 0(h)) ≤ 0, which verifies (25).

(4) t ≥ 2, h ≥ 2
We first show that T 0(h) ≥ µh for all h ≥ 2. In the previous case, we already showed
T 0(h) ≥ 18

11µh ≥ µh for all h ≥ 3. It remains to show for h = 2 ; that is, T 0(2) ≥ µ2.

Note that T 0(2) = µ3 + T 0(3) ≥ 29
11µ3, and the ratio µ2

µ3
=
(

(1−pH)2

1−(1−pH)2

)(
(1−pH)3

1−(1−pH)3

)−1
is upper bounded by 1.585 (the maximum is attained at pH = 0.1). Therefore, T 0(2) ≥
29
11µ3 ≥ 29

11
1

1.585µ2 ≥ µ2.
Given that t ≥ 2 and T 0(h) ≥ µh for all h ≥ 2, we have the inequality

2x(t− 1, h) = 2(T 0(h) + 1
4 (t− 1))pH ≥ (T 0(h) + µh +

1
4 t)pH = x(t, h− 1). (33)

Using the above inequality, we further deduce that

2(x(t−1, h)+1) := 2((T 0(h)+ 1
4 (t−1))pH+1) ≥ (T 0(h)+µh+

1
4 t)pH+1 = x(t, h−1)+1

(34)
Multiplying (33) and (34) leads to (25).

According to the above, the induction step works for all combinations of (h, t), so (11)
is proved.

B. PROOF OF LEMMA 4.3
PROOF. Given any realization of a random graph D = D(h, `, t). Let VH and VL

denote the sets of H-nodes and L-nodes in D, respectively. For any set VS ⊆ VH , define
a set function F (·) : 2H → Z+ such that F (VS) denotes the number of unmatched H-
nodes in set VS after the bipartite matching algorithm in Phase 2 has been applied to
the bipartite subgraph DS = VS ∪ VL. We next prove that F (·) is a supermodular set

EC’15, June 15–19, 2015, Portland, OR, Vol. X, No. X, Article X, Publication date: February 2015.
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function. To do that, observe that F (VS) = |VS | −G(VS) where

G(VS) = max
∑
i∈VS

∑
j∈L

xij

st.
∑
j∈L

xij ≤ 1 for all i ∈ VS∑
i∈H

xij ≤ 1 for all j ∈ L (35)

xij ∈ {0, 1} for all (i, j) ∈ Ẽ
xij = 0 for all (i, j) /∈ Ẽ.

where Ẽ := {(i, j)|i ∈ VH , j ∈ VL, (i, j), (j, i) ∈ E} denotes the edge set we define on the
bipartite graph (node i and j can be matched using a two-way cycle if and only if the
directed arcs (i, j) and (j, i) both lie in the edge set E of graph D). According to the lin-
ear integer programming formulation, G(VS) gives the maximum number of H-nodes
being matched in the bipartite subgraph DS . If we can show that G(VS) is submodular
then since |VS | is a modular function this implies that F (VS) is supermodular.

To show that G is submodular we use an approach similar in spirit to Theorem 3.4.1
of [Topkis 1998]. Recall the well-known fact that (35) has no integrality gap compared
to its linear relaxation:

G(VS) = max
∑
i∈VS

∑
j∈L

xij

st.
∑
j∈L

xij ≤ 1 for all i ∈ VS∑
i∈H

xij ≤ 1 for all j ∈ L

xij ≥ 0 for all (i, j) ∈ Ẽ
xij = 0 for all (i, j) /∈ Ẽ.

Taking the linear programming dual yields

G(VS) = min
∑
i∈VS

yi +
∑
j∈L

zj

st. yi + zj ≥ 1 for all (i, j) ∈ Ẽ
y, z ≥ 0.

Replacing z by −z gives

G(VS) = min
∑
i∈VS

yi −
∑
j∈L

zj

st. yi − zj ≥ 1 for all (i, j) ∈ Ẽ
y ≥ 0

z ≤ 0.

Note that the feasible region of this linear program is a lattice. This is useful to know
because we can then apply the following lemma to deduce that G(·) is a submodular
set function.
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LEMMA B.1. Let

h(a) = min a>w (36)
st. w ∈W ⊆ Rn

where W ⊂ Rn lattice. Then h is submodular in a.

PROOF. Follows directly from Theorem 2.7.6 in [Topkis 1998].

We then leverage Lemma B.1 to prove submodularity of G(·). We define a function G̃
as

G̃(χVS ) = min (χVS )
>y − (χL)

>z

st. yi − zj ≥ 1 for all(i, j) ∈ Ẽ
y ≥ 0

z ≤ 0.

Observe that G(VS) = G̃(χVS ), where χVS is a the indicator function of VS . Clearly, if G̃
is submodular then G is submodular. Since G̃ is in the form of h in the claim, we can
conclude that G(·) is a submodular set function.

By applying Lemma B.1, we prove that G(·) is supermodular and therefore F (·) is
also supermodular. The remaining task is to show that f is convex by leveraging the
supermodularity of F (·). The connection between f and F is the following. As the func-
tion f(h) represents the expected number of remaining H-nodes for the random graph
D(h, `, t), then f(h) is the expectation over F (H) over all realized sets H of size h. To
show that f is discrete convex, the target is to show that f has increasing differences:

f(h)− f(h− 1) ≤ f(h+ 1)− f(h) (37)

for every h ≥ 1 (we require h ≥ 1 since f can only take nonnegative arguments and
still make sense as defined).

Now, assume that |VS | = h−1 for some h ≥ 1, and i, j /∈ VS , i 6= j. Then |VS ∪{i}| = h,
|VS ∪ {j}| = h, |VS ∪ {i, j}| = h+ 1. Then by the supermodularity of F we have

F (VS ∪ {i}) + F (VS ∪ {j}) ≤ F (VS ∪ {i, j}) + F (VS)

and putting this in terms of f (and using the fact that expectations is monotone and
additive) yields:

f(h) + f(h) ≤ f(h+ 1)− f(h− 1).

A little rearranging yields (37).
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