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An important problem in single-player video game design is how to sequence game elements within

a level (or “chunk”) of the game. Each element has two critical features: a reward (e.g., earning an

item or being able to watch a cinematic) and a degree of difficulty (e.g., how much energy or focus

is needed to interact with the game element). The latter property is a distinctive feature in video

games. Unlike passive services (like a trip to the spa) or passive entertainment (like watching sports

or movies), video games often require concerted effort to consume. We study how to sequence game

elements to maximize overall experienced utility subject to the dynamics of adaptation to rewards

and difficulty as well as memory decay.

We find that the optimal design depends on the relationship between rewards and difficulty,

leading to qualitatively different designs. For example, when the proportion of reward-to-difficulty

is high, the optimal design mimics that of more passive experiences (as studied in Das Gupta et al.

(2016)). By contrast, the optimal design of games with low reward-to-difficulty ratios resembles

work-out routines with “warm-ups” and “cool-downs”. Intermediate cases may follow the classical

“mini-boss, end-boss” design where difficulty has two peaks. Numerical results reveal optimal designs

with “waves” of reward and difficulty with multiple peaks. Level designs with multiple peaks of

difficulty are ubiquitous in video games. In summary, this paper provides practical guidance to game

designers on how to match the design of single-player games to the relationship between reward and

difficulty inherent in their game’s mechanics. Our model also has implications for other interactive

services that share similarities with games, such as summer camps for children.
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1. Introduction

Video games are big business, representing the largest and fastest-growing segment of the enter-

tainment industry.1 However, not all games are successful. One example of a failed game — E.T.

1 https://www.reuters.com/sponsored/article/popularity-of-gaming
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The Extra-Terrestrial — is so notorious that it became the symbol of the video game crash in

the early 1980s.2 Post-mortems of E.T.’s failure point to several causes, not the least of which its

poor design. By design, we mean the various elements of the game experience: art, graphics, game

mechanics, story, and level design. The focus of this paper is on the latter (and is defined in more

detail below). In particular, we focus on single-player games where game designers must pay care-

ful attention to curating the experience of their players (as opposed to multi-player games where

players can interact with one another to generate experiences). The focus on single-player games

is well-justified. Despite the ready connectivity of today’s gaming world, single-player experiences

remain one of the most popular gaming segments on consoles, PCs, and mobile devices.3

Single-player video games can be very long experiences, sometimes lasting dozens of hours.

Accordingly, games must be broken down into “sessions” that can be consumed in one sitting. The

most common form of “sessioning” in games is by the notion of levels. A level is a discrete unit

of gameplay with a beginning, middle, and end that moves forward the game’s story and often

introduces new obstacles or game mechanics.4 Level design concerns finding the right balance of

game elements and sequencing them to make the level engaging and satisfying.

Some practicing game designers have proposed the use of optimization tools to assist in design-

ing levels. Paul Tozour, an experienced game designer, wrote about the challenge in an article for

Gamasutra, a leading video game design website at the time.5 As stated in this article, a major

consideration when designing a level is balancing “reward” and “difficulty” in the arrangement

of game elements. To make things concrete, consider the design of a side-scrolling action game

like Capcom’s classic Mega Man 2. Each level consists of platforming sections (i.e., sections that

involve skilled jumping), standard enemy encounters, and one or more “boss” (i.e., difficult) enemy

encounters. Standard and boss enemy encounters test the player’s strategy and reflexes while plat-

forming sections serve as tests of dexterity and hand-eye coordination. Different types of encounters

also net different rewards. Defeating standard enemies may offer much-needed boosts to health or

2 https://www.npr.org/2017/05/31/530235165/total-failure-the-worlds-worst-video-game

3 In a recent report, Sony revealed that single-player experiences are more popular than multi-
player experiences on the Sony PlayStation platform (https://www.vice.com/en/article/5dp34k/
internal-sony-docs-explain-how-activities-became-a-cornerstone-for-ps5). Large game developer EA
also reports robust sales of single-player games in 2021 across all platforms (https://www.pcgamer.com/
singleplayer-games-live-service/). The slate of best-selling games during 2020 on Steam (the predominant
delivery platform for games on PC) features numerous single-player games (Assasin’s Creed Odyssey, Uncharted
4, Horizon: Zero Dawn, Cyberpunk 2077, etc.) (https://store.steampowered.com/sale/BestOf2020). A recent
market research report shows that single-player mobile games remain the most popular single segment of the video
game industry (https://www.limelight.com/resources/white-paper/state-of-21online-gaming-2019).

4 The use of the word ‘level’ here should not be confused with the notion of experience level or skill level of players.
‘Level’ here exclusively refers to a discrete “chunk” of gameplay.

5 https://gamasutra.com/blogs/PaulTozour/20131201/206006/Decision_Modeling_and_Optimization_in_Game_

Design_Part_9_Modular_Level_Design.php

https://www.npr.org/2017/05/31/530235165/total-failure-the-worlds-worst-video-game
https://www.vice.com/en/article/5dp34k/internal-sony-docs-explain-how-activities-became-a-cornerstone-for-ps5
https://www.vice.com/en/article/5dp34k/internal-sony-docs-explain-how-activities-became-a-cornerstone-for-ps5
https://www.pcgamer.com/singleplayer-games-live-service/
https://www.pcgamer.com/singleplayer-games-live-service/
https://store.steampowered.com/sale/BestOf2020
 https://www.limelight.com/resources/white-paper/state-of-21online-gaming-2019
https://gamasutra.com/blogs/PaulTozour/20131201/206006/Decision_Modeling_and_Optimization_in_Game_Design_Part_9_Modular_Level_Design.php
https://gamasutra.com/blogs/PaulTozour/20131201/206006/Decision_Modeling_and_Optimization_in_Game_Design_Part_9_Modular_Level_Design.php
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ammunition, while boss fights may earn the player new weapons or unlock new areas for explo-

ration. While Mega Man 2 is a classic video game from the 1980s, the challenge of level design

is as relevant today as it ever was. Many popular games are still designed in the mold of classics

like Mega Man 2 (including the Lego Star Wars series, the New Super Mario Bros. series, and

Minecraft Dungeons), while other large “open-world games” offer “story mission” components with

a sequential level-based structure (such as Cyberpunk 2077 and the Assassin’s Creed series).

This paper takes up this basic level design question, as proposed by Tozour and others, to

sequence a set of given game elements (obstacles, enemy encounters, puzzles, etc.) to form an

enjoyable player experience. The question of designing game elements is equally as interesting

but beyond the scope of our study here. The assumption that game elements are given and then

assembled into levels is consistent with game design practice. Consider, for example, the classic

video game Mario Brothers 3 by Nintendo that contains multiple “worlds” that consist of themed

collections of levels with similar enemies and encounter styles. The enemies and encounter types are

designed at the “world” level, whereas individual levels within the world sequence these enemies

and encounter types. See Tozour (2013) for further discussion.

There are by now canonical level designs in video games. An intuitive design is one of increasing

difficulty and reward as the level proceeds. As the player meets earlier tests they are more prepared

to tackle later challenges. However, there is also logic for a U-shaped design where levels start

difficult, become easier, then crescendo towards a difficult finish. This design was not uncommon

in coin-operated video game arcades, where having a rapid succession of failed attempts could

drive up revenue. Social pressure and bragging rights among arcade patrons can drive players to

“overcome” the initial challenge, only to be rewarded by a section of the game that is easier to

handle, leading up to a “boss” of monumental difficulty.

Another classical design for console action games (like Megaman 2 described above) is the “mini-

boss-end-boss” structure, where levels start out easy, reach a peak of tension in the middle of

the level with a “mini-boss” encounter, then easing off before another crescendo to an even more

difficult “end-boss” encounter. Other level designs resemble more of a workout routine: starting

easy (warm-up) and ending easy (cool down) with an intermediate peak of difficulty.

Our research question is simple: under what conditions are these qualitatively different level

designs optimal? The “conditions” refer to the nature of the game elements themselves, namely

their rewards and difficulties. Our analysis reveals that differences in the reward-to-difficulty ratio

lead to qualitatively different optimal level designs. The notion of optimality is that of maximizing

the player’s experienced utility accrued up to the end of the level. This objective reflects the fact

that player satisfaction is experienced dynamically throughout the level and is assessed when the

player decides whether or not to continue the game upon the completion of a level.
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In order to answer this research question, we develop an optimization model for deciding the

sequence of a given set of game elements to optimize the experienced utility of the player taking into

account three psychological factors: accomplishment adaptation, stress adaptation, and memory

decay. Accomplishment adaptation refers to the process by which utilities from rewards wane as

players become accustomed to them.6 Stress adaptation refers to how disutility for expending

effort diminishes as players become accustomed to certain challenges. This phenomenon is well-

understood by game designers. Players can adapt to difficulty quickly as they become accustomed

to challenges (Kalmpourtzis 2018, Schell 2019). Memory decay refers to the psychological fact that

people tend to put more emphasis on recent experiences than older experiences.7 The limits of

attention and memory capacity have been identified as a key component in understanding game

design. For example, in Section 27 of Part 6 of Hiwiller (2015), an examination of how appropriate

design needs to consider the limited memory capacity of players. In Chapter 4 of Hodent (2017),

it describes the theory of memory loss in detail with the concept of forgetting curves.

Other authors have studied related research questions leading to optimization problems with a

similar structure. The most related papers to ours are the seminal (Das Gupta et al. 2016) and

related papers (including Roels (2019, 2020), Li et al. (2022)) that study the optimal design of

experiential services considering both memory decay and adaptation to rewards. These papers find

U-shaped and so-called IU-shaped structures for service quality against time. While our method

of analysis draws much inspiration from these papers, our model and results are different. Most

critically, difficulty and stress are essential characteristics of the video game experience that are

not considered in these previous models. Video games are not passive and so it is not a surprise

that models that assume a passive consumer (as in Das Gupta et al. (2016), Roels (2019), Li et al.

(2022)) do not suffice to capture the tradeoffs that interest us. Indeed, we find many level designs

(like the classical “mini-boss-end-boss” design) that are not predicted by existing models.

As for our findings, we analyze our proposed mathematical model of optimal level design to

characterize when different qualitative designs are optimal. Our strongest analytical results are in

the case when reward and difficulty are proportional; that is, easy game elements give small rewards

while hard game elements give large rewards. This is common in the design of individual game

elements, as this is consistent with the psychological theory of “flow” championed by psychologist

Csikszentmihalyi (1990), whose ideas have significant influence among video game designers8 and

academic researchers of video game design (see, for instance, Cowley et al. (2008)).

6 Studies from the psychology literature that examine and measure the adaptation process are referenced in detail in
Das Gupta et al. (2016), Li et al. (2022).

7 Studies from the psychology literature that discuss memory decay are also explored at length in Das Gupta et al.
(2016), Li et al. (2022).

8 See for instance this article on Gamasutra on the concept of flow: https://www.gamasutra.com/view/feature/

166972/cognitive_flow_the_psychology_of_.php

https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php
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In the theory of flow, the difficulty and reward for experiences should be balanced to help the

participant achieve “optimal” experience called flow. If an activity requires little effort, an outsized

reward feels hollow and unearned. Meanwhile, a task that is very difficult but reaps little reward

leads to frustration. In the “sweet spot” of flow, the participant feels sensations of timelessness,

happiness, and acute focus. Indeed, video games are often cited as an example of an experience

highly adept at achieving “flow” in players, something of concern to parents, policy-makers, and

researchers (see, for instance, the review article Kuss and Griffiths (2012)).

A practical implication of Csikszentmihalyi’s theory is that “flow” is best achieved when rewards

and difficulty are proportional. It turns out that a key analytical driver of results in our model is

precisely the reward-to-difficulty ratio. For example, when the proportion of reward-to-difficulty is

high, the optimal design mimics that of more passive experiences like that studied in Das Gupta

et al. (2016). This is intuitive since when difficulty is low, the gaming experience is not unlike a

passive service experience. Classic games like Dragon’s Lair — which is essentially an animated

movie with very simple interactive elements separating scenes — is an example of a game with a

high reward-to-difficulty ratio.

Intermediate cases give rise to the possibility of optimal “mini-boss, end-boss”-like designs —

what we call N-shaped designs since the difficulty, in this case, follows an ‘N’-shaped pattern (see

Figure 1 for an illustration). The intuition here is that a crescendo of sustained difficulty from the

beginning of the level to the end builds up too much stress in the player, which can negatively

impact their remembered utility given memory decay. Instead, the design starts with a crescendo

of difficulty and rewards, so that the player adjusts to difficulty slowly and diminishes the amount

of disutility accrued due to stress. Once accustomed to a certain level of difficulty at the peak of

the crescendo (where the “mini-boss” is encountered), the remaining pattern is similar to a pure

entertainment experience with a U-shaped design. The diminuendo subsequence in the middle of the

level serves to reset the reference point for rewards and helps the player relax. The final crescendo

sequence helps to create a grand finale experience accentuated in the memory of the player. Our

analysis shows that such designs are optimal under easy-to-accept assumptions of player behavior.

Our model can also pinpoint when and how to place a peak.

We also show conditions under which an inverted N-shaped design is optimal. This is the case

when players adapt more quickly to difficulty than to rewards. Such a setting can prevail in “seri-

ous” games designed for educational and training purposes. Here, players expect the game to be

challenging and are in a mood to learn and adapt to difficulty, but unlike inverted U-shaped designs

where rewards are very low, rewards for difficulty are significant enough so that, at the outset of

the level, high rewards get the player “going” with positive reinforcement. We see these types of

designs in educational games like the mathematics-based role-playing game Prodigy.
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Figure 1 The N-shaped Game Design

To further our analysis of the structure of optimal level designs, we undertake a thorough numer-

ical study in Section 5, which allowed us to explore other reward structures (other than propor-

tional) and some additional structures of the optimal level designers. There, we show that N-shaped

designs perform much better than naive strategies in many scenarios. We also find that the most

difficult “boss” game elements are most commonly placed at the ends of levels, even under very

general reward and difficulty inputs. We also show that the distance between the “boss” and the

next hardest element (the “mini-boss”) depends on the associated rewards. The outcome follows

a pattern of “separated gains” and “integrated losses”, as studied in Thaler (1985), Thaler and

Johnson (1990).

In summary, this paper provides practical guidance to game designers on how to match level

design to the relationship between reward and difficulty inherent in their game’s mechanics. We

make the following contributions:

• To our knowledge, this is the first paper to introduce a formal mathematical model for solving

the sequencing problem inherent in video game level design.

• We provide mathematical justification for common level designs seen in practice, including N-

shaped level designs, showing that they are optimal under certain conditions. Previous models

for studying the design of experiential services (such as Das Gupta et al. (2016), Roels (2019),

Li et al. (2022)) are unable to justify the optimality of these types of designs.

• We incorporate behavioral elements into our models that are acknowledged as being signifi-

cant by game designers in a way that is mathematically elegant and tractable. This includes

behavioral elements not studied in the literature on the design of experiential services.

• We show that the essence of our findings is robust to generalizations that add mathematical

complexity at the cost of tractability but also capture more general game design scenarios.

It is worth noting that whereas our focus is on the design of single-player games, our analysis

applies to other interactive service settings where agents must make effort in the course of receiving
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a service. Examples include designing trails in an outdoor adventure park, structuring the activities

in a drop-in dance class, or scheduling activities at a summer camp for children. To make this

concrete, consider the summer camp example. Activities of a summer camp take different amounts

of effort for children to participate in and have different rewards. The overall goal is maximizing

the remembered enjoyment of the campers so that they may return customers for the next summer.

Designers of a plan of activities at a summer camp may use some of the insights of this study to

sequence and structure these experiences in light of the accomplishment and stress processes that

we identify in our study of games.

The paper is organized as follows. Section 2 summarizes related work on video games and the

design of experiential services. Section 3 presents our main mathematical model of level design

that is grounded in the behavioral theories of reward-seeking, difficulty aversion, and memory loss.

Section 4 presents our main theoretical findings, including characterizations of when U-shaped,

inverted U-shaped, N-shaped, and inverted N-shaped designs are optimal. Section 5 provides a

thorough numerical exploration that provides additional insights. Section 6 concludes the main

body of the paper. The e-companion has the following content. Appendix A contains all technical

proofs of results in the main body. Appendix B provides tables that summarize our main analytical

findings. Appendix C provides an integer programming formulation for our level design problem

used in our numerical study. Appendix D gives a full specification of the parameters for an illustra-

tive example that appears in the paper. Appendix E considers an extension to our setting where

game elements can be repeated as a robustness check to our main insights. Appendix F uses real

data from the game Mario Maker 2 to illustrate how our model can be calibrated in practice.

Appendix G provides a description of our model in the general setting of interactive services, using

the design of a summer camp for children as an illustrative example.

2. Related Work

This paper is related to two burgeoning streams of research in operations management, information

systems, and marketing. The first is on business and design questions motivated by the video

game context. Many of these papers are motivated by a similar central question — how game

design relates to player engagement, retention, and monetization? — but none specifically look

at the question of level design. The second stream of research in on designing services and work

routines that take into consideration customer and worker behavior. These papers form the main

methodological inspiration for our work.

Research primarily motivated by video games is a new and rapidly developing area in business

research, crossing the disciplinary boundaries of operations management, information systems, and

marketing. This includes research on the design of in-game advertising (Turner et al. 2011, Guo
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et al. 2019b, Sheng et al. 2022), the design of virtual currency systems (Guo et al. 2019a, Meng

et al. 2021), and the sale of virtual items (Huang et al. 2020, Jiao et al. 2020, Runge et al. 2021,

Chen et al. 2021, Vu et al. 2020).

We mention three papers in the video game literature that are arguably the most related to the

current study. Huang et al. (2020) study how the concept of player “engagement” can be used to

improve the design of games (specifically in protocols for matching players), leading to increased

play and improved revenues. Sheng et al. (2022) also formalize the concept of engagement in a

dynamic model for determining the optimal deployment of revenue-generating in-game advertising.

(The concept of engagement in video games is also studied by Huang et al. (2019).) Ascarza et al.

(2020) conduct a large-scale field experiment to draw empirical connections between game difficulty

and player retention. All three studies examine the connection between game design and player

motivation. Ascarza et al. (2020) relate these concepts to the notion of the difficulty of a game.

In a high-level sense, our work also relates to player motivation and progression, but with a

different lens. While the target practical audience of the previous papers might be those at game

companies working on the business side of revenue generation, our focus here is to provide tactical

insights to “frontline” design staff in charge of structuring game content. We consider the issue of

engagement in the design unit of a “level” and ask what we can do to maximize the utility of the

player (a proxy for engagement) given a set of more granular design elements. In this sense, we

build on the findings of previous research — on the importance of engagement in games — and

move towards tactical level-design questions.

Our work also builds on a growing literature concerned with behavioral aspects of offering expe-

riential services based on the seminal work of Das Gupta et al. (2016). Connections between our

work and this literature were already described at some length in the introduction, so we will

not belabor the connection here. We would be remiss, however, not to mention important empir-

ical work in the OM literature on experiential service design (notably Dixon and Verma (2013),

Dixon et al. (2017), Dixon and Victorino (2019)) that has played an important complementary

role to the development of optimization models like Das Gupta et al. (2016), Roels (2019), Li et al.

(2022), often providing insights that inform and enrich modeling choices. These empirical studies

investigate the sequence of service elements and their relationship with behaviors like surprise and

anticipation using experiments. In these experiments, the elements only have a single property

(service level), whereas the elements in our model have two properties: reward and difficulty. In

addition, the prescriptions of these empirical studies and our model’s prescriptions differ. Based

on empirical findings, Dixon and his collaborators recommend U-shaped and crescendo designs

and find no empirical evidence that prescribes N-shaped designs, which can be optimal in our
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model. This arises from the two factors in our model and shows how our results contrast with the

prescriptions found in the literature based on experiments.

A related line of inquiry into the design of experiential services is research into how worker fatigue

impacts the optimal design of training and work regimens. Although fatigue is a classical topic in

the study of operations management, only recently has fatigue been studied from a mathematical

optimization perspective. We mention two papers that share common attributes with our current

study, namely in how their analysis must tackle two “factors” impacting their objective functions

analogous to our accomplishment and stress processes.

The first paper is Baucells and Zhao (2019) which looks at how fatigue impacts disutility and

productivity of workers in a continuous-time framework. While the two factors of disutility and

productivity are similar to our accomplishment and stress processes, the analysis in Baucells and

Zhao (2019) is different and leads to different conclusions. In particular, the optimization problem

they study allows for a continuous choice of worker effort, while our optimization is constrained

to a given set of game elements. Moreover, Baucells and Zhao (2019) find that the optimal design

of effort is one of increasing or U-shaped effort profiles, while our models reveal the optimality of

N-shaped difficulty designs seen in practice.

The second paper is Roels (2020), which studies how to optimally design a training regimen to

optimize performance on some target date. Intense training contributes to two factors: fitness and

fatigue. These factors are somewhat analogous to our accomplishment and stress processes, but

with some important differences. First, there is a single driver (intensity) behind both fitness and

fatigue in Roels (2020), whereas in our study accomplishment is driven by rewards, and stress is

driven by difficulty. This leaves open the possibility that rewards and difficulty are not perfectly

correlated. However, the more significant difference between the analysis of Roels (2020) and our

study is in terms of the objective function. Roels (2020) aims to optimize fitness at a given point

in time (a deadline) whereas we look at remembered utility accumulated throughout the time

horizon. This is an important distinction that also informs our selection of related interactive

service examples in the introduction. There, we mentioned summer camps and dance classes as

settings where our model applies, but did not offer training programs and rehabilitation programs,

which are a better fit with the model in Roels (2020). The reason is that the goal of summer camps

and dance classes are more about creating a great experience for repeat customers (that fits our

model), whereas training and rehabilitation programs have a “fitness” or “readiness” goal by the

end of the program (that fits the model in Roels (2020)).

Concluding our comparison with Roels (2020), we note that our analysis has more in common

with the “one-factor” model in Das Gupta et al. (2016) than the “two-factor” model of Roels (2020).
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Despite the differences mentioned above, Roels (2020) does find N-shaped and, more generally,

wave-like patterns of intensity that mirror some of our results, but in this different context.

It is also worth mentioning related literature in theoretical information economics that was

initiated by Ely et al. (2015), with a growing literature of applications and extensions (see, for

instance, Nalbantis and Pawlowski (2019), Buraimo et al. (2020), Renault et al. (2017)). The major

distinction between this line of research and the work following Das Gupta et al. (2016) is that

the former focus on “forward-looking” behavioral concepts like “suspense” and “surprise”, while

the latter tends to focus on behaviors that are backward-looking. Forward-looking concepts have

the added analytical complication of tracking beliefs, something we feel complicates the tradeoffs

of interest in the current study.

Finally, we note that sequencing “jobs” in an operational setting (including sequencing work on

machines and assembly lines or sequencing surgeries in operating rooms) is a classical problem in

the operations management literature with papers that use linear programming (LP) and integer

programming (IP) techniques to solve scheduling problems that date back to the time of some of

the earliest developments in LP and IP (for example, Bowman (1959), Bakshi and Arora (1969),

Emmons (1969)) up to more recent developments (for example, Naderi et al. (2021), Meng et al.

(2020)). This direction of research differs from ours in several ways, but the most salient aspect

is the difference in objectives. The focus of the job sequencing literature is to minimize measures

of run times like “tardiness” and/or fixed costs due to setups from switching between jobs. The

utility of neither the worker (which is often envisioned as a machine) nor the customer are typically

considered. In contrast, sequencing in level design (and service design more broadly) naturally

focuses attention on maximizing customer utility.

3. Model

A game designer seeks to optimally sequence a collection of n given game elements into a level that

maximizes the satisfaction of a representative player. As described in the introduction, a level is a

discrete “chunk” of gameplay that a player might tackle in a single “session” of play. Game elements

refer to incremental units of a video game level, including enemy encounters, puzzles, or obstacles

like a set of platforms to traverse. Each game element i ∈ [n] , {1,2, . . . , n} has an associated

reward ri, a fixed duration τi, and a difficulty level di. The reward ri can represent in-game “loot”

that the player unlocks when passing game element i, or some more psychological notion of utility

experienced by the player associated with the “fun” of the element or sense of accomplishment in

completing it. The duration τi is the expected time it takes to pass game element i. The difficulty

level di indicates how much mental and physical energy a player exhausts to pass game element

i. It is important to emphasize that the game elements and their data (rewards, difficulties, and

duration) are all given.
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The game designer selects a permutation π of the set [n] where π = (π(1), . . . , π(n)) where π(i)

is the ith game element in the sequence. For example, if there are three game elements indexed by

the set {1,2,3} then the sequence π= (2,1,3) designs the level with game element 2 first, followed

by game element 1, and finally, game element 3. We assume that the elements are indexed in

increasing order of rewards; that is r1 ≤ r2 ≤ · · · ≤ rn−1 ≤ rn.

We consider a level design problem with a fixed duration T =
∑n

i=1 τi. We denote by tπ(i) =∑i

j=1 τπ(j) the completion time of game element π(i), and by t̄π(i) =
∑n

j=i τπ(j) the duration from

the starting time of game element π(i) until the end of the level. Observe that T = t̄π(i) +tπ(i)−τπ(i).

For simplicity of notation, we omit π in the subscripts and use u(i), d(i), τ(i), ti, and t̄i to represent

rπ(i), dπ(i), τπ(i), tπ(i) and t̄π(i), respectively. Figure 2 provides a graphical representation of this

notation.

Figure 2 Time Intervals for game element π(i): τπ(i), t̄π(i), tπ(i).

3.1 Gameplay Satisfaction

We adopt a framework similar to Das Gupta et al. (2016) and Li et al. (2022) to quantify the player’s

retrospective perception of a level as the remembered utility accumulated from time 0 to time

T . Our expression for this remembered utility draws on three psychological concepts, namely, (a)

accomplishment adaptation, (b) stress adaptation, and (c) memory decay. These concepts reflect

three typical behaviors in gameplay: reward-seeking, difficulty aversion, and memory loss.

The accomplishment process reflects the player’s passion for seeking rewards. While people are

attracted by the sensation of “winning”, players also experience negative feelings during gameplay.

If the game is difficult, players can come to feel anxious or frustrated, particularly when exposed

to extended durations of difficulty (Chen 2007). Accordingly, we introduce a stress process that

reflects the dynamics of a player’s aversion to difficulty.
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We introduce a memory decay process to reflect the player’s memory loss due to the player’s

limited ability to remember what happened during the experience of a level. We must therefore

examine a player’s remembered utility of a level when assessing his appreciation of the design.

Table 1 summarizes the relationship between the psychological process and the player behavior in

the gameplay.

Table 1 Psychological Process and Player Behavior

Psychological Process Player Behavior Outcome
Accomplishment process Reward seeking Utility

Stress process Difficulty aversion Disutility
Memory decay process Memory loss Remembered utility

To formalize the accomplishment and stress processes, we follow the adaptation model of Aflaki

and Popescu (2013) in a similar pattern to Das Gupta et al. (2016), where experienced utility

and disutility are functions of deviations from a reference point and this reference point evolves

according to a differential equation akin to Newton’s law of cooling. In our model, the accomplish-

ment process is the source of utility and the stress process is the source of disutility. Each of these

processes evolves according to its own adaptive process with given parameters. These two processes

are described in the next two subsections.

As the player has both positive and negative feelings from gameplay, utility from rewards and

disutility from difficulty jointly affect the game experience. Following our description of the accom-

plishment and stress processes, we combine them to determine a (net) utility process in Sec-

tion 3.1.3. At time t during the player’s experience of the level, we determine an instantaneous

(net) utility at time t by subtracting the instantaneous disutility from the instantaneous utility at

time t. In doing so, we adopt a linear-form model similar to Roels (2020), which is based on the

athletic performance model by Banister et al. (1975) with two effects, one positive (fitness) and

one negative (fatigue). While performance is not the subject of our study, we believe a linear-form

model is justified here because it similarly weighs two psychological impacts on utility, one positive

(reward) and one negative (difficulty). This matches with game design theory, which states that

the game should balance its reward scheme and the degree of challenge (Schell 2019).

For the memory decay process, we consider a memory decay process with exponential memory

decay as Das Gupta et al. (2016) and Li et al. (2022). The memory decay process determines the

relative weight of each game element and converts the instantaneous utility to remembered utility.

Therefore, the sequence of game elements will affect the perception of the game experience.

Combining the three psychological effects, we present the framework of our study in Figure 3.

3.1.1 The Accomplishment Process. The accomplishment process reflects the psycholog-

ical phenomenon of reward-seeking and adaptation to rewards. On the one hand, players prefer to
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Figure 3 The Combining Effects of Accomplishment, Stress, and Memory Decay

receive more rewards, on the other hand, they gradually adapt to the gain and seek greater rewards

(Plass et al. 2015).

To model the accomplishment process, we follow the adaptation model of Aflaki and Popescu

(2013). For a given schedule π, we denote by fπ(t) the player’s reference reward at time t. For sim-

plicity of notation, we omit π in the subscript and use f(t). The instantaneous utility experienced

at time t ∈ [ti−1, ti] is a function of the difference between the current reward and the reference

reward, which is given by:

ur (t) =Ur
(
r(i)− f (t)

)
, (1)

where Ur (·) is the player’s utility function for rewards. We assume that utility function Ur (·) is

linear, such that Ur
(
r(i)− f (t)

)
= ur,0 + a

(
r(i)− f (t)

)
, where ur,0 is the initial utility from the

experience and a is a coefficient. We can normalize ur,0 to 0, and a to 1 without loss by simply

rescaling utilities (recall that utilities are only defined up to affine scaling, see Chapter 1 of (Mas-

Colell et al. 1995)).

We assume that the rate of change of the reference reward is proportional to the instantaneous

utility ur (t); i.e., the rate of change of reference reward f (t) at time t∈ [ti−1, ti] is:

df(t)

dt
= αur (t) = α

(
r(i)− f (t)

)
,

where we refer to α > 0 as the degree of reward-seeking of the player. Parameter α depicts the

speed of adaptation to rewards. The larger is the risk-seeking degree α, the faster the reference

reward accumulates. Players with very large α have insatiable appetites for rewards, even as they

earn rewards they require even greater rewards to stay happy.

The reference reward at time t∈ [ti−1, ti] for a player with risk-seeking degree α is:

f (t) = r(i)−

((
r(1)− f (0)

)
+

i∑
j=2

(
r(j)− r(j−1)

)
eαtj−1

)
e−αt. (2)
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With (1) and (2), the utility at t∈ [ti−1, ti] can be expressed as:

ur (t) =

((
r(1)− f (0)

)
+

i∑
j=2

(
r(j)− r(j−1)

)
eαtj−1

)
e−αt. (3)

3.1.2 The Stress Process. The stress process reflects the psychological phenomenon of dif-

ficulty aversion and adaptation. A game is not an unbroken sequence of rewards. Effort must be

exerted in order to earn rewards and this effort is proportional to the difficulty of the game element.

We assume that players adapt to difficulty analogously to how they adapt to rewards. This fits the

common understanding of game design, which suggests that players learn from playing and find

that challenge diminishes when faced with equally difficult game elements (Kalmpourtzis 2018,

Schell 2019).

As illustrated by Figure 3, the stress process governs disutility due to effort exerted in overcoming

difficulty. For a given schedule π, we denote by gπ (t) the player’s reference difficulty at time t.

For simplicity of notation, we often omit π in the subscripts and use g (t) instead. The disutility

at time t ∈ [ti−1, ti] is a function of the difference between the current difficulty and the reference

difficulty, which is given by:

ud (t) =Ud
(
d(i)− g (t)

)
, (4)

where Ud (·) is the disutility function. As before, we assume that Ud is linear and let Ud(d− g) =

δ (d− g), where δ is a given positive constant. We scale δ to 1 without loss for simplicity of the

analysis. For completeness, we verify this assertion in Lemma EC.9 in Appendix A.9

Same as the accomplishment process, we assume the rate of change in the reference difficulty is

proportional to the disutility at time t; that is, the change rate of the reference difficulty g (t) at

time t∈ [ti−1, ti] is:
dg(t)

dt
= βud (t) = β

(
d(i)− g (t)

)
,

where β > 0 (with β 6= α) is the degree of difficulty-aversion. Parameter β depicts the speed of

adaptation to difficulty. The larger is the difficulty-aversion degree β, the faster the reference

difficulty accumulates.

The reference difficulty at time t∈ [ti−1, ti] is:

g (t) =d(i)−

((
d(1)− g (0)

)
+

i∑
j=2

(
d(j)− d(j−1)

)
eβtj−1

)
e−βt. (5)

With (4) and (5), the disutility at t∈ [ti−1, ti] can be expressed as:

ud (t) =

((
d(1)− g (0)

)
+

i∑
j=2

(
d(j)− d(j−1)

)
eβtj−1

)
e−βt. (6)

9 Arguing for a simple normalization of utility without loss does not suffice here because we have already executed a
normalization of the utilities for rewards in the previous subsection. This is why we introduce a secondary argument
for why we may assume δ= 1 without loss found in Lemma EC.9.
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3.1.3 The Memory Decay Process. The memory decay process reflects the psychological

phenomenon of memory loss and it converts instantaneous utility into remembered utility. This

works on the (net) utility derived from the instantaneous utility from rewards and disutility from

difficulty. Instantaneous utility is affected by both the accomplishment and the stress processes.

As shown in Figure 3, we assume the instantaneous utility experienced at time t ∈ [ti−1, ti] is a

function of the utility from rewards and disutility from difficulty given by

v (t), V (ur (t) , ud (t)) , (7)

where V (·) is an aggregate utility function over utilities ur and disutilities ud.

We assume that the utility function V (·) is linear with V (ur (t) , ud (t)) = v0 + δrur (t)− δdud (t),

where v0 is the initial instantaneous utility and δr, δd > 0 are given coefficients of the utility. Same

as before, we normalize v0 to 0 and scale δr and δd to 1 without loss for simplicity of the analysis.

This is verified in Lemma EC.9 in Appendix A.

We assume that the player has an exponential memory decay process with rate γ > 0 and γ 6= α,β.

Then the player’s cumulative remembered utility S (π) is given by:

S (π) =
n∑
i=1

∫ ti

ti−1

v (t)e−γ(T−t)dt, (8)

where v (t) is as defined in (7). Therefore, the latest game element will weigh more when players

recall the game journey.

Combining (3), (6), (7), and (8) shows that the remembered utility of a level can be expressed

as:

S (π) =
n∑
i=1

∫ ti

ti−1

((
r(1)− f (0)

)
e−αt +

i∑
j=2

(
r(j)− r(j−1)

)
e−α(t−tj−1)

)
e−γ(T−t)dt

−
n∑
i=1

∫ ti

ti−1

((
d(1)− g (0)

)
e−βt +

i∑
j=2

(
d(j)− d(j−1)

)
e−β(t−tj−1)

)
e−γ(T−t)dt. (9)

We assume that the player does not have any previous gameplay experience, so that f (0) = 0

and g (0) = 0. Let r[0] = 0 and d[0] = 0. Continuing from (9) we have:

S (π) =
n∑
i=1

∫ ti

ti−1

(
i∑

j=1

(
r(j)− r(j−1)

)
e−α(t−tj−1)

)
e−γ(T−t)dt

−
n∑
i=1

∫ ti

ti−1

(
i∑

j=1

(
d(j)− d(j−1)

)
e−β(t−tj−1)

)
e−γ(T−t)dt,

=
n∑
i=1

(
r(i)− r(i−1)

) e−αt̄i − e−γt̄i
γ−α

−
n∑
i=1

(
d(i)− d(i−1)

) e−βt̄i − e−γt̄i
γ−β

,

=
n∑
i=1

r(i)

(
e−αt̄i − e−γt̄i

γ−α
− e

−αt̄i+1 − e−γt̄i+1

γ−α

)
−

n∑
i=1

d(i)

(
e−βt̄i − e−γt̄i

γ−β
− e

−βt̄i+1 − e−γt̄i+1

γ−β

)
.

(10)
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3.2 The Level Design Problem

In this section, we formulate the level design problem. To simplify the expression of game satisfac-

tion, we first introduce the function Φ(t|θ, γ), where θ can be either the risk-seeking degree α or

the difficulty-aversion degree β. The function Φ(t|θ, γ) is given by:

Φ(t|θ, γ) =
e−θt− e−γt

γ− θ
, (11)

where θ 6= γ, θ, γ > 0, and Φ(t|θ, γ)≥ 0.

It is straightforward to see that Φ(t|θ, γ) is continuous and twice differentiable in t. As shown

in Lemma EC.1 in Appendix A, Φ(t|θ, γ) is a concave-convex function with one inflection point

and one stationary point. Let T0 (θ, γ) be the inflection point and T ′0 (θ, γ) be the stationary point,

whose formulation is shown in (EC.1) in Appendix A. These inflection and stationary points are

important indicators of structure discussed later in Theorem 3 and Propositions EC.1 and EC.2.

By (10) and (11), we can formulate the level design problem as:

max
π

S (π) =
n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))−
n∑
i=1

d(i) (Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)) . (12)

In Appendix G we demonstrate how this model can apply to interactive service problems that

go beyond the video game context.

4. Optimal Structure of Game Design

We now examine the structural properties of optimal solutions to (12). This section contains two

subsections. The first considers the special case where rewards and difficulties are proportional.

As mentioned in the introduction, this is consistent with the concept of “flow” and is a common

design principle in video games (Chen 2007). In the second subsection, we examine the case of the

more general reward and difficulty patterns.

4.1 Sequencing Game Elements with Proportional Reward

In this section, we consider the case that the reward is proportional to the difficulty of the game

element, with a uniform reward ratio k > 0, where ri = kdi.

Under proportional rewards, the player’s remembered utility with proportional reward can be

expressed by:

S (π) =
n∑
i=1

kd(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))−
n∑
i=1

d(i) (Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)) ,

=
n∑
i=1

d(i) ((kΦ(t̄i|α,γ)−Φ(t̄i|β,γ))− (kΦ(t̄i+1|α,γ)−Φ(t̄i+1|β,γ))) .
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To simplify the expression, we define the function

Ψ(t|α,β, γ, k) = kΦ(t|α,γ)−Φ(t|β,γ) .

Using this notation, we rewrite the level design problem with proportional reward (LDPP) as

max
π

S (π) =
n∑
i=1

d(i) (Ψ(t̄i|α,β, γ, k)−Ψ(t̄i+1|α,β, γ, k)) . (LDPP)

It is straightforward to see that Ψ(t|α,β, γ, k) is continuous and twice differentiable in t. As

shown in Lemmas EC.2 and EC.3 in Appendix A, we prove that Ψ(t|α,β, γ, k) can have one or

two of inflection point(s) and one or two stationary point(s).

Let T1 (α,β, γ, k) and T2 (α,β, γ, k) be the inflection points when there are two points, and

T2 (α,β, γ, k) be the unique inflection point when there is only one inflection point. For simplicity,

we will drop the arguments and use T1 and T2 when there is no possibility for confusion. For

example, in Theorems 1 and 2, we find that the player prefers either a crescendo or diminuendo

subsequence within [0, (T −T2)+], [(T −T2)+, (T −T1)+], and [(T −T1)+, T ].

Our analysis suggests that the player’s tastes are influenced by the joint effects of the parameters

α, β, γ and k. To express the structural property of the optimal solution, we define the two

thresholds

k,


β+γ
α+γ

, if α> β,
α−γ
β−γ , if α< β and α> γ,

0, if α< β and α< γ

and k,


α−γ
β−γ , if α> β and β > γ,

+∞, if α> β and β < γ,
β+γ
α+γ

, if α< β.

First, we describe properties of the optimal sequence when the game’s duration is sufficiently

long (i.e., T > T2).

Theorem 1. When the game duration is sufficiently long (i.e., T > T2), in the optimal schedule

π∗ of the LDPP, the elements’ rewards (difficulties) are in the following structure.

(i) When k≤ k, the optimal structure is an inverted U-shaped sequence.

(ii) When k < k≤ k, there are two cases of the optimal structure.

(iia) If α> β, the optimal structure is a N-shaped sequence.

(iib) If α< β, the optimal structure is an inverted N-shaped sequence.

(iii) When k > k, the optimal structure is a U-shaped sequence.

We present the optimal structures in Figure 4 and summarize the mathematical expressions of

the optimal structure in Table EC.1 in Appendix B. Theorem 1 is arguably the central result of

the paper, and so we deliberate on its meaning in the next few paragraphs.

In case (i), the rewards are so low in proportion to difficulty that utilities from the stress adap-

tation process dominate the accomplishment process. Here, we need to think about managing the
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(a) Inverted U-shape when k≤ k (b) N-shape when k < k≤ k and α> β

(c) Inverted N-shape when k < k≤ k and α< β (d) U-shape when k > k

Figure 4 An illustration of the optimal structures of the LDPP.

stress of the player, so a huge jump in difficulty will cause a lot of disutility, so we have a warm-up

and cool-down to avoid jumps. In other words, when the reward ratio is low (i.e., k < k), the

problem will become a workout design problem, whose optimal structure is an inverted U-shaped

sequence regardless of the values of α and β. This is easy to understand. When you do a workout,

the player gets tired very easily. We see this game design in genres that require intensive body

movement like the arcade classics Dance Dance Revolution or Whack-A-Mole.

Conversely, when the reward ratio is high (i.e., k≥ k), the problem essentially becomes the design

of an entertainment or service experience as studied in Das Gupta et al. (2016). Accordingly, the

optimal structure follows the U-shaped pattern identified in Das Gupta et al. (2016). This optimal

structure is well-suited to games in which the plot is the most important issue (e.g., interactive

fiction like the classic arcade game Dragon’s Lair).

These two extreme cases are well-covered by previous literature, while the intermediate case

(ii) yields fresh insights. In case (ii), rewards and difficulties are roughly even in weight (with k

between k and k̄) and so the degrees of reward-seeking α and difficulty aversion β start to play

a pivotal role. Because this “second-order affect” has bite, we no longer see the “extreme” cases

of U-shaped and inverted U-shape. (We will see the even more extreme designs of pure crescendo
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and diminuendo arise in short duration levels in Theorem 2.) Indeed, Case (iia) yields an N-shaped

design that starts with a preliminary crescendo of difficulty followed by a U-shaped finish. Case

(iib) has an inverted N-shaped design that starts with a diminuendo of difficulty followed by an

inverted U-shaped finish. In both of these cases, we see a more even distribution of hard and easy

elements, common to many popular video games. Let’s examine these two subcases in turn.

Case (iia) is distinguished by game designs with similar rewards and difficulties, but where the

degree of reward-seeking outstrips the degree of difficulty aversion; that is, α > β. It is our con-

tention that α> β is a common case for players who play games largely as a form of entertainment.

The player adjusts quickly to rewards and so demands increasing rewards to maintain a given level

of utility. On the other hand, the players adapt slowly to difficulty and so suffer a lot of disutility

if there is a sudden spike in challenge.

This is reflected in the optimal N-shaped design. The design starts with a crescendo of difficulty

and rewards so that the player adjusts to difficulty slowly and diminishes the amount of disutility

accrued. Once accustomed to a certain level of difficulty at the peak of the crescendo, the remaining

pattern is similar to a pure entertainment experience with a U-shaped design. The diminuendo

subsequence in the middle of the level serves to reset the reference point for rewards and helps the

player relax. The final crescendo sequence helps create a grand ending experience accentuated in

the memory of the player who otherwise adapts quickly to rewards.

By contrast, Case (iib) is distinguished by game designs with similar rewards and difficulties, but

now where the degree of difficulty aversion outstrips the degree of reward-seeking; that is, α< β. We

believe this scenario is common in “serious” games which are played not purely for entertainment,

but for educational, training, and adherence purposes (see, for example, Plass et al. (2015) and

Kalmpourtzis (2018) for discussions of study games, Sardi et al. (2017) for medical programs, and

Seaborn and Fels (2015) for workplace incentive programs). The online game Prodigy is designed

for school-age children to learn mathematics in a role-playing game (RPG) style environment. In a

game like Prodigy, players are in a learning mode (no one mistakes Prodigy for a pure entertainment

game) so they can adjust quickly to difficulty, whereas they are pleasantly surprised to be getting

rewards while learning math and so adjust slowly in their expectations of rewards.

The inverted N-shaped design is intuitive under these conditions. The initial diminuendo subse-

quence at the beginning provides the player with a spike in initial rewards, which translates into a

spike of utility because adaptation to rewards is slow. On the other hand, an initial spike in diffi-

culty that slowly diminishes is expected in an educational game whose goal is to teach a difficult

topic like mathematics. Players quickly adjust to these expectations as they figure out the types

of questions or problems they are being presented with. As the player moves to the later part of

the level, the inverted U-shaped subsequence is reminiscent of Case (i). Players have experienced
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enough rewards to undertake an ascending peak of rewards and difficulties, followed by a cool

down. The decrescendo at the end takes advantage of a steady decline in disutility as the game

elements become easier.

It is important to appreciate the differences between Case (iia) and Case (iib). In Case (iia),

ending the level with a U-shaped subsequence will create high utilities, but we need a crescendo

subsequence in the beginning to let the player adapt to difficulty first. In Case (iib), difficulty

plays a more important role. This time, ending the level with an inverted U-shaped sequence will

create high utilities, but we need a diminuendo subsequence in the beginning to give the player

an initial sense of accomplishment at the outset. This design takes advantage of their fresh mind

at the outset to get some of the difficult tasks under their belt, then reset their nerves for a final

inverted U-shaped push.

From both the theoretical results and the practical use, we can tell that the game designer

will have to understand the difficulty of the game to make a better design. If he is designing

a low-difficulty game, then he can create an experience similar to pure entertainment. If he is

designing a high-difficulty game, then he can forge an experience like a workout. When the designer

is designing a game with medium difficulty, then the distribution of easy and hard elements should

be more balanced and follow the characteristics of the players. For games with a greater emphasis

on entertainment, an N-shaped design with a mini-boss-end-boss structure is optimal. For games

designed to educate or train, an inverted N-shaped design should be considered.

We complete the analysis initiated in Theorem 1 by investigating the case of short levels (i.e.,

when T < T2).

Theorem 2. When the game duration is short (i.e., T < T2), the optimal schedule π∗ of the

LDPP exhibits the following structure:

(i) When k≤ k, the optimal structure degenerates to a diminuendo sequence if T < T2.

(ii) When k < k≤ k, there are two cases of the optimal structure.

(iia) When α> β, the optimal structure degenerates to a U-shaped sequence if T1 <T <T2, and

a crescendo sequence if T < T1.

(iib) When β > α, the optimal structure degenerates to an inverted U-shaped sequence if T1 <

T <T2, and a diminuendo sequence if T < T1.

(iii) When k > k, the optimal structure degenerates to a crescendo sequence if T < T2.

The above proposition suggests that game duration is another key issue. If the game is designed

with a compact duration, then you can only form part of the optimal sequence. This echoes the

findings in Das Gupta et al. (2016) and Li et al. (2022) that the optimal structure may degenerate

when the duration is not long enough. Crescendo and diminuendo designs are also common in
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games. Mobile games in the “endless runner” genre (like the popular Jetpack Joyride) start easy

and quickly build towards greater and greater difficulty, reflecting a crescendo design. By contrast,

many of the original arcade games, like Donkey Kong, start punishingly difficult. This reflects the

different types of players that the games were designed to attract. In the arcades of the late 1970s

and early 1980s, video gaming had a public and competitive feel (captured, for example, in the

2007 documentary King of Kong: A Fistful of Quarters). Games that presented a stern challenge

were favored by players as a way to “rank” the gaming abilities of those in the arcades.

Table 2 summarizes the results in Theorems 1 and 2 on the optimal structure of levels based on

our model.

Table 2 Optimal Structures of the LDPP

k Reward Ratio α,β T Duration Optimal Structure

k≤ k Low α,β > 0
T > T2 Long Inverted U-shape

0<T ≤ T2 Short Diminuendo

k < k≤ k Medium

0<β <α
T > T2 Long N-shape

T1 <T ≤ T2 Medium U-shape
0<T ≤ T1 Short Crescendo

0<α<β
T > T2 Long Inverted N-shape

T1 <T ≤ T2 Medium Inverted U-shape
0<T ≤ T1 Short Diminuendo

k > k High α,β > 0
T > T2 Long U-shape

0<T ≤ T2 Short Crescendo

We can see that the value-to-reward ratio k, parameters α, β, and game duration T can jointly

affect the optimal structure. When T < T2, the optimal structure starts to degenerate. N-shaped

and inverted N-shaped sequences can be optimal only when the reward ratio is in the medium level

k < k≤ k.

Finally, we consider the special case where reward equals difficulty (i.e., k= 1). In this case, we

can interpret that the player accumulates a sense of accomplishment purely by the challenge of

the game elements. The following corollary gives a very compact breakdown of how all six possible

game designs (crescendo, diminuendo, inverted U-shape, U-shape, N-shape, inverted N-shape) are

possible as the remaining parameters (besides k) change.

Corollary 1. When the reward equals the difficulty of each game element, in the optimal

schedule π∗ of the LDPP, the elements’ rewards (difficulties) are in the following structure.

(i) When α> β, the optimal structure is an N-shaped sequence if T > T2, a U-shaped sequence if

T1 <T <T2, and a crescendo sequence if T < T1.

(ii) When β > α, the optimal structure is an inverted N-shaped sequence if T > T2, an inverted

U-shaped sequence if T1 <T <T2, and a diminuendo sequence if T < T1.

One takeaway here is how pivotal a role is played by the parameters α and β. As we discussed

earlier, one can associate α> β with audiences that are looking for more entertainment experiences,
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while α < β is associated with more learning or training experiences. Corollary 1 highlights that

these two orientations support fundamentally different optimal level designs. This is a nontrivial

design insight for developers of educational games who might otherwise benchmark their level

design against entertainment-focused games.

4.2 Game Design with General-reward Scheme

In this section, we consider the general case where rewards and difficulties are no longer propor-

tional. In this case, we refer to (12) as the level design problem with general reward (LDPG). When

there is no proportional relationship, we were, for the most part, only able to analyze (12) numer-

ically as an integer optimization problem. See Appendix C for a description of the IP formulation

that we worked with and see Section 5 for our numerical findings.

One special case we were able to analyze was the case where all elements share a common

reward (alternatively, a common difficulty). When the elements share a common difficulty di = d

for all i∈ [n], the level design problem with general reward and fixed difficulty (LDPGFD) can be

expressed by:

max
π

S (π) =
n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))−
n∑
i=1

d (Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)) ,

=
n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− dΦ(T |β,γ) . (13)

When the elements share a fixed reward ri = r for all i∈ [n] the level design problem with general

reward and fixed reward (LDPGFR) can be expressed by:

max
π

S (π) =
n∑
i=1

r (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))−
n∑
i=1

d(i) (Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)) ,

= rΦ(T |α,γ) +
n∑
i=1

d(i) (Φ(t̄i+1|β,γ)−Φ(t̄i|β,γ)) . (14)

In these two settings, we were able to show the following structural result. We should remark

that this result can be shown via similar arguments to that found in Das Gupta et al. (2016), since

once rewards or difficulties are fixed, the model effectively becomes a “single factor” model like

that studied in Das Gupta et al. (2016). In order to be self-contained, we include a detailed proof in

the appendix, but are careful to point out the similarities between our argument and those found

in Das Gupta et al. (2016).

Theorem 3. Recall that T0(α,γ) and T0(β,γ) are the unique inflection point of function Φ(α,γ)

and Φ(β,γ) respectively.

(i) When the elements share a fixed difficulty in the optimal schedule π∗ of the LDPGFD, the

rewards are in a U-shaped sequence if T > T0 (α,γ), and a crescendo sequence if T < T0 (α,γ).
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(ii) When the elements share a fixed reward in the optimal schedule π∗ of the LDPGFR, the

difficulties are in an inverted U-shaped sequence if T > T0 (β,γ), and a diminuendo sequence

if T < T0 (β,γ).

While we cannot prove the properties of optimal structure for the general level design problem

(12), we found some interesting results that are commonly observed in video game level designs

seen in practice. We mention here one numerical instance with an optimal sequence, as illustrated

in Figure 5. The parameters defining the instance can be found in Table EC.3 in Appendix D.

Figure 5 An illustration of the optimal sequence of the LDPG. The heights of the shaded bars mark the rewards

of the game elements and the gray-scale shadings represent the difficulty of the game elements.

In Figure 5, the heights of the shaded bars mark the rewards of the game elements and the

gray-scale shadings represent the difficulty of the game elements. The height of the bars indicates

the size of the reward, while darker shades correspond to more difficulty.

In this example, the optimal schedule exhibits a “wave-like” structure. Difficulty increases for

a certain period (e.g., the first three elements in Figure 5), then the game turns easy in a short

time, followed by another crescendo subsequence of difficulty (e.g., the middle three elements in

Figure 5). To match the changes in difficulty, the reward sequence also follows a wave-like structure.

This design pattern matches recommendations by game designers like Hiwiller (2015) and Hodent

(2017), and service designers like Lawrence (2014), which indicate that a structure with multiple

peaks and drops is preferred by the players and customers.

We may develop an intuition for how the wave structure arises via the discussion that follows

Theorem 1. Peaks in difficulty are followed by a “cooling” period to slow the stress process. Rewards

also work in patterns of crescendos and diminuendos so that players do not become “numb” to high

rewards by adjusting their expectations. Players look for a challenging and rewarding experience,

making intermittent crescendos of difficulty and reward attractive, but an ever-increasing crescendo

makes players increasingly stressed at the same time of becoming inured to the rewards. An example

of a popular game with this “wave-like” pattern of difficulty and rewards is the Plants vs Zombies



24 Li, Ryan, and Sheng: Optimal sequencing in games

series of mobile games. In the games in this series, the player makes defenses using plants to ward

off waves of attacking zombies. Zombies come in waves of varying difficulties.

Table 3 summarizes the optimal structures and the conditions, and we summarize the mathe-

matical expressions of the optimal structure in Table EC.2 in Appendix B.

Table 3 Optimal Structures of the LDPG

Problem Situation T Duration Optimal Structure

LDPGFD Fixed difficulty
T > T0 Long U-shape

0<T ≤ T0 Short Crescendo

LDPGFR Fixed reward
T > T0 Long Inverted U-shape

0<T ≤ T0 Short Diminuendo
LDPG General T > 0 Any duration Wave-like

As a final note, we have included the description of a related model in an appendix of the paper

(see Appendix E). One of the distinguishing features of games is that elements are virtual, meaning

that they can be reproduced costlessly multiple times within a level. This is in contrast with service

design problems, like those studied in Das Gupta et al. (2016), where repeating a service element

may be costly or not possible.

Here the decision space is extended to allow the level designer to choose the number of each

game element to deploy (within a given time limit) as well as how to sequence these elements.

This is related to, but different than, the challenge of choosing the duration of elements studied in

Das Gupta et al. (2016). In Appendix E, we study the optimal structure of the final sequence of

game elements (allowing for repeats) in both the proportional reward and general reward settings.

Our results in this setting are consistent with the findings in the base model we study in this

section. Accordingly, these results should be viewed as a robustness check for our main conclusions.

5. Numerical Study

We use numerical approaches to gain further insight into the structure of optimal level designs.

We began this analysis with an illustrative result in Figure 5 in the previous section, but take a

more systematic approach. We are interested in questions of the prevalence of the different opti-

mal level designs (U-shaped, N-shaped, crescendo, etc.) across many instantiations. In the first

two subsections below, we look at structured reward and difficulty data (either proportional or

other structured protocols). These results show that N-shaped optimal designs are not uncommon

(Tables 4 and 7) and are often fairly well-approximated by U-shaped designs (Table 5) in remem-

bered utility. Diminuendo, and the inverted U- and N-shaped designs are much less common in our

experiments. Optimal U-shaped designs are the most common.

In a third subsection, we examine optimal level structure when rewards and difficulties of ele-

ments are unstructured. As might be predictable, the optimal design is wave-like with a high

probability, mimicking what we see in Figure 5. N-shaped designs are also more prevalent than
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U-shaped designs. In this section, we also investigate the question of where the boss (i.e., the most

difficult element) is typically positioned and the average distance between “peaks” of waves.

In our experiments, we consider level design problems with eight elements. We generate 150

instances of rewards, difficulties, durations, and parameters α,β, and γ. For each instance in

Section 5.1, we randomly generate difficulties d and reward ratios k from independent uniform

distribution Uniform(0,10), and we set the reward vector as r = kd. For each instance in Sec-

tion 5.2, we use the protocol-based reward as presented in Table 6 that look at structured, but

non-proportional reward structures and generate random data appropriately. For the instances in

Section 5.3, the rewards, difficulties, and durations are randomly generated from independent uni-

form distribution Uniform(0,10). As Das Gupta et al. (2016), parameters α,β, and γ are drawn

from independent Gamma distribution Gamma(kG, θG), with shape kG and scale θG. This leads

to unstructured rewards and difficulties. We conduct the numerical study under parameters kG ∈

{1,2,3} and θG ∈ {0.125,0.25,0.375}. For all experiments, we compute the optimal sequence by

solving the IP in Appendix C.

5.1 Sequencing under Proportional Reward Scheme

In this section, we analyze the optimal structure under a proportional reward scheme. We start

by analyzing the distribution of optimal structures. We record the percentage of different optimal

structures across 150 instances and present the results in Table 4.

Table 4 Percentage of the Optimal Structures under the Proportional Reward Scheme (%)

(kG, θG) Crescendo Diminuendo
Inverted
U shape

U shape
Inverted
N shape

N shape
N shape
in theory

(1,0.125) 22.67 4.67 10.00 58.67 0.67 3.33 44.00
(1,0.25) 6.67 0.67 12.00 61.33 2.67 16.67 44.67
(1,0.375) 6.67 0 12.00 64.00 4.67 12.67 34.67
(2,0.125) 2.67 0.67 10.00 68.67 2.67 15.33 38.67
(2,0.25) 0 0 19.33 56.67 1.33 22.67 41.33
(2,0.375) 0.67 0 18.67 64.67 2.67 13.33 34.67
(3,0.125) 0 0 8.67 66.67 6.67 18.00 40.67
(3,0.25) 0 0 18.00 60.00 2.67 19.33 36.00
(3,0.375) 0 0 22.67 62.00 2.00 13.33 34.67

We can see from the table, as kG increases, less crescendo and diminuendo sequences are optimal.

An explanation is that there are fewer degenerate cases as kG grows. Crescendo and diminuendo

sequences are degenerate cases, as we summarized in Table 2. The percentage of inverted and

U-shaped optimal sequences is stable under different situations. There are more N-shaped optimal

sequences when θG is of medium value, and there are only a few instances where the inverted

N-shaped sequence is optimal. The last column of the table, labeled “N-shape in theory” records

the percentage of instances where the parameters are such that an N-shape design is optimal if

the level was sufficiently long (that is, T > T2). Around 40% of instances were found to be in this
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category. However, since we conducted our numerical study with only eight elements, this may not

be long enough to show the whole N-shaped structure in some of these instances. In these cases,

the N-shaped sequence degenerates into a crescendo or U-shaped sequence, even if the parameters

allow for an N-shaped structure.

Furthermore, we study the differences in remembered utility among different sequences and

compare them when N-shaped sequence is optimal. Let πi stands for the schedule in structure i,

where i ∈ {1, . . . ,6} stands for the crescendo, diminuendo, inverted U shape, U shape, inverted N

shape, and N shape respectively. Let the sequence in structure i ∈ {1, . . . ,6} that has the largest

remembered utility be π∗i , and the optimal sequence be π∗. Then, the optimal gap of the best

solution in structure i is given by pi =
|S(π∗)−S(π∗i )|

S(π∗) · 100%.

Next, we report on the optimality gap of all structures for the instances where an N-shaped

sequence is optimal in Table 5. We can see from the table that the optimal gap is stable with differ-

ent (kG, θG) for many structures. U-shaped sequence has the least gap to the N-shaped sequence,

and the gap increases as kG grows. The optimal U-shaped sequence thus acts as a reasonable

heuristic, but the average gap is still considerable, often larger than 5%.

Table 5 Average Gap of Sequences in Different Structures When N-shaped Sequence is Optimal (%)

(kG, θG) Crescendo Diminuendo
Inverted
U shape

U shape
Inverted
N shape

N shape

(1,0.125) 112.39 122.24 108.58 5.54 89.93 0
(1,0.25) 170.17 104.91 89.95 7.33 80.23 0
(2,0.125) 108.90 99.76 84.55 8.01 72.60 0
(2,0.25) 97.55 107.68 89.82 8.94 87.08 0

5.2 Sequencing under Protocol-Based Reward Scheme

Of course, we would like to go beyond proportional rewards. Instead of going immediately to

completely general reward structures (which we take up in the next subsection), here we restrict to

nonproportional, but structured protocols for rewards and difficulties. Our main question is whether

N-shaped designs remain a prevalent design in these more general scenarios. These protocols can

be thought of as broad strategies to enhance the engagement of players at the game element design

stage. Table 6 illustrates an example of the protocols we consider.

Table 6 Reward Protocols

No. Reward Difficulty

1 r= (1/4,1,9/4,4,25/4,9,49/4,16)
T

d= (1,2,3,4,5,6,7,8)
T2 r= (16,49/4,9,25/4,4,9/4,1,1/4)

T

3 r= (16,9,4,1,1/4,9/4,25/4,49/4)
T

4 r= (1/4,9/4,25/4,49/4,16,9,4,1)
T

In protocol 1, the reward increases as the difficulty grows, but it follows a nonlinear relationship

ri = d2
i /4, rather than a linear relationship with the difficulty as in the proportional case. In protocol
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2, the reward decreases as the difficulty grows. The rewards are in a U-shaped sequence in protocol

3, and an inverted U-shaped sequence in protocol 4.

We investigate the structure of the optimal sequence under the same environment as Section 5.1.

However, because we consider a non-proportional reward scheme, we cannot identify the structure

of the sequence based on either the reward or the difficulty. Instead, we analyze the reward ratios

of a sequence of the elements. Let the reward ratio of element i be qi given by qi = ri/di.

We now present the percentage of different reward ratio sequences in Table 7. Protocol 1 is the

only protocol that supports inverted U-shaped sequences. Protocol 1 is closest to the proportional

reward scheme, and this is the reason why it supports most of the optimal structures proposed

in Section 4.1. Protocol 2 only supports the crescendo, U-shaped, and N-shaped sequence, but

not the wave-like sequence. One explanation is that the highest-difficulty elements have the least

rewards, and this reduces the number of wave-like sequences because reward and difficulty are

negatively correlated. Protocol 3 supports more U-shaped sequences and less N-shaped sequences

than protocol 4. The relative proportion of the optimal sequence is stable as θG changes, but there

are less crescendo and diminuendo sequences when kG is large. Similar to Section 5.1, there may

be fewer degenerate instances, and hence there are fewer crescendo and diminuendo sequences. All

of these demonstrate how patterns in the rewards and difficulties leads to related structures in the

optimal level design.

Table 7 Optimal Reward Ratio Sequences under Different Protocols (%)

(kG, θG) Protocol Crescendo Diminuendo
Inverted
U shape

U shape
Inverted
N shape

N shape Wave like

(1,0.125)

1 27.33 0.67 3.33 61.33 0 6.00 1.33
2 32.00 0 0 68.00 0 0 0
3 3.33 0 0 30.00 0 15.33 51.33
4 1.33 0 0 11.33 0 31.33 56.00

(1,0.25)

1 10.00 2.00 14.00 57.33 0 14.00 2.67
2 12.67 0 0 87.33 0 0 0
3 0 0 0 26.00 0 10.00 64.00
4 0 0 0 9.33 0 26.67 64.00

(2,0.125)

1 4.67 0 6.00 66.00 0 21.33 2.00
2 2.67 0 0 97.33 0 0 0
3 0 0 0 20.67 0 1.33 78.00
4 0 0 0 13.33 0 27.33 59.33

(2,0.25)

1 1.33 0 31.33 45.33 0 13.33 8.67
2 0 0 0 100.00 0 0 0
3 0 0 0 18.67 0 0 81.33
4 0 0 0 4.00 0 37.33 58.67

5.3 Sequencing under General Reward Scheme

In this section, we analyze the optimal sequence under a general reward scheme. Following the

definition of reward ratio qi = ri/di, we start by presenting the distribution of optimal reward ratio

structures in Table 8.
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Table 8 Percentage of the Optimal Reward Rate Structures under the General Reward Scheme (%)

(kG, θG) Crescendo Diminuendo
Inverted
U shape

U shape
Inverted
N shape

N shape Wave like

(1,0.125) 0 0 0 0.67 3.33 5.33 90.67
(1,0.25) 0 0 0.67 0 2.0 3.33 94.00
(2,0.125) 0 0 0 0 3.33 1.33 95.33
(2,0.25) 0 0 0.67 0.67 0.67 2.67 95.33

From the table, we see that most of the instances have wave-like structure in the reward ratios.

There are more inverted N-shaped and N-shaped sequences than inverted U-shaped and U-shaped

sequences. No crescendo or diminuendo sequences are found. There are more wave-like sequences

when kG is moderate while θG does not appear to have any systematic impact.

Because of the prevalence of wave-like results in the simulations, the rest of our numerical

investigations explore some of the salient features in the “waves” that we see. One obvious feature

is the location of the largest “peak”. This corresponds to asking about the location of the “boss”

of the level. The most common design in practice is to find the “boss” at the end of the level,

and so we explore how prevalent this is in our optimal level designs. Another natural question is

when “peaks” (bosses and mini-bosses) are batched close together in the “waves” or spaced farther

apart. This tells us something about the tempo of difficulty in the optimal level design.

To investigate this, we simplify things by isolating attention to one boss and one mini-boss in

our simulations. Based on this, we consider four configurations. Let element n−1 be the mini-boss,

and element n be the boss. The setup of the rewards and difficulties of the bosses are presented

in Table 9, where the parameters x and y in the reward columns vary in {1, . . . ,10}. We randomly

generate 150 instances of the difficulty and reward of the rest nonboss elements with Uniform(0,10),

and we consider an identical duration with τ = 5 for all the elements, which facilitates our analysis

of the optimal positions of the bosses.

Table 9 Configurations of the Numerical Study

Configuration
Boss Mini-boss

Reward Difficulty Reward Difficulty
1 rn = (0.8 + 0.2 · ex−5) · dn

dn = 15

rn−1 = 13

dn−1 = 13
2a rn = 15 rn−1 = (0.8 + 0.2 · ex−5) · dn−1

2b rn = 60 rn−1 = (0.8 + 0.2 · ex−5) · dn−1

3 rn = (0.8 + 0.2 · ex−5) · dn rn−1 = (0.8 + 0.2 · ey−5) · dn−1

In the first study, we investigate the optimal position of the boss (i.e., element n). To better

present the trend of the change in the optimal position of the boss, we follow configuration 1 in

Table 9. The distribution of the optimal positions of the boss is presented in Figure 6. From the

figure, we see that the distribution of the optimal boss position changes as x increases. The optimal

positions are evenly distributed when x is small. As x increases, there are more instances where

the boss is placed in the final slot. Because the reward increases as x grows, the result suggests

that the boss with higher reward is optimal to be scheduled at the end of the game. The benefit
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Figure 6 Optimal position of the boss as rn changes, where rn = (0.8 + 0.2 · ex−5) · dn.

is that a boss with higher reward scheduled at the end can provide higher remembered utility for

the players. Placing the most influencing element at the end is a common phenomenon studied in

the literature (e.g., Kahneman et al. 1993, Das Gupta et al. 2016).

We now study the distance between the boss and mini-boss. We consider two cases listed as

configuration 2a and 2b in Table 9: (i) when rn = 15 and (ii) when rn = 60. We record the distance

between the bosses under these two cases and present them in Figure 7.

(a) When rn = 15 (b) When rn = 60

Figure 7 Distance between the bosses as rn−1 changes, where rn−1 = (0.8 + 0.2 · ex−5) · dn

We can see from the figure that the distribution of the distance is different when rn = 15 and

when rn = 60. When rn = 15 and x is small, there are more instances with small distances. When

rn = 60 and x is large, there are more instances with larger distances. This result echoes the study

of Thaler (1985) and Thaler and Johnson (1990), which reveal that people prefer separate gains

and integrated losses. The intuition behind the result is that it is better to have wonderful moments

separated to enjoy all of them, and to integrate unhappy moments to minimize pain.

Based on the previous results, we extend the investigation to the average distance between the

bosses. We follow configuration 3 in Table 9 and conduct the numerical study with different values

of rn−1 and rn. The distribution of average distances is shown in Figure 8.
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Figure 8 Average distance between the bosses as rn and rn−1 changes, where rn = (0.8 + 0.2 · ex−5) · dn and

rn−1 = (0.8 + 0.2 · ey−5) · dn−1.

From the figure, we can see that the average distance increases as x (rn) and y (rn−1) increase.

The case with x, y = 10 has largest average distance. The result suggests that it is optimal to

separate the bosses when the reward rates of the bosses are high. The separate-boss solution

provides more remembered utility because it takes advantage of the accomplishment, stress, and

memory decay processes. Same as before, the results are consistent with the study on the spread

effect (e.g., Loewenstein and Prelec 1993, Dixon and Verma 2013).

In this section, we have performed numerical simulations to get further insight into optimal level

design structure. There is also a natural question about how a game designer can calibrate the

parameters of our model (α, β, and γ) based on available game data. We describe how to perform

this calibration using real data from the game Mario Maker 2 in Appendix F.

6. Conclusion

In this paper, we presented a mathematical model to analyze the problem of designing video game

levels for players who are reward-seeking, difficulty averse, and suffer from memory decay. Our

analysis shows that the relative strengths of these factors, and the properties of the game elements

used to sequence a level, give rise to a variety of different level designs. Appendix B summarizes

these findings in two convenient tables.

We believe that future research into level design can further explore some of the complexities

that we see in practice but are beyond the scope of the current model. First, in this model, we

have assumed that players assess utility in a backwards-looking manner at the end of the level.

This is consistent with the experiential services literature initiated by Das Gupta et al. (2016), but

alternative “forward-looking” models (like those found in Ely et al. (2015)) offer other modeling

opportunities to examine the optimal structure of video game levels. It would be interesting to see

if these alternative theoretical foundations could provide additional insight into why certain level

designs are prevalent in practice.
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Our model assumes that players “stick around” until the end of the level before deciding whether

or not to continue playing the game. We did this for tractability purposes, because otherwise we

would need to track some “forwarding looking” information about what the player thinks will

happen later when deciding if to quit a level mid-stream. We believe an extension that incorporates

quitting behavior would be a major contribution, since retention of players is a core concern of

game design, particularly in free-to-play games.

Some of the results we have may have promise for understanding the design of games in the

“endless runner” genre, typified by the high revenue-generating Jetpack Joyride on mobile plat-

forms. In endless runners, levels are procedurally generated (meaning generated randomly as they

are encountered) and, in principle, have no end (hence the adjective “endless”). An infinite horizon

dynamic model would be needed to study this problem, but we believe many of the insights we

have developed here would be applicable in this setting, particularly the notion of how “peaks”

and “valleys” of difficulty manage reward-seeking and difficulty-aversion behaviors of players.

Finally, there are applications of game design that extend beyond the classical entertainment

setting studied here. The concept of gamification — using games to help people learn or comply

with medical regimes, for example — is a growing area of application (see, for example, (Plass

et al. 2015, Kalmpourtzis 2018, Sardi et al. 2017, Seaborn and Fels 2015)). We expect this trend

to continue as games become more widely accepted as a form of meaningful interaction in society.
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E-companion for “Optimal Level Design in Video Games”

Here is a summary of the contents of this e-companion. Appendix A contains all technical proofs

of results in the main body. Appendix B provides tables that summarize our main analytical find-

ings. Appendix C provides an integer programming formulation for our level design problem used

in our numerical study. Appendix D gives a full specification of the parameters for an illustra-

tive example that appears in the paper. Appendix E considers an extension to our setting where

game elements can be repeated as a robustness check to our main insights. Appendix F uses real

data from the game Mario Maker 2 to illustrate how our model can be calibrated in practice.

Appendix G provides a description of our model in the general setting of interactive services, using

the design of a summer camp for children as an illustrative example.

Appendix A: Technical Proofs

To analyze the properties of the optimal structure, we first define the formulation of T ′0 (θ, γ) and

T0 (θ, γ):

T ′0 (θ, γ) =
lnγ− lnθ

γ− θ
, (EC.1)

T0 (θ, γ) = 2
lnγ− lnθ

γ− θ
.

We prove the property of Φ(t|θ, γ) in the following lemma.

Lemma EC.1. (i) Φ(t|θ, γ) is an increasing function in t for t ∈ [0, T ′0 (θ, γ)]; Φ(t|θ, γ) is a

decreasing function otherwise.

(ii) Φ(t|θ, γ) is a concave-convex function with inflection point T0 (θ, γ).

Proof of Lemma EC.1. By Lemma A3 in Das Gupta et al. (2016), we have ∂Φ(t|θ,γ)

∂t
≥ 0 when

t ∈ [0, T ′0 (θ, γ)], and ∂Φ(t|θ,γ)

∂t
≤ 0 when t ∈ [T ′0 (θ, γ) , T ]; we have ∂2Φ(t|θ,γ)

∂t2
≤ 0 when t ∈ [0, T0 (θ, γ)],

and ∂2Φ(t|θ,γ)

∂t2
≥ 0 when t ∈ [T0 (θ, γ) , T ]. The function is a concave-convex function with inflection

point T0 (θ, γ) and stationary point T ′0 (θ, γ). See Figure EC.1 for an illustration. Q.E.D.

We then prove the property of function Ψ(t|α,β, γ, k) in the following two lemmas.

Lemma EC.2. Consider α, β, γ be three (different) positive parameters, t≥ 0, and k be arbitrary

real numbers.

(1) Suppose α> β. Define k= β+γ
α+γ

and k=

{
α−γ
β−γ , β > γ,

+∞, β < γ.

(1.1) When k≤ k, Ψ(t|α,β, γ, k) is a convex-concave function.

(1.2) When k < k < k, Ψ(t|α,β, γ, k) is a concave-convex-concave function.

(1.3) When k≥ k, Ψ(t|α,β, γ, k) is a concave-convex function.
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Figure EC.1 Demonstration of the function Φ(t|θ, γ) when θ= 3 and γ = 1.

(2) Suppose α< β. Define k=

{
α−γ
β−γ , if α> γ

0, if α< γ
and k= β+γ

α+γ
.

(2.1) When k≤ k, Ψ(t|α,β, γ, k) is a convex-concave function.

(2.2) When k < k < k, Ψ(t|α,β, γ, k) is a convex-concave-convex function.

(2.3) When k≥ k, Ψ(t|α,β, γ, k) is a concave-convex function.

Proof. By definition, Ψ(t|α,β, γ, k) = kΦ(t|α,γ)−Φ(t|β,γ) where Φ(t|θ, γ) = e−θt−e−γt
γ−θ . Then

∂2Ψ(t|α,β, γ, k)

∂t2
= k

∂2Φ(t|α,γ)

∂t2
− ∂

2Φ(t|β,γ)

∂t2
= k

α2e−αt− γ2e−γt

γ−α
− β

2e−βt− γ2e−γt

γ−β
. (EC.2)

Following Lemma EC.1, we know that Φ(t|θ, γ) is a concave-convex function with inflection point

T0(θ, γ) = 2(ln s−lnγ)

s−γ . Specifically, ∂2Φ(T0(θ,γ)|θ,γ)

∂t2
= 0; ∂2Φ(t|θ,γ)

∂t2
< 0 if t < T0(θ, γ); and ∂2Φ(t|θ,γ)

∂t2
> 0 if

t > T0(θ, γ). We further have ∂T0(θ,γ)

∂θ
=

2(1− γs+ln γ
s )

(s−γ)2
< 0, given that 1 + ln ξ < ξ for 0 < ξ < 1 and

ξ > 1. Thus, T0(θ, γ) decreases in θ.

We start with two special cases. First, suppose k = 0. Then, ∂2Ψ(t|α,β,γ,k)

∂t2
= −∂2Φ(t|β,γ)

∂t2
. By

Lemma EC.1, we know that Ψ(t|α,β, γ,0) is a convex-concave function. Second, suppose t =

T0(β,γ), resulting in ∂2Φ(t|β,γ)

∂t2
= 0. Then, ∂2Ψ(T0(β,γ)|α,β,γ,k)

∂t2
= k ∂

2Φ(T0(β,γ)|α,γ)

∂t2
, whose sign is deter-

mined by k and ∂2Φ(T0(β,γ)|α,γ)

∂t2
. In particular, if α > β, we have T0(α,γ) < T0(β,γ). Following

Lemma EC.1, we conclude that ∂2Φ(T0(β,γ)|α,γ)

∂t2
> 0. If α < β, we have T0(α,γ) > T0(β,γ) and we

conclude that ∂2Φ(T0(β,γ)|α,γ)

∂t2
< 0.

In the following, we focus on the case when k 6= 0 and ∂2Φ(t|β,γ)

∂t2
6= 0. We rewrite (EC.2) to be

∂2Ψ(t|α,β, γ, k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·

{
∂2Φ(t|α,γ)

∂t2

∂2Φ(t|β,γ)

∂t2

− 1

k

}
. (EC.3)
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Our goal is to determine the sign of ∂2Ψ(t|α,β,γ,k)

∂t2
for any given t. We have already shown that the

component
(
∂2Φ(t|β,γ)

∂t2

)
is first negative and then positive. Below, we investigate the ratio

∂2Φ(t|α,γ)

∂t2

∂2Φ(t|β,γ)

∂t2

.

For demonstration purposes, we denote

r1(t,α,β|γ) =
∂2Φ(t|α,γ)

∂t2

∂2Φ(t|β,γ)

∂t2

=

(
α2e−αt−γ2e−γt

γ−α

)
(
β2e−βt−γ2e−γt

γ−β

) =

(
γ−β
γ−α

)(
α2e−αt− γ2e−γt

β2e−βt− γ2e−γt

)
.

First of all, we examine its monotonicity. The first-order derivative is given by

∂r1(t,α,β|γ)

∂t
=−

(β− γ)e−(α−β)t
{
α2β2(α−β) + γ2[β2(β− γ)e(α−γ)t−α2(α− γ)e(β−γ)t]

}
(α− γ)(β2− γ2e(β−γ)t)2

.

Denote r2(t,α,β|γ) = α2β2(α − β) + γ2[β2(β − γ)e(α−γ)t − α2(α − γ)e(β−γ)t]. Clearly, r2(t,α,β|γ)

plays an important role in determining the sign of the derivative ∂r1(t,α,β|γ)

∂t
. Moreover, we have

∂r2(t,α,β|γ)

∂t
= e−γt(β2eαt−α2eβt)γ2(γ−α)(γ−β) = e−γteβtβ2(e(α−β)t− α

2

β2
)γ2(γ−α)(γ−β).

(EC.4)

It is straightforward to see from (EC.4) that there exist 6 possible scenarios as below:

(a) If α> β > γ, ∂r2(t,α,β|γ)

∂t
is first negative and then positive.

(b) If α> γ > β, ∂r2(t,α,β|γ)

∂t
is first positive and then negative.

(c) If γ > α> β, ∂r2(t,α,β|γ)

∂t
is first negative and then positive.

(d) If β >α> γ, ∂r2(t,α,β|γ)

∂t
is first positive and then negative.

(e) If β > γ >α, ∂r2(t,α,β|γ)

∂t
is first negative and then positive.

(f) If γ > β >α, ∂r2(t,α,β|γ)

∂t
is first positive and then negative.

By definition, T0(α,β) is such that β2eαT0(α,β) − α2eβT0(α,β) = 0. From (EC.4), we observe that
∂r2(t,α,β|γ)

∂t
= 0 at t = T0(α,β). Given its monotonicity, we conclude that when t = T0(α,β),

r2(t,α,β|γ) reaches the lowest point in cases (a), (c) and (e); while r2(t,α,β|γ) reaches the highest

point in cases (b), (d), and (f). In addition, the sign of r2(T0(α,β), α,β|γ) follows from Lemma EC.1

and the fact that T0(α,β)<T0(β,γ) if α> γ or T0(α,β)>T0(β,γ) if α< γ. Specifically,

r2(T0(α,β), α,β|γ) = α2β2(α−β) + γ2[β2(β− γ)e(α−γ)T0(α,β)−α2(α− γ)e(β−γ)T0(α,β)]

= α2β2(α−β) + γ2[α2(β− γ)e(β−γ)T0(α,β)−α2(α− γ)e(β−γ)T0(α,β)]

= α2β2(α−β) + γ2α2(β−α)e(β−γ)T0(α,β)

= α2(α−β)[
β2

γ2
− e(β−γ)T0(α,β)]

=



> 0, in case (a)

< 0, in case (b)

> 0, in case (c)

< 0, in case (d)

> 0, in case (e)

< 0. in case (f)
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In summary, in cases (a), (c), and (e), we have shown that r2(t,α,β|γ) first decreases in t <

T0(α,β) and then increases in t≥ T0(α,β). In addition, the minimum value r2(T0(α,β), α,β|γ) is

positive. Therefore, we conclude that r2(t,α,β|γ) > 0 for t ≥ 0 in cases (a), (c) and (e). On the

other hand, in cases (b), (d), and (f), we have shown that r2(t,α,β|γ) first increases in t < T0(α,β)

and then decreases in t≥ T0(α,β). In addition, the maximum value r2(T0(α,β), α,β|γ) is negative.

Therefore, we conclude that r2(t,α,β|γ)< 0 for t≥ 0 in cases (b), (d), and (f).

Recall that

∂r1(t,α,β|γ)

∂t
=− (β− γ)e−(α−β)t

(α− γ)(β2− γ2e(β−γ)t)2
r2(t,α,β|γ).

We are able to make the following conclusion.

(a) If α > β > γ, r2(t,α,β|γ) > 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
< 0 for t ≥ 0. That is, r1(t,α,β|γ)

decreases in t;

(b) If α > γ > β, r2(t,α,β|γ) < 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
< 0 for t ≥ 0. That is, r1(t,α,β|γ)

decreases in t;

(c) If γ > α > β, r2(t,α,β|γ) > 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
< 0 for t ≥ 0. That is, r1(t,α,β|γ)

decreases in t;

(d) If β > α > γ, r2(t,α,β|γ) < 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
> 0 for t ≥ 0. That is, r1(t,α,β|γ)

increases in t;

(e) If β > γ > α, r2(t,α,β|γ) > 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
> 0 for t ≥ 0. That is, r1(t,α,β|γ)

increases in t;

(f) If γ > β > α, r2(t,α,β|γ) < 0 for t ≥ 0, then ∂r1(t,α,β|γ)

∂t
> 0 for t ≥ 0. That is, r1(t,α,β|γ)

increases in t;

In short, we have proven that r1(t,α,β|γ) decreases in t if α> β or increases in t if α< β.

Next, we explore the sign of r1(t,α,β|γ). Without loss of generality, we focus on the case that

α> β. It is straightforward to see that r1(0, α,β|γ) = α+γ
β+γ

> 0. Second, we have

r1(+∞, α,β|γ) =

(
β− γ
α− γ

)
lim
t→+∞

α2e(γ−α)t− γ2

β2e(γ−β)t− γ2
=


β−γ
α−γ , in case (a): α> β > γ

0, in case (b): α> γ > β

0, in case (c): γ > α> β

Furthermore, when α > β, we have T0(α,γ) < T0(β,γ). Since r1(t,α,β|γ) =
∂2Φ(t|α,γ)

∂t2

∂2Φ(t|β,γ)

∂t2

, by the

definitions of T0(α,γ) and T0(β,γ) as well as Lemma EC.1, we obtain that r1(t,α,β|γ) >

0 when t < T0(α,γ); r1(t,α,β|γ) = 0 at t = T0(α,γ); r1(t,α,β|γ) < 0 when T0(α,γ) < t <

T0(β,γ); and r1(t,α,β|γ) > 0 when t > T0(β,γ). Lastly, as t approaches to T0(β,γ) from the

left, we have limt↑T0(β,γ) r1(t,α,β|γ) = −∞. As t approaches to T0(β,γ) from the right, we have

limt↓T0(β,γ) r1(t,α,β|γ) = +∞.
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Figure EC.2 Demonstration of the function r1(t,α,β|γ). The subfigures on the left assume α > β and the

subfigures on the right assume α< β.
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The left column of Figure EC.2 illustrates the function r1(t,α,β|γ) when α> β. Following Equa-

tion (EC.3), in order to determine the sign of ∂2Ψ(t|α,β,γ,k)

∂t2
, we need to compare r1(t,α,β|γ) with

any given k. For ease of understanding, we denote w= 1
k

and compare r1(t,α,β|γ) with w. As sug-

gested from Figure EC.2, we identify two thresholds for w: upper threshold w̄ and lower threshold

w where

w̄=
α+ γ

β+ γ

w=

{
β−γ
α−γ , in case (a): α> β > γ

0, in case (b) and (c): α> γ > β or γ > α> β

• If w> w̄, the equation r1(t,α,β|γ) =w has only one solution at t > T0(β,γ). Let the solution

be T1. Then r1(t,α,β|γ)<w when t < T0(β,γ); r1(t,α,β|γ)>w when T0(β,γ)< t < T1; and

r1(t,α,β|γ)<w when t > T1.

• If w ≤ w, the equation r1(t,α,β|γ) = w has only one solution at t < T0(β,γ). Let the solu-

tion be T2. Then r1(t,α,β|γ)> w when t < T2; r1(t,α,β|γ)< w when T2 < t < T0(β,γ); and

r1(t,α,β|γ)>w when t > T0(β,γ).

• If w < w ≤ w̄, the equation r1(t,α,β|γ) = w has two solutions. One is at t < T0(β,γ) and is

denoted as T3. The other is at t < T0(β,γ) and is denoted as T4. Then r1(t,α,β|γ)>w when

t < T3; r1(t,α,β|γ)< w when T3 < t < T0(β,γ); r1(t,α,β|γ)> w when T0(β,γ)< t < T4; and

r1(t,α,β|γ)<w when t > T4.

Finally, recall that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·
{
r1(t,α,β|γ)− 1

k

}
and w = 1

k
by definition. In

addition, ∂2Φ(t|β,γ)

∂t2
< 0 when t < T0(β,γ); ∂2Φ(t|β,γ)

∂t2
= 0 when t = T0(β,γ); and ∂2Φ(t|β,γ)

∂t2
> 0 when

t > T0(β,γ). From the above analysis, we make the following conclusion:

• If k < 0, which implies that w < w, we conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·{

r1(t,α,β|γ)− 1
k

}
is positive when t < T2; it is zero when t = T2; and it is negative when

t > T2. Thus, Ψ(t|α,β, γ, k) is convex-concave.

• If k= 0, as mentioned at the beginning of the proof, ∂
2Ψ(t|α,β,γ,k)

∂t2
= k ∂

2Φ(t|α,γ)

∂t2
is convex-concave.

• If 0 < k < β+γ
α+γ

, which implies that w ≥ w̄, we conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·{

r1(t,α,β|γ)− 1
k

}
is positive when t < T1; it is zero when t = T1; and it is negative when

t > T1. Thus, Ψ(t|α,β, γ, k) is convex-concave.

• If k = β+γ
α+γ

, which implies that w = w̄, we conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·{

r1(t,α,β|γ)− 1
k

}
is zero when t = 0; it is positive when 0 < t < T1; it is zero again when

t= T1; and it is negative when t > T1. Thus, Ψ(t|α,β, γ, k) is still convex-concave.

So far, we have shown that when k ≤ β+γ
α+γ

, Ψ (t|α,β, γ, k) is convex-concave. Next, we consider

the case that k > β+γ
α+γ

.
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• When β < γ, we have w = 0. In this case, if k > β+γ
α+γ

, which implies that w < w < w̄, we

conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·
{
r1(t,α,β|γ)− 1

k

}
is zero at t= T3 and t= t4; it is

negative when t < T3; it is positive when T3 < t< T4; and it is negative when t > T4. Therefore,

Ψ(t|α,β, γ, k) is concave-convex-concave.

When β > γ, we have w= β−γ
α−γ . In addition, β+γ

α+γ
< α−γ

β−γ . There exists a k satisfying β+γ
α+γ

<k < α−γ
β−γ .

• If β+γ
α+γ

<k < α−γ
β−γ , which implies that w<w< w̄, we conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·{

r1(t,α,β|γ)− 1
k

}
is zero at t= T3 and t= t4; it is negative when t < T3; it is positive when

T3 < t< T4; and it is negative when t > T4. Therefore, Ψ(t|α,β, γ, k) is concave-convex-concave.

• If k ≥ α−γ
β−γ , which implies that w ≤ w, we conclude that ∂2Ψ(t|α,β,γ,k)

∂t2
= k

(
∂2Φ(t|β,γ)

∂t2

)
·{

r1(t,α,β|γ)− 1
k

}
is negative when t < T2 and is positive when t > T2. That is, Ψ(t|α,β, γ, k)

is a concave-convex function.

To wrap up, when α> β, we define two thresholds for k to be

k=
β+ γ

α+ γ
and k=

{
α−γ
β−γ , β > γ,

+∞, β < γ.

When k ≤ k, Ψ (t|α,β, γ, k) is convex-concave function. When k ≥ k, Ψ (t|α,β, γ, k) is concave-

convex function. When k < k < k, Ψ (t|α,β, γ, k) is concave-convex-concave function.

We can apply a similar proof for the case that α< β. The right column of Figure EC.2 displays

the function r1(t,α,β|γ) when α< β. Similarly as above, when α< β, we define two thresholds for

k to be

k=

{
α−γ
β−γ , if α> γ

0, if α< γ
and k=

β+ γ

α+ γ

When k ≤ k, Ψ (t|α,β, γ, k) is convex-concave function. When k ≥ k, Ψ (t|α,β, γ, k) is concave-

convex function. When k < k < k, Ψ (t|α,β, γ, k) is convex-concave-convex function. Q.E.D.

Lemma EC.3. Consider α, β, γ be three (different) positive parameters, t≥ 0, and k be arbitrary

real numbers.

(1) Suppose α> β. Recall k=

{
α−γ
β−γ , β > γ,

+∞, β < γ.

(1.1) When k≤ 1, Ψ(t|α,β, γ, k) decreases and then increases in t.

(1.2) When 1<k < k, Ψ(t|α,β, γ, k) increases, then decreases, and finally increases in t.

(1.3) When k≥ k, Ψ(t|α,β, γ, k) increases and then decreases in t.

(2) Suppose α< β. Recall k=

{
α−γ
β−γ , if α> γ.

0, if α< γ.

(2.1) When k≤ k, Ψ(t|α,β, γ, k) decreases and then increases in t.

(2.2) When k < k < 1, Ψ(t|α,β, γ, k) decreases, then increases, and finally decreases in t.
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(2.3) When k≥ 1, Ψ(t|α,β, γ, k) increases and then decreases in t.

Proof. We examine the first-order derivative ∂Ψ(t|α,β,γ,k)

∂t
that is given by

∂Ψ(t|α,β, γ, k)

∂t
= k

∂Φ(t|α,γ)

∂t
− ∂Φ(t|β,γ)

∂t
= k

αe−αt− γe−γt

α− γ
− βe

−βt− γe−γt

β− γ
. (EC.5)

Suppose k= 0. Then ∂Ψ(t|α,β,γ,k)

∂t
=−∂Φ(t|β,γ)

∂t
. Following Lemma EC.1, Ψ(t|α,β, γ, k) first decreases

and then increases in t. In the following, we focus on the case that k 6= 0. First, we have ∂Ψ(0|α,β,γ,k)

∂t
=

k− 1. Hence, ∂Ψ(0|α,β,γ,k)

∂t
=

{
≥ 0, k≥ 1

< 0, k < 1
.

Next, we determine the sign of ∂Ψ(t|α,β,γ,k)

∂t
when t is sufficiently large. When ∂Φ(t|β,γ)

∂t
6= 0, we can

rewrite (EC.5) to be

∂Ψ(t|α,β, γ, k)

∂t
= k

(
∂Φ(t|β,γ)

∂t

)
·

{
∂Φ(t|α,γ)

∂t
∂Φ(t|β,γ)

∂t

− 1

k

}

= k

(
βe−βt− γe−γt

β− γ

){
(β− γ)

(α− γ)
· (αe

−αt− γe−γt)
(βe−βt− γe−γt)

− 1

k

}
= k

(
βe−βt− γe−γt

β− γ

){
α(β− γ)

β(α− γ)
·
(e−(α−γ)t− γ

α
)

(e−(β−γ)t− γ
β
)
− 1

k

}
.

Lemma EC.1 indicates that ∂Φ(t|β,γ)

∂t
= βe−βt−γe−γt

β−γ is first positive and then negative. Thus,(
βe−βt−γe−γt

β−γ

)
must be negative when t is sufficiently large. Then we consider the ratio α(β−γ)

β(α−γ)
·

(e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
. We have the following result:

lim
t→∞

α(β− γ)

β(α− γ)
·
(e−(α−γ)t− γ

α
)

(e−(β−γ)t− γ
β
)

=



(β−γ)

(α−γ)
, if α> β > γ

0, if α> γ > β

0, if γ > α> β
(β−γ)

(α−γ)
, if β >α> γ

+∞, if β > γ >α

+∞. if γ > β >α

We start with the case when α > β. Recall that in this case, we defined k = β+γ
α+γ

and k ={
α−γ
β−γ , β > γ,

+∞, β < γ.
. From above, we have

lim
t→∞

{
α(β− γ)

β(α− γ)
·
(e−(α−γ)t− γ

α
)

(e−(β−γ)t− γ
β
)
− 1

k

}
=

{
(β−γ)

(α−γ)
− 1

k
, β > γ

0− 1
k
. β < γ

As a result, when k < 0, limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
> 0, implying that{

α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
is positive when t is sufficiently large. When 0 < k < k,

limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
< 0, implying that

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
is negative
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when t is sufficiently large. When k ≥ k, limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
≥ 0, implying that{

α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
is positive when t is sufficiently large.

Since Ψ(t|α,β,γ,k)

∂t
= k

(
∂Φ(t|β,γ)

∂t

){
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
and

(
∂Φ(t|β,γ)

∂t

)
is negative when t is

sufficiently large, we conclude that when t is sufficiently large, Ψ(t|α,β,γ,k)

∂t
is negative if k≥ k while

Ψ(t|α,β,γ,k)

∂t
is positive if k < k.

So far, we have examined the sign of Ψ(0|α,β,γ,k)

∂t
and limt→∞

Ψ(t|α,β,γ,k)

∂t
. Below, to determine the

sign of Ψ(t|α,β,γ,k)

∂t
for any t, we combine the results with the convexity and concavity results in

Lemma EC.2. We identify four possible scenarios, as illustrated in Figure EC.3.

(a1) When k≤ k, Ψ(t|α,β, γ, k) is convex-concave. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k−1< 0 since k≤ k=

β+γ
α+γ

< 1, and limt→∞
∂Ψ(t|α,β,γ,k)

∂t
> 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the

x-axis only once. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first negative, increases in t, then becomes

positive, finally decreases in t but stays positive. That is, when k ≤ k, Ψ(t|α,β, γ, k) first

decreases and then increases in t.

(a2) When k < k < 1, Ψ(t|α,β, γ, k) is concave-convex-concave since we have k > 1. In addition,
∂Ψ(0|α,β,γ,k)

∂t
= k−1< 0, and limt→∞

∂Ψ(t|α,β,γ,k)

∂t
> 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t

crosses the x-axis only once. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first negative, decreases in t, then

increases in t, becomes positive, and finally decreases in t but stays positive. That is, when

k < k < 1, Ψ(t|α,β, γ, k) first decreases and then increases in t.

(a3) When 1≤ k < k, Ψ(t|α,β, γ, k) is concave-convex-concave. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k−1≥ 0,

and limt→∞
∂Ψ(t|α,β,γ,k)

∂t
> 0. Furthermore, when α> β, we have T0(α,γ)< T0(β,γ). Following

Lemma EC.1, ∂Φ(t|α,γ)

∂t
> 0 when t < T0(α,γ)

2
and ∂Φ(t|α,γ)

∂t
< 0 when t > T0(α,γ)

2
; while ∂Φ(t|β,γ)

∂t
> 0

when t < T0(β,γ)

2
and ∂Φ(t|β,γ)

∂t
< 0 when t > T0(β,γ)

2
. Therefore, for T0(α,γ)

2
< t< T0(β,γ)

2
and k≥ 1,

we obtain ∂Ψ(t|α,β,γ,k)

∂t
= k ∂Φ(t|α,γ)

∂t
− ∂Φ(t|β,γ)

∂t
< 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t

crosses the x-axis twice. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first positive, decreases in t, becomes

negative, then increases in t, becomes positive, finally decreases in t but stays positive. That

is, when 1≤ k < k, Ψ(t|α,β, γ, k) first increases, then decreases in t, and finally increases in t.

(a4) When k ≥ k, Ψ(t|α,β, γ, k) is concave-convex. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k − 1 > 0, and

limt→∞
∂Ψ(t|α,β,γ,k)

∂t
< 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the x-axis only

once. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first positive, decreases in t, then becomes negative,

finally increases in t but stays negative. That is, when k≥ k, Ψ(t|α,β, γ, k) first increases and

then decreases in t.

To sum up, when α> β, Ψ (t|α,β, γ, k) decreases and then increases in t if k≤ 1; Ψ(t|α,β, γ, k)

increases, then decreases, and finally increases in t if 1< k < k; Ψ (t|α,β, γ, k) increases and then

decreases in t if k≥ k. An illustration of the function Ψ(t|α,β, γ, k) can be found in Figure EC.5.
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Figure EC.3 Demonstration of the derivative ∂Ψ(t|α,β,γ,k)
∂t

when α= 3> β = 2, and γ = 1. Then k = β+γ
α+γ

= 3/4

and k= α−γ
β−γ = 2.

Next, we consider the case when α< β. Recall that in this case, we defined k=

{
α−γ
β−γ , if α> γ

0, if α< γ

and k= β+γ
α+γ

. Since we have

lim
t→∞

{
α(β− γ)

β(α− γ)
·
(e−(α−γ)t− γ

α
)

(e−(β−γ)t− γ
β
)
− 1

k

}
=

{
(β−γ)

(α−γ)
, α > γ

(+∞)− 1
k
. α < γ

By similar analysis as above, we achieve that when k < 0, limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
>

0. When 0 < k < k, limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
< 0. When k ≥ k,

limt→∞

{
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
≥ 0.

Therefore, we conclude that when t is sufficiently large, the first-order derivative Ψ(t|α,β,γ,k)

∂t
=

k
(
∂Φ(t|β,γ)

∂t

){
α(β−γ)

β(α−γ)
· (e−(α−γ)t− γα )

(e−(β−γ)t− γβ )
− 1

k

}
is positive if k≤ k while Ψ(t|α,β,γ,k)

∂t
is negative if k > k.

Lastly, we combine the results about Ψ(0|α,β,γ,k)

∂t
and limt→∞

Ψ(t|α,β,γ,k)

∂t
with Lemma EC.2. Again,

there exist four scenarios, as illustrated in Figure EC.4.

(b1) When k≤ k, Ψ(t|α,β, γ, k) is convex-concave. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k−1< 0 as k≤ k < 1,

and limt→∞
∂Ψ(t|α,β,γ,k)

∂t
> 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the x-axis only
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once. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first positive, finally stay negative, then increases in t and

becomes positive, finally decreases in t but stays positive. That is, when k≤ k, Ψ(t|α,β, γ, k)

first decreases and then increases in t.

(b2) When k < k < 1, Ψ(t|α,β, γ, k) is convex-concave-convex since k >. In addition, ∂Ψ(0|α,β,γ,k)

∂t
=

k−1< 0, and limt→∞
∂Ψ(t|α,β,γ,k)

∂t
< 0. Furthermore, note that when α< β, we have T0(α,γ)>

T0(β,γ). Following Lemma EC.1, for T0(β,γ)

2
< t < T0(α,γ)

2
and 0 ≤ k < k < 1, we obtain

∂Ψ(t|α,β,γ,k)

∂t
= k ∂Φ(t|α,γ)

∂t
− ∂Φ(t|β,γ)

∂t
> 0. Thus, the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the x-axis twice.

We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first negative, increases in t, becomes positive, then decreases

in t, becomes negative, finally increases in t but stays negative. That is, when k < k < 1,

Ψ(t|α,β, γ, k) first decreases, then increases, and finally decreases in t.

(b3) When 1≤ k < k, Ψ(t|α,β, γ, k) is convex-concave-convex. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k− 1≥ 0,

and limt→∞
∂Ψ(t|α,β,γ,k)

∂t
< 0. Thus, the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the x-axis only once. We

conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first positive, increases in t, then decreases in t, becomes negative,

finally increases in t but stays negative. That is, when 1≤ k < k, Ψ(t|α,β, γ, k) first increases,

and then decreases in t.

(b4) When k ≥ k, Ψ(t|α,β, γ, k) is concave-convex. In addition, ∂Ψ(0|α,β,γ,k)

∂t
= k − 1 > 0, and

limt→∞
∂Ψ(t|α,β,γ,k)

∂t
< 0. These imply that the derivative ∂Ψ(t|α,β,γ,k)

∂t
crosses the x-axis only

once. We conclude that ∂Ψ(t|α,β,γ,k)

∂t
is first positive, decreases in t, then becomes negative,

finally increases in t but stays negative. That is, when k≥ k, Ψ(t|α,β, γ, k) first increases, and

then decreases in t.

To sum up, when α< β, Ψ (t|α,β, γ, k) decreases and then increases in t if k≤ k; Ψ (t|α,β, γ, k)

decreases, then increases, and finally decreases in t if k < k < 1; Ψ(t|α,β, γ, k) increases and then

decreases in t if k≥ 1. The function Ψ(t|α,β, γ, k) is illustrated in Figure EC.6. Q.E.D.

Lemma EC.2 states the convexity/concavity of Ψ(t|α,β, γ, k) and Lemma EC.3 indicates the

monotonicity of Ψ(t|α,β, γ, k). Let T ′1 (α,β, γ, k) and T ′2 (α,β, γ, k) be the stationary points of

Ψ(t|α,β, γ, k) when there are two points, and T ′2 (α,β, γ, k) be the unique stationary point when

there is only one stationary point. Let T1 (α,β, γ, k) and T2 (α,β, γ, k) be the inflection points of

Ψ(t|α,β, γ, k) when there are two points, and T2 (α,β, γ, k) be the unique inflection point when

there is only one inflection point. For simplicity, we will use T ′1, T2’ , T1, and T2 instead. Figure EC.5

and Figure EC.6 demonstrate the function Ψ(t|α,β, γ, k) when α> β and when α< β, respectively.

Then we prove Corollary EC.1.

Corollary EC.1. Consider α, β, γ be three (different) positive parameters, t ≥ 0, and k be

arbitrary real numbers.
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Figure EC.4 Demonstration of the derivative ∂Ψ(t|α,β,γ,k)
∂t

when α= 2< β = 3, and γ = 1. Then k = α−γ
β−γ = 1/2

and k= β+γ
α+γ

= 4/3.

(1) When k ≤ k, Ψ(t|α,β, γ, k) is a convex-concave function, which decreases and then increases

in t. We have T ′2 <T2.

(2) When k < k≤ 1,

(2.1) Suppose α> β, Ψ(t|α,β, γ, k) is a concave-convex-concave function, which decreases and

then increases in t. We have T1 <T
′
2 <T2.

(2.2) Suppose α < β, Ψ(t|α,β, γ, k) is a convex-concave-convex function. Ψ(t|α,β, γ, k)

decreases, then increases, and finally decreases in t. We have T ′1 <T1 <T
′
2 <T2.

(3) When 1<k < k,

(3.1) Suppose α > β, Ψ(t|α,β, γ, k) is a concave-convex-concave function. Ψ(t|α,β, γ, k)

increases, then decreases, and finally increases in t. We have T ′1 <T1 <T
′
2 <T2.

(3.2) Suppose α < β, Ψ(t|α,β, γ, k) is a convex-concave-convex function. Ψ(t|α,β, γ, k)

increases and then decreases in t. We have T1 <T
′
2 <T2.

(4) When k ≥ k, Ψ(t|α,β, γ, k) is a concave-convex function, which increases and then decreases

in t. We have T ′2 <T2.

Proof. The proof follows Lemma EC.2 and Lemma EC.3. Q.E.D.
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Figure EC.5 Demonstration of the function Ψ(t|α,β, γ, k) when α= 3> β = 2, and γ = 1. Then k = β+γ
α+γ

= 3/4

and k= α−γ
β−γ = 2.

In the following lemma, we prove the relationship between structure and the property of function

Ψ(t|, α,β, γ, k) in the proportional reward case.

Lemma EC.4. In the proportional reward case, Ψ(t|, α,β, γ, k) and the optimal structure has

the following relationship:

(i) If Ψ(t|, α,β, γ, k) is convex t ∈ [t̄a, t̄b], where t̄a < t̄b, in the optimal schedule, elements within[
(T − t̄b)+

, (T − t̄a)+
]

are in a diminuendo subsequence.

(ii) If Ψ(t|, α,β, γ, k) is concave for t ∈ [t̄a, t̄b], where t̄a < t̄b, in the optimal schedule, elements

within
[
(T − t̄b)+

, (T − t̄a)+
]

are in a crescendo subsequence.

(iii) If Ψ(t|, α,β, γ, k) is convex for t∈ [t̄a, t̄b] and concave for t∈ [t̄b, Tc], where t̄a < t̄b <Tc, in the

optimal schedule if there is a game element π∗(i) start before but end after (T − t̄b)+
, then we

have r∗(i) ≥min
{
r∗(i−1), r∗(i+1)

}
.
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Figure EC.6 Demonstration of the function Ψ(t|α,β, γ, k) when α= 2< β = 3, and γ = 1. Then k = α−γ
β−γ = 1/2

and k= β+γ
α+γ

= 4/3.

(iv) If Ψ(t|, α,β, γ, k) is concave in t ∈ [t̄a, t̄b] and convex in t ∈ [t̄b, Tc], where t̄a < t̄b < Tc, in the

optimal schedule if there is a game element π∗(i) start before but end after (T − t̄b)+
, then we

have r∗(i) ≤max
{
r∗(i−1), r∗(i+1)

}
.

Proof of Lemma EC.4. We use an interchange argument to prove this proposition. Let S∗ be the
satisfaction obtained from the optimal schedule π∗, and let S∗i be the satisfaction obtained by
interchanging game element π(i− 1)∗ and game element π(i)∗ in the optimal schedule. We have

S∗−S∗
i = (d(i−1)∗ − d(i)∗ ) ((Ψ(t̄i + τπ(i−1)∗ |α,β, γ, k)−Ψ (t̄i+1 + τπ(i−1)∗ |α,β, γ, k))− (Ψ (t̄i|α,β, γ, k)−Ψ (t̄i+1|α,β, γ, k))) .

(EC.6)

(i) When Ψ(t|α,β, γ, k) is convex for t∈ [t̄a, t̄b], and both game element π(i−1)∗ and game element

π(i)∗ start and finish within
[
(T − t̄b)+

, (T − t̄a)+
]
.

As Ψ
′
(t|α,β, γ, k) is increasing for t ∈ [t̄a, t̄b], we have Ψ(t̄i|α,β, γ, k) − Ψ(t̄i+1|α,β, γ, k) ≤

Ψ
(
t̄i + τπ(i−1)∗ |α,β, γ, k

)
−Ψ

(
t̄i+1 + τπ(i−1)∗ |α,β, γ, k

)
. By the optimality S∗− S∗i ≥ 0 and (EC.6),

we have d(i−1)∗ ≥ d(i)∗ .

(ii) When Ψ(t|α,β, γ, k) is concave for t ∈ [t̄a, t̄b], and both game element π(i− 1)∗ and game

element π(i)∗ start and finish within
[
(T − t̄b)+

, (T − t̄a)+
]
.
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As Ψ
′
(t|α,β, γ, k) is decreasing for t ∈ [t̄a, t̄b], we have Ψ(t̄i|α,β, γ, k) − Ψ(t̄i+1|α,β, γ, k) ≥

Ψ
(
t̄i + τπ(i−1)∗ |α,β, γ, k

)
−Ψ

(
t̄i+1 + τπ(i−1)∗ |α,β, γ, k

)
. By the optimality, S∗−S∗i ≥ 0 and (EC.6),

we have d(i−1)∗ ≤ d(i)∗ .

(iii) When Ψ(t|α,β, γ, k) is convex for t∈ [t̄a, t̄b] and concave for t∈ [t̄b, Tc], a game element π∗(i)

starting before and finishing after (T − t̄b)+
exists in the optimal schedule, where 1 < i < n. Let

S∗i+1 be the satisfaction obtained by interchanging game element π(i)∗ and game element π(i+1)∗;

then, we have

S∗−S∗
i+1 = (d(i)∗ − d(i+1)∗ ) ((Ψ(t̄i+1 + τπ(i)∗ |α,β, γ, k)−Ψ (t̄i+2 + τπ(i)∗ |α,β, γ, k))− (Ψ (t̄i+1|α,β, γ, k)−Ψ (t̄i+2|α,β, γ, k))) .

(EC.7)

Suppose otherwise that d(i−1)∗ > d(i)∗ and d(i)∗ < d(i+1)∗ , by optimality S∗ − S∗i ≥ 0 and

S∗ − S∗i+1 ≥ 0, and by (EC.6), (EC.7) there must be Ψ(t̄i|α,β, γ, k) − Ψ(t̄i+1|α,β, γ, k) ≤
Ψ
(
t̄i + τπ(i−1)∗ |α,β, γ, k

)
− Ψ

(
t̄i+1 + τπ(i−1)∗ |α,β, γ, k

)
and Ψ(t̄i+1) − Ψ(t̄i+2|α,β, γ, k) ≥

Ψ
(
t̄i+1 + τπ(i)∗ |α,β, γ, k

)
−Ψ

(
t̄i+2 + τπ(i)∗ |α,β, γ, k

)
. This contradicts the fact that Ψ

′
(t|α,β, γ, k)

is increasing for t ∈ [t̄a, t̄b] and Ψ
′
(t|α,β, γ, k) is decreasing for t ∈ [t̄b, Tc]. Therefore, d∗(i) ≥

min
{
d∗(i−1), d∗(i+1)

}
.

(iv) When Ψ(t|α,β, γ, k) is concave for t∈ [t̄a, t̄b] and convex for t∈ [t̄b, Tc], a game element π∗(i)

starting before and finishing after (T − t̄b)+
exists in the optimal schedule, where 1 < i < n. Let

S∗i+1 be the satisfaction obtained by interchanging game element π(i)∗ and game element π(i+1)∗;

then we can also derive (EC.7).

Suppose otherwise that d(i−1)∗ < d(i)∗ and d(i)∗ > d(i+1)∗ , by optimality S∗ −
S∗i ≥ 0 and S∗ − S∗i+1 ≥ 0, and by (EC.6), (EC.7) there must be Ψ(t̄i|α,β, γ, k) −
Ψ(t̄i+1|α,β, γ, k)≥Ψ

(
t̄i + τπ(i−1)∗ |α,β, γ, k

)
−Ψ

(
t̄i+1 + τπ(i−1)∗ |α,β, γ, k

)
and Ψ(t̄i+1)−Ψ(t̄i+2)≤

Ψ
(
t̄i+1 + τπ(i)∗ |α,β, γ, k

)
−Ψ

(
t̄i+2 + τπ(i)∗ |α,β, γ, k

)
. This contradicts the fact that Ψ

′
(t|α,β, γ, k)

is decreasing for t ∈ [t̄a, t̄b] and Ψ
′
(t|α,β, γ, k) is increasing for t ∈ [t̄b, Tc]. Therefore, d∗(i) ≤

max
{
d∗(i−1), d∗(i+1)

}
. Q.E.D.

Proof of Theorem 1. We consider four situations to prove the proposition. By Lemma EC.2,

function Ψ(t|α,β, γ, k) is concave-convex with inflection point T2 when k≤ k; convex-concave with

inflection point T2 when k > k; concave-convex-concave with inflection points T1 and T2 when α> β

and k < k≤ k; convex-concave-convex with inflection points T1 and T2 when α< β and k < k≤ k.

(i) When k ≤ k, Ψ (t|α,β, γ, k) is convex for t ∈ [0, T2] and concave for t ∈ [T2,+∞]. By

Lemma EC.4, elements in
[
0, (T −T2)

+
]

are in a crescendo subsequence , and elements in[
(T −T2)

+
, T
]

are in a diminuendo subsequence . If there is a game element i starting before and

ending after T2, then we have d∗(i) ≥min
{
d∗(i−1), d∗(i+1)

}
. Therefore, the optimal structure is an

inverted U-shaped sequence.
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(ii) When k < k ≤ k and α > β, Ψ (t|α,β, γ, k) is concave for t ∈ [0, T1], convex for t ∈ [T1, T2],

and concave for t ∈ [T2,+∞]. By Lemma EC.4, elements in
[
0, (T −T1)

+
]

are in a crescendo

subsequence , elements in
[
(T −T1)

+
, (T −T2)

+
]

are in a diminuendo subsequence , and elements

in
[
(T −T2)

+
, T
]

are in a crescendo subsequence . If there is a game element i starting before and

ending after T1, then we have d∗(i) ≥min
{
d∗(i−1), d∗(i+1)

}
. If there is a game element j starting

before and ending after T2, then we have d∗(j) ≤ max
{
d∗(j−1), d∗(j+1)

}
. Therefore, the optimal

structure is a N-shaped sequence.

(iii) When k < k ≤ k and α < β, Ψ (t|α,β, γ, k) is convex for t ∈ [0, T1], concave for t ∈ [T1, T2],

and convex for t ∈ [T2,+∞]. By Lemma EC.4, elements in
[
0, (T −T1)

+
]

are in a diminuendo

subsequence , elements in
[
(T −T1)

+
, (T −T2)

+
]

are in a crescendo subsequence , and elements in[
(T −T2)

+
, T
]

are in a diminuendo subsequence . If there is a game element i starting before and

ending after T1, then we have d∗(i) ≤max
{
d∗(i−1), d∗(i+1)

}
. If there is a game element j starting

before and ending after T2, then we have d∗(j) ≥ min
{
d∗(j−1), d∗(j+1)

}
. Therefore, the optimal

structure is an inverted N-shaped sequence.

(iv) When k > k, Ψ (t|α,β, γ, k) is concave for t ∈ [0, T2] and convex for t ∈ [T2,+∞]. By

Lemma EC.4, elements in
[
0, (T −T2)

+
]

are in a diminuendo subsequence, and elements in[
(T −T2)

+
, T
]

are in a crescendo subsequence . If there is a game element i starting before and

ending after T2, then we have d∗(i) ≤max
{
d∗(i−1), d∗(i+1)

}
. Therefore, the optimal structure is a

U-shaped sequence. Q.E.D.

Proof of Theorem 2. The proof follows Theorem 1 with the situation when T < T2. Q.E.D.

Proof of Corollary 1. By the definition of k in ??, when α > β and β > γ, k = β−γ
α−γ and k = α+γ

β+γ
,

we have k < 1< k; when α> β and β < γ, k = 0 and k = α+γ
β+γ

, we have k < 1< k; when α< β and

α> γ, k = α+γ
β+γ

and k = β−γ
α−γ , we have k < 1< k; when α< β and α> γ, k = α+γ

β+γ
and k = +∞, we

have k < 1<k.

To sum up, k < 1<k for α,β, γ > 0 and α 6= β 6= γ. By Theorem 1, we have the optimal sequence

is N-shaped when α> β and inverted N-shaped when β >α. Q.E.D.

Proof of Theorem 3. Before we proceed with our detailed proof, we remark that this result can be

seen as a corollary of Proposition 1 in Das Gupta et al. (2016). (i) When the difficulties are fixed,

the disutility introduced by the difficulty is a constant (i.e., dΦ(T, |β,γ)). The only decision is the

schedule of the reward, which makes it equivalent as the service provider’s design problem (SPDP)

in Das Gupta et al. (2016). (ii) When the rewards are fixed, the utility introduced by the reward

is a constant (i.e., rΦ(T, |α,γ)). The only decision is the schedule of the difficulty, which makes

the problem share same formulation as the SPDP, but a minimization rather than a maximization

problem. By Proposition 1 of the Das Gupta et al. (2016), we can then prove the Theorem 3.
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We use an interchange argument to prove this proposition. Let S∗ be the satisfaction obtained

from the optimal schedule π∗, and let S∗i be the satisfaction obtained by interchanging game

element π(i− 1)∗ and game element π(i)∗ in the optimal schedule. We prove the proposition by

the situations when the difficulties are fixed and the reward are fixed, respectively.

(i) When the difficulties are fixed (i.e., di = d)

By (13), as dΦ(T |β,γ) is a constant with given parameters d,T,β, γ, we have

S∗−S∗i =
(
d(i−1)∗ − d(i)∗

) ((
Φ
(
t̄i + τπ(i−1)∗ |α,γ

)
−Φ

(
t̄i+1 + τπ(i−1)∗ |α,γ

))
− (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))

)
.

(EC.8)

We consider three cases to prove the proposition.

Case (ia): Both game element π(i − 1)∗ and game element π(i)∗ start and finish within[
0, (T −T0 (α,γ))

+
]
. As Φ

′
(t|α,γ) is increasing for t ∈ [min{T0 (α,γ) , T} , T ], we have

Φ(t̄i|α,γ) − Φ(t̄i+1|α,γ) ≤ Φ
(
t̄i + τπ(i−1)∗ |α,γ

)
− Φ

(
t̄i+1 + τπ(i−1)∗ |α,γ

)
. By the optimality

S∗−S∗i ≥ 0 and (EC.6), we have r(i−1)∗ ≥ r(i)∗ .

Case (ib): A game element π∗(i) starting before and finishing after (T −T0 (α,γ))
+

exists in the optimal

schedule, where 1< i< n. Let S∗i+1 be the satisfaction obtained by interchanging game element

π(i)∗ and game element π(i+ 1)∗; then, we have

S∗−S∗i+1 =
(
r(i)∗ − r(i+1)∗

) ((
Φ
(
t̄i+1 + τπ(i)∗ |α,γ

)
−Φ

(
t̄i+2 + τπ(i)∗ |α,γ

))
− (Φ(t̄i+1|α,γ)−Φ(t̄i+2|α,γ))

)
.

(EC.9)

Suppose otherwise that r(i−1)∗ < r(i)∗ and r(i)∗ > r(i+1)∗ , by optimality S∗ −

S∗i ≥ 0 and S∗ − S∗i+1 ≥ 0, and by (EC.8), (EC.9) there must be Φ(t̄i|α,γ) −

Φ(t̄i+1|α,γ) ≥ Φ
(
t̄i + τπ(i−1)∗ |α,γ

)
− Φ

(
t̄i+1 + τπ(i−1)∗ |α,γ

)
and Φ(t̄i+1|α,γ)− Φ(t̄i+2|α,γ) ≤

Φ
(
t̄i+1 + τπ(i)∗ |α,γ

)
−Φ

(
t̄i+2 + τπ(i)∗ |α,γ

)
. This contradicts the fact that Φ

′
(t|α,γ) is increas-

ing for t ∈ [min{T0 (α,γ) , T} , T ] and Ψ
′
(t|α,γ) is decreasing for t ∈ [0,min{T0 (α,γ) , T}].

Therefore, r∗(i) ≤max
{
r∗(i−1), r∗(i+1)

}
.

Case (ic): Both game element π(i − 1)∗ and game element π(i)∗ start and finish within[
(T −T0 (α,γ))

+
, T
]
. As Φ

′
(t|α,γ) is decreasing for t ∈ [0,min{T0 (α,γ) , T}], we have

Φ(t̄i|α,γ) − Φ(t̄i+1|α,γ) ≥ Φ
(
t̄i + τπ(i−1)∗ |α,γ

)
− Φ

(
t̄i+1 + τπ(i−1)∗ |α,γ

)
. By the optimality

S∗−S∗i ≥ 0 and (EC.6), we have r(i−1)∗ ≤ r(i)∗ .

(ii) When the rewards are fixed (i.e., ri = r)

By (14), as uΦ(T |α,γ) is a constant with given parameters u,T,α, γ, we have

S∗−S∗i =
(
d(i−1)∗ − d(i)∗

) (
(Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ))−

(
Φ
(
t̄i + τπ(i−1)∗ |β,γ

)
−Φ

(
t̄i+1 + τπ(i−1)∗ |β,γ

)))
.

(EC.10)

We consider three cases to prove the proposition.
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Case (iia): Both game element π(i − 1)∗ and game element π(i)∗ start and finish within[
0, (T −T0 (β,γ))

+
]
. As Φ

′
(t|β,γ) is increasing for t ∈ [min{T0 (β,γ) , T} , T ], we have

Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)≤Φ
(
t̄i + τπ(i−1)∗ |β,γ

)
−Φ

(
t̄i+1 + τπ(i−1)∗ |β,γ

)
. By the optimality S∗−

S∗i ≥ 0 and (EC.6), we have d(i−1)∗ ≤ d(i)∗ .

Case (iib): A game element π∗(i) starting before and finishing after (T −T0 (β,γ))
+

exists in the optimal

schedule, where 1< i< n. Let S∗i+1 be the satisfaction obtained by interchanging game element

π(i)∗ and game element π(i+ 1)∗; then, we have

S∗−S∗i+1 =
(
d(i)∗ − d(i+1)∗

) (
(Φ(t̄i+1|β,γ)−Φ(t̄i+2|β,γ))−

(
Φ
(
t̄i+1 + τπ(i)∗ |β,γ

)
−Φ

(
t̄i+2 + τπ(i)∗ |β,γ

)))
.

(EC.11)

Suppose otherwise that d(i−1)∗ > d(i)∗ and d(i)∗ < d(i+1)∗ , by optimality S∗ − S∗i ≥
0 and S∗ − S∗i+1 ≥ 0, and by (EC.10), (EC.11) there must be Φ(t̄i|β,γ) −
Φ(t̄i+1|β,γ) ≥ Φ

(
t̄i + τπ(i−1)∗ |β,γ

)
− Φ

(
t̄i+1 + τπ(i−1)∗ |β,γ

)
and Φ(t̄i+1|β,γ) − Φ(t̄i+2|β,γ) ≤

Φ
(
t̄i+1 + τπ(i)∗ |β,γ

)
−Φ

(
t̄i+2 + τπ(i)∗ |β,γ

)
. This contradicts the fact that Φ

′
(t|β,γ) is increas-

ing for t ∈ [min{T0 (β,γ) , T} , T ] and Ψ
′
(t|β,γ) is decreasing for t ∈ [0,min{T0 (β,γ) , T}].

Therefore, r∗(i) ≤max
{
r∗(i−1), r∗(i+1)

}
.

Case (ic): Both game element π(i − 1)∗ and game element π(i)∗ start and finish within[
(T −T0 (β,γ))

+
, T
]
. As Φ

′
(t|β,γ) is decreasing for t ∈ [0,min{T0 (β,γ) , T}], we have

Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ)≥Φ
(
t̄i + τπ(i−1)∗ |β,γ

)
−Φ

(
t̄i+1 + τπ(i−1)∗ |β,γ

)
. By the optimality S∗−

S∗i ≥ 0 and (EC.6), we have r(i−1)∗ ≥ r(i)∗ .

In summary, the following applies in the optimal schedule of this situation: (i) Elements are in

a U-shaped sequence of rewards when the difficulties are fixed. (ii) Elements are in an inverted

U-shaped sequence of difficulties when the rewards are fixed. Q.E.D.

Appendix B: Mathematical Expressions of the Optimal Structures

Table EC.1 summarizes the expressions of the optimal structure of the level design problem with

proportional reward. As reward is proportional to difficulty, the difficulty sequence and reward

sequence reveal the same structural properties. LDPP and LDPPR share the same structural

properties. Table EC.2 summarizes the optimal structure of the level design problem with general

reward.

Appendix C: Integer Programming Formulation of the LDP

The LDP defined in (12) is an integer optimization problem, but it may not be straightforward

to see this because we need to enumerate all the feasible sequences. In this section, we present an

alternative formulation of the LDP with a clearer integer optimization program structure.

We still use the integer decision variable π in (12). In addition, let π−1(i) denote the position

of game element i in schedule π, such that π−1(π(i)) = i. Furthermore, we introduce an assistant
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Table EC.1 Mathematical Expressions of the Optimal Structures with Proportional Reward Scheme

Structure Mathematical Expression

Crescendo sequence d(1) ≤ · · · ≤ d(n).
Diminuendo sequence d(1) ≥ · · · ≥ d(n).

U-shaped sequence
Some game element π(i), i∈ {1, . . . , n}, exists such

that d(1) ≥ · · · ≥ d(i−1) ≥ d(i) ≤ d(i+1) · · · ≤ d(n).
Inverted U-shaped

sequence
Some game element π(i), i∈ {1, . . . , n}, exists such

that d(1) ≤ · · · ≤ d(i−1) ≤ d(i) ≥ d(i+1) · · · ≥ d(n).

N-shaped sequence
Some elements π(i) and π(j), i≤ j, i, j ∈ {1, . . . , n},
exist such that d(1) ≤ · · · ≤ d(i−1) ≤ d(i) ≥ d(i+1) ≥

· · · ≥ d(j−1) ≥ d(j) ≤ d(j+1) · · · ≤ d(n).

Inverted N-shaped
sequence

Some elements π(i) and π(j), i≤ j, i, j ∈ {1, . . . , n},
exist such that d(1) ≥ · · · ≥ d(i−1) ≥ d(i) ≤ d(i+1) ≤

· · · ≤ d(j−1) ≤ d(j) ≥ d(j+1) · · · ≥ d(n).

Inverted N-shaped
sequence

Some elements π(i) and π(j), i≤ j, i, j ∈ {1, . . . , n},
exist such that d(1) ≥ · · · ≥ d(i−1) ≥ d(i) ≤ d(i+1) ≤

· · · ≤ d(j−1) ≤ d(j) ≥ d(j+1) · · · ≥ d(n).

Table EC.2 Mathematical Expressions of the Optimal Structures with General Reward Scheme

Problem Structure Mathematical Expression

LDPGFD
U-shaped reward

Sequence

Some game element π(i), i∈ {1, . . . , n}, exists such
that r(1) ≥ · · · ≥ r[i−] ≥ r(i) ≤ r(i+1) ≤ · · · ≤ r[n]. In

addition, d(1) = · · ·= d[n] = d

LDPGFR
Inverted U-shaped
difficulty sequence

Some game element π(i), i∈ {1, . . . , n}, exists such
that d(1) ≤ · · · ≤ d[i−] ≤ d(i) ≥ d(i+1) ≥ · · · ≥ d(n). In

addition, r(1) = · · ·= r(n) = r

LDPGR

HL sequence r(1) = · · ·= r(n) = rH and d(1) = · · ·= d(n) = dL

LL-HL sequence
Some game element π(i), i∈ {1, . . . , n}, exists such

that r(1) = · · ·= r(i) = rL and r(i+1) = · · ·= r(n) = rH .
In addition, d(1) = · · ·= d(n) = dL

HH-HL sequence
r(1) = · · ·= r[n] = rH . In addition, Some game element

π(i), i∈ {1, . . . , n}, exists such that
d(1) = · · ·= d(i) = dH and d(i+1) = · · ·= d(n) = dL.

LH-LL-HL sequence

Some elements π(i) and π(j), i≤ j, i, j ∈ {1, . . . , n},
exist such that r(1) = · · ·= r(j) = rL and

r(j+1) = · · ·= r(n) = rH ; and d(1) = · · ·= d(i) = dH and
d(i+1) = · · ·= d(n) = dL

LH-HH-HL sequence

Some elements π(i) and π(j), i≤ j, i, j ∈ {1, . . . , n},
exist such that r(1) = · · ·= r(i) = rL and

r(i+1) = · · ·= r(n) = rH ; and d(1) = · · ·= d(j) = dH and
d(j+1) = · · ·= d(n) = dL

binary variable xπ,i,j, which indicates the assignment between element i and the jth position of

schedule π. For a given schedule π, we assume xπ,i,j = 1, if element i is the jth game element, and

xπ,i,j = 0 otherwise. We then present the alternative formulation of the LDP as:

max
π

S (π)

n∏
i=1

xπ,i,π−1(i), (EC.12)

s.t.,
n∑
i=1

xπ,i,j = 1,∀j ∈ [n],and π ∈ S, (EC.13)

n∑
j=1

xπ,i,j = 1,∀i∈ [n],and π ∈ S, (EC.14)
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x∈ {0,1} , (EC.15)

π ∈ S, (EC.16)

where S (π) is the remembered utility of schedule π defined in (12), and S is the set of feasible

schedules. The problem (EC.12)-(EC.16) is an integer problem, and the designer has to enumerate

all the feasible schedules to resolve it.

Appendix D: Parameters of the General Reward Scheme Example

Table EC.3 summarize the parameters and optimal solution of the example problem we present in

Figure 5.

Table EC.3 Parameters and Optimal Schedule of the General Reward Scheme Example

Parameter Value

Number of elements n= 8
Vector of rewards r= (1,2,3,4,5,6,7,8)

T

Vector of difficulties d= (1,5,5,3,3,7,6,4)
T

Vector of durations t= (5.90,6.22,3.71,5.04,3.16,2.67,5.07,7.23)
T

Planning time T = 39.01
Degree of reward seeking α= 0.02

Degree of difficulty aversion β = 0.01
Memory-decay rate γ = 0.05
Optimal sequence π∗ = (2,3,6,1,4,7,5,8)

Appendix E: Extension: Repeated Use of Game Elements

In this section, we study the level design problem with repeated use of game elements. One of

the distinguishing features of games is that the elements are virtual, meaning that they can be

reproduced costlessly multiple times within a level. This contrasts with service design problems,

like those studied in Das Gupta et al. (2016), where repeating a service element may be costly or

not possible.

The possibility of repeating elements creates a new design problem that goes beyond sequencing,

which has been the focus of previous papers in the literature. Here, the decision space is extended

to allow the level designer to choose the number of each game element to deploy (within a given

time limit) as well as how to sequence these elements. We study the optimal structure of the final

sequence of game elements (allowing for repeats) in both the proportional reward and general

reward settings. Proofs of the results in this section are collected in ??

E.1 Sequencing Game Elements with Proportional-reward Scheme

In this section, we consider the level design problem, allowing for repeated elements when rewards

are proportional to difficulties for all game elements. The model is the same as that studied in

Section 3, except that now each of the n game elements can be used multiple times in determining

a level.
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We have included a few constraints on the level design problem for realism. We impose that

every level design must include each of the n elements at least once. This reflects the fact that the

designers of the game elements have designed them thematically to suit the level and expect them

to be used at least once to contribute to the level’s overall aesthetic and coherence. In addition, we

impose a condition that the most difficult element can only be used once. This is the usual design

aesthetic that every level should have at most one “boss”, the hardest enemy or task within the

level. This is important for narrative and climax.

Moreover, for tractability, we assume that the game elements have identical duration τi = τ

for all i ∈ [n] and m periods, such that mτ = T and t̄i = (m+ 1− i) τ . This makes it easy for

different choices of game elements to add up to the duration T .Because we assume that the dura-

tions are identical, we can further simplify the LDPP since Ψ(t̄i|α,β, γ, k)−Ψ(t̄i+1|α,β, γ, k) =

Ψ((m+ 1− i) τ |α,β, γ, k)−Ψ((m− i) τ |α,β, γ, k) is a constant with given parameters α, β, γ, k,

m, i, and τ . To simplify the expression, we also define the (potentially negative) weight wi of game

element i as follows:

wi , (Ψ((m+ 1− i) τ |α,β, γ, k)−Ψ((m− i) τ |α,β, γ, k)) ∀i∈ {1, . . . ,m} . (EC.17)

which encodes a notion of the value of time slot i, taking into consideration all of the associated

tradeoffs. In this identical duration case, the value of the time slot i is independent of the sequence of

the elements, and there can be represented by a weight for slot i. The service designer can compute

the the weight wi with given parameters before deciding the sequence of the game elements.

Then the remembered utility can be rewritten as:

S (π) =
n∑
i=1

d(i) (Ψ(t̄i|α,β, γ, k)−Ψ(t̄i+1|α,β, γ, k)) ,

=
m∑
i=1

wid(i).

Using this notation, the level design problem with proportional rewards and repeated assignment

(LDPPR) is:

max
π

S (π) =
m∑
i=1

wid(i),

s.t.
m∑
i=1

1π(i)=j ≥ 1 ∀j ∈ [n− 1] ,

m∑
i=1

1π(i)=n = 1.

where now π is an integral vector in the set {1,2, . . . , n}m where π(i) = j if element j is the ith

element encountered when playing the level.

We then prove the following Lemma on the elements that are repeatedly used.
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Lemma EC.5. In the optimal solution π∗ of the LDPPR, only the lowest difficulty and second

highest difficulty elements (i.e., elements 1 and n− 1) are used repeatedly. The slots assigned with

element 1 have negative weights (i.e., wi < 0, if π(i) = 1 for all i ∈ [m]) , and the slots assigned

with element n− 1 have positive weights (i.e., wi > 0, if π(i) = n− 1 for all i∈ [m]).

Lemma EC.5 suggests that the game designer should use a mixture of both high-difficulty and

low-difficulty elements. Li et al. (2022) showed a similar result that the highest-utility and lowest-

utility activities should be selected to create an ideal experiential service. The reason that a mixture

of high-difficulty and low-difficulty elements are selected follows similar reasoning. Low-difficulty

elements can help players relax, which resets their reference points; high-difficulty elements provide

the player a challenging experience, which leaves the player with a high-intensity remembered

utility contradiction.

With this lemma in hand, we can prove the following proposition on the optimal structure.

Theorem EC.1. The optimal schedule π∗ of the LDPPR follows the same optimal structures

as the LDPP, which are presented in Theorems 1 and 2.

Theorem EC.1 shows that the optimal solution of LDPPR shares the same structural properties

as optimal solutions to LDPP. In fact, we prove that LDPPR can be converted into an equivalent

LDPP with m elements in Lemma EC.6 in Appendix A. The game designer can enhance the game

experience with the repeated use of game elements, but the designer should still follow structural

properties mentioned in Theorems 1 and 2 for a given type of player. Allowing for repeated use of

game elements does not fundamentally alter the psychological processes of the player.

Figure EC.7 shows the possible structures of optimal schedules. The repeated elements are

illustrated with a shaded bar. The tall shaded bars correspond to element n− 1 and the short

shaded bars correspond to element 1. Similar to what we saw in Figure 4, inverted U-shape,

N-shape, inverted N-shape, and U-shape are optimal structures in different situations. Repeated

elements are placed around the climax and low tide of the game. Element n− 1 is used to extend

the experience of a peak (e.g., Figure 7(c)), or act as a mini-boss in the middle (e.g., Figure 7(b)).

Element 1 is used to extend the experience of low tide (e.g., Figure 7(b)). As discussed in the

paragraph following Lemma EC.5, the repeated use of the elements n − 1 and 1 enhances the

experience because they accentuate peaks and troughs in the game experience. Element 1 resets

the reference point and element n− 1 punctuates a challenging and rewarding section of a level.

We can further prove structural results on the locations of repeated use of game elements (see

Corollary EC.2 in the Appendix). This result characterizes when all of element 1 and element n−1

are “bunched together” (as in Figure 7(d)) or sequenced apart from each other (as is the case

for the two n− 1 elements in Figure 7(b)). The conditions are rather technical, so we leave the

statement and proof of this result in Appendix A.
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(a) Inverted U-shape when k < k (b) N-shape when k < k≤ k and α>

β

(c) Inverted N-shape when k < k≤ k

and α< β

(d) U-shape when k > k

Figure EC.7 An illustration of the optimal structures of the LDPPR. The repeated elements are illustrated with

a shaded bar.

E.2 Sequencing Game Elements with General-reward Scheme

In this subsection, we consider the level design problem, now allowing for the elements to be

repeatedly used and with general rewards. As before, we make the game duration fixed to T for any

feasible schedule, we assume that the game elements have identical duration τi = τ for all i ∈ [n]

and we consider a game with m periods, such that mτ = T and t̄i = (m+ 1− i) τ .

As this setting is quite general, we assume for tractability that there are only four types of

elements. Element 1 (LL) has low reward and low difficulty (rL and dL), element 2 (LH) has low

reward and high difficulty (rL and dH), element 3 (HL) has high reward and low difficulty (rH and

dL), and element 4 (HH) has high reward and high difficulty (rH and dH), where 0< rL < rH and

0<dL <dH . These four types of game elements are qualitatively representative of the possibilities

one may consider in the design of a level.
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The same as in Section E.1, because we assume the durations are identical, we can further

simplify the LDP, as Φ(t̄i|θ, γ)−Φ(t̄i+1|θ, γ) = Φ((m+ 1− i) τ |θ, γ)−Φ((m− i) τ |θ, γ) is a constant

with given parameters α, β, γ, k, m, i, and τ . To simplify the expressions, we define the weight of

the ith element as

w′i (θ) = (Φ((m+ 1− i) τ |θ, γ)−Φ((m− i) τ |θ, γ)) ∀i∈ {1, . . . ,m} . (EC.18)

The remembered utility can be rewritten as:

S (π) =
n∑
i=1

(
r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− d(i) (Φ(t̄i|β,γ)−Φ(t̄i+1|β,γ))

)
,

=
n∑
i=1

(
r(i) (Φ(m+ 1− i|α,γ)−Φ(m− i|α,γ))− d(i) (Φ(m+ 1− i|β,γ)−Φ(m− i|β,γ))

)
,

=
m∑
i=1

(
r(i)w

′
i (α)− d(i)w

′
i (β)

)
.

The level design problem with general reward and repeated assignment (LDPGR) can be

expressed by:

max
π

S (π) =
m∑
i=1

(
r(i)w

′
i (α)− d(i)w

′
i (β)

)
,

s.t. π(i)∈{1,2,3,4}∀i∈ [m] .

Note that in this formulation we have removed the constraints (imposed in the previous subsection)

that each element must be used at least once and the last element at most once. We do this for

simplicity, these constraints could be added without much complication.

The following result reveals the optimal structure with general reward and repeated assignment,

when the game duration is sufficiently long (i.e., T > T ′0 (α,γ) , T ′0 (β,γ)).

Proposition EC.1. When the game’s duration is long enough (i.e., T > T ′0 (α,γ) , T ′0 (β,γ)), in

the optimal schedule π∗ of the LDPGR, the elements’ rewards (difficulties) are in the following

structure.

(i) When T ′0 (α,γ)<T ′0 (β,γ) (i.e., α> β), the optimal structure is a LH-LL-HL sequence.

(ii) When T ′0 (α,γ)>T ′0 (β,γ) (i.e., α< β), the optimal structure is a LH-HH-HL sequence.

Figure EC.8 helps us visualize Proposition EC.1.

The heights of the bars mark the reward of a game element. A dark-shaded bar is of high

difficulty dH a light bar is of low difficulty dL. We can tell from Figure EC.8 that levels should begin

with low-reward and high-difficulty elements and end with high-reward and low-difficulty elements.

This implies that memory decay plays an important role in the player’s perception. Because the
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(a) LH-LL-HL shape when α> β (b) LH-HH-HL shape when α< β

Figure EC.8 Optimal Structures of the LDPGR. A dark-shaded bar is of high difficulty dH a light bar is of low

difficulty dL.

player tends to memorize the elements at the end, rewards at the end will maximize the player’s

remembered utility. On the other hand, difficult elements are placed at the beginning to utilize the

fact that the player’s mind is more clear at the moment. The results echo the analysis in Figure 5

that the service designer should value the endpoint of the game.

We further extend Proposition EC.1 by investigating the degenerate cases when the game’s

duration is not long enough (i.e., when T < T ′2) in Proposition EC.2.

Proposition EC.2. When the game’s duration is not long enough (i.e., T <

max{T ′0 (α,γ) , T ′0 (β,γ)}), in the optimal schedule π∗ of the LDPGR, the elements’ rewards

(difficulties) are in the following structure.

(i) The optimal structure degenerates to an LL-HL sequence when T ′0 (α,γ)< T < T ′0 (β,γ), and

an HL sequence when T < T ′0 (α,γ)<T ′0 (β,γ).

(ii) The optimal structure degenerates to an HH-HL sequence when T ′0 (β,γ)< T < T ′0 (α,γ), and

an HL sequence when T < T ′0 (β,γ)<T ′0 (α,γ).

The following table summarizes the optimal structures and the conditions.

Table EC.4 Optimal Structures of the LDPGR

α,β T Duration Optimal Structure

0<β <α
T ′0 (α,γ)<T ′0 (β,γ)<T Long LH-LL-HL
T ′0 (α,γ)<T <T ′0 (β,γ) Medium LL-HL
T < T ′0 (α,γ)<T ′0 (β,γ) Short HL

0<α<β
T ′0 (β,γ)<T ′0 (α,γ)<T Long LH-HH-HL
T ′0 (β,γ)<T <T ′0 (α,γ) Medium HH-HL
T < T ′0 (β,γ)<T ′0 (α,γ) Short HL

We can tell from Table EC.4, that it is optimal to place low-reward and high-difficulty elements

at the beginning, and place high-reward and low-difficulty elements at the end. The duration of

the game will also affect the optimal structure.
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E.3 Proof of the results in Appendix E

Proof of Lemma EC.5. It is straightforward to see that the LDPPR is an integer optimization

problem with linear objective function.

(i) Suppose π∗ is the optimal solution of the LDPPR, with repeated use of elements j ∈
{2, . . . , n− 2}. For all the slots i ∈ [m] in π∗ assigned with repeated elements, we replace ele-

ment π(i) with element n− 1 if wi > 0, and with element 1 if wi < 0, which formulates a sched-

ule π1. There must be S(π1)− S(π∗) =
∑n

i=1

(
dπ1(i)− dπ∗(i)

)
wi =

∑n

i=1

(
dn−1− dπ∗(i)

)
wi1wi>0 +∑n

i=1

(
d1− dπ∗(i)

)
wi1wi<0 > 0, which contradicts with the assumption that π∗ is the optimal solu-

tion. Thus, elements 1 and n− 1, but no other elements can be repeatedly used in the optimal

solution.

(ii) Suppose π∗ is the optimal solution of the LDPPR, in which some slots with positive weight

is assigned with element 1 and some slots with negative weight is assigned with element n−1. For

all the slots in π∗ assigned with element 1, we replace it with element n− 1 if wi > 0; For all the

slots in π∗ assigned with element n−1, we replace it with element n−1 if wi < 0. This formulates a

schedule π2. There must be S(π2)−S(π∗) =
∑n

i=1

(
dπ2(i)− dπ∗(i)

)
wi =

∑n

i=1 (dn−1− d1)wi1wi>0 +∑n

i=1 (d1− dn−1)wi1wi<0 > 0, which contradicts with the assumption that π∗ is the optimal solu-

tion. Thus, if element 1 is repeated used, it is assigned with slots have negative weights; if element

n− 1 is repeated used, it is assigned with slots have positive weights. Q.E.D.

Lemma EC.6. Consider an LDPPR with a given difficulty sequence d = (d1, d2, . . . , dn). Sup-

pose π∗ is the optimal schedule of the LDPPR, and the optimal difficulty sequence is dπ∗ =(
dπ∗(1), dπ∗[2], . . . , dπ∗[m]

)
. Then π∗ must also be the optimal solution of the LDPP with difficulty

sequence dπ∗.

Proof of Lemma EC.6.

Suppose there is another solution π of the LDPP with difficulty sequence dπ∗ , which offers

remembered utility S (π)> S (π∗). It is straightforward to see π is also a feasible solution of the

LDPPR with difficulty sequence d. As S (π)> S (π∗), π∗ can not be the optimal solution of the

LDPPR, which contradicts with the assumption. Therefore, π∗ must also be the optimal solution

of the LDPP with difficulty sequence dπ∗ . Q.E.D.

Proof of Theorem EC.1.

Let π∗ be the optimal solution of the LDPPR with difficulty sequence d. By Lemma EC.6, π∗ is

also the optimal solution of the LDPP with difficulty sequence dπ∗ . As the optimal solution of an

LDPP shares the structural properties presented in Theorems 1 and 2, π∗ must share the optimal

structures presented in Theorems 1 and 2. Q.E.D.

To prove Corollary EC.2, we first analyze the properties of the weight w in the following lemma.
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Lemma EC.7. For the LDPPR, the weights w has the following properties:

(i) If Ψ(t|, α,β, γ, k) is increasing for t∈ [t̄i, t̄i+1], we have wi > 0.

(ii) If Ψ(t|, α,β, γ, k) is decreasing for t∈ [t̄i, t̄i+1], we have wi < 0.

Proof of Lemma EC.7.

It is straightforward to prove this lemma by the definition of the weight in (EC.17). Q.E.D.

The following corollary shows some properties on the repeated assignment, which suggests

repeated assignment to the climax and low tide of the game.

Corollary EC.2. In the optimal schedule π∗ of the LDPPR, the repeated used elements have

the following properties.

(1) When k≤ k, if element 1 is repeated used, it is scheduled at interval [(T −T ′2)
+
, T ]; if element

n− 1 is repeated used, it is scheduled at interval [0, (T −T ′2)
+

].

(2) When k≤ k≤ 1,

(2.1) Suppose α> β, if element 1 is repeated used, it is scheduled at interval [(T −T ′2)
+
, T ], if

element n− 1 is repeated used, it is scheduled at interval [0, (T −T ′2)
+

].

(2.2) Suppose α < β, if element 1 is repeated used, it is scheduled at interval [0, (T −T ′2)
+

]

or [(T −T ′1)
+
, T ]; if element n − 1 is repeated used, it is scheduled at interval

[(T −T ′2)
+
, (T −T ′1)

+
].

(3) When 1<k < k,

(3.1) Suppose α > β, if element 1 is repeated used, it is scheduled at interval

[(T −T ′2)
+
, (T −T ′1)

+
]; if element n − 1 is repeated used, it is scheduled at interval

[0, (T −T ′2)
+

] or interval [(T −T ′1)
+
, T ].

(3.2) Suppose α < β, if element 1 is repeated used, it is scheduled at interval [0, (T −T ′2)
+

]; if

element n− 1 is repeated used, it is scheduled at interval [(T −T ′2)
+
, T ].

(4) When k≥ k, if element 1 is repeated used, it is scheduled at interval [0, (T −T ′2)
+

]; if element

n− 1 is repeated used, it is scheduled at interval [(T −T ′2)
+
, T ].

Proof of Corollary EC.2. By Corollary EC.1 and Lemma EC.7, we have the following properties

on the value of the weight.

(1) When k ≤ k, elements in [(T −T ′2)
+
, T ] have negative weights, and elements in [0, (T −T ′2)

+
]

have positive weights.

(2) When k≤ 1,

(2.1) Suppose α> β, elements in [(T −T ′2)
+
, T ] have negative weights; elements in [0, (T −T ′2)

+
]

have positive weights.
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(2.2) Suppose α< β, elements in [0, (T −T ′2)
+

] or [(T −T ′1)
+
, T ] have negative weights; elements

in [(T −T ′2)
+
, (T −T ′1)

+
] have positive weights.

(3) When 1<k < k,

(3.1) Suppose α > β, elements in [(T −T ′2)
+
, (T −T ′1)

+
] have negative weights; elements in

[0, (T −T ′2)
+

] or [(T −T ′1)
+
, T ] have positive weights.

(3.2) Suppose α< β, elements in [0, (T −T ′2)
+

] have negative weights; elements in [(T −T ′2)
+
, T ]

have positive weights.

(4) When k≥ k, elements in [0, (T −T ′2)
+

] have negative weights; elements in [(T −T ′2)
+
, T ] have

positive weights.

By Lemma EC.7, element 1 can be assigned to slots with negative weights, and element n− 1

can be assigned to slots with positive weights. We thus prove the Corollary EC.2. Q.E.D.

We then prove the optimal structural property of the LDPGR.

Lemma EC.8. In the optimal solution π∗ of the LDPGR, for the ith element, if both w′i (α) and

w′i (β) are positive, then element HL is assigned to slot i; if both w′i (α) is positive and w′i (β) is

negative, then element HH is assigned to slot i; if both w′i (α) is negative and w′i (β) is positive,

then element LL is assigned to slot i; if both w′i (α) and w′i (β) are negative, then element LH is

assigned to slot i.

Proof of Lemma EC.8. Let π1 be the schedule in which element HL is assigned to slots with

positive weights w′ (α) and w′ (β); element HH is assigned to slots with positive weight w′ (α)

and negative weight w′ (β); element LL is assigned to slots with negative weight w′ (α) and pos-

itive weight w′ (β); element LH is assigned to slots with negative weights w′ (α) and w′ (β). For

any element-slot assignment allowing repeated usage π2 6= π1 , there must be S(π1)− S(π2) =∑n

i=1

((
rπ1(i)− rπ2(i)

)
w′i (α)−

(
dπ1(i)− dπ2(i)

)
w′i (β)

)
> 0. Because there must be rπ1(i) − rπ2(i) =

rH − rπ2(i) ≥ 0 when w′i (α) > 0; rπ1(i) − rπ2(i) = rL − rπ2(i) ≤ 0 when w′i (α) < 0; dπ1(i) − dπ2(i) =

dL− rπ2(i) ≤ 0 when w′i (β)> 0; dπ1(i)− dπ2(i) = dH − rπ2(i) ≥ 0 when w′i (β)< 0. Q.E.D.

Next, we study the property with the relationship between function Φ(·) and the optimal sub-

sequence.

Corollary EC.3. In the optimal solution π∗ of the LDPGR, if both Φ(α) and Φ(β) are

decreasing in for t ∈ [t̄i+1, t̄i], then the element LH is assigned to slot i; if Φ(α) is decreasing and

Φ(β) is increasing in for t∈ [t̄i+1, t̄i], then the element LL is assigned to slot i; if Φ(α) is increasing

and Φ(β) is decreasing in for t ∈ [t̄i+1, t̄i], then the element HH is assigned to slot i; if both Φ(α)

and Φ(β) are increasing in for t∈ [t̄i+1, t̄i], then the element HL is assigned to slot i.
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Proof of Corollary EC.3. By Lemma EC.8 and the definition of the weight in (EC.18), we have

the following properties:

(i) In t∈ [t̄i+1, t̄i], if both Φ(t|α,γ) and Φ(t|β,γ) are decreasing, then w′i (α)< 0 and w′i (α)< 0.

Thus, element LH should be assigned to slot i.

(ii) In t ∈ [t̄i+1, t̄i], if Φ (t|α,γ) is decreasing and Φ(t|β,γ) is increasing, then w′i (α) < 0 and

w′i (β)> 0. Thus, element LL should be assigned to slot i.

(iii) In t ∈ [t̄i+1, t̄i], if Φ (t|α,γ) is increasing and Φ(t|β,γ) is decreasing, then w′i (α) > 0 and

w′i (β)< 0. Thus, element HH should be assigned to slot i.

(iv) In t∈ [t̄i+1, t̄i], if both Φ(t|α,γ) and Φ(t|β,γ) are increasing, then w′i (α)> 0 and w′i (α)> 0.

Thus, element HL should be assigned to slot i. Q.E.D.

Then we prove the optimal structure of the level design problem with general rewards and

repeated assignment.

Proof of Proposition EC.1. (i) When α > β (or when T ′0 (α,γ) < T ′0 (β,γ) by (EC.1)), by

Lemma EC.1, there exist slots i and j (i < j) where t̄i+2 < T ′0 (β)< t̄i+1 and t̄j+2 < T ′0 (α)< t̄j+1,

such that weight w′ (α) and weight w′ (β) of slots {1, . . . , i} are negative, w′ (α), and weight w′ (β)

of slot i+ 1 can be either positive or negative; weight w′ (α) of slots {i+ 2, . . . , j} are negative,

weight w′ (β) of slots {i+ 2, . . . , j} are positive, w′ (α), and weight w′ (β) of slot j + 1 can be

either positive or negative; weight w′ (α) and w′ (β) of slots {i+ 2, . . . , j} are positive. By Corol-

lary EC.3, in the optimal schedule, slots {1, . . . , i} are assigned with element LH; slots {i+ 2, . . . , j}
are assigned with element LL; slots {j+ 2, . . . , n} are assigned with element HL; slot i+1 is assigned

with either LH or LL;slot j+ 1 is assigned with either LL or HL.

(ii) When α < β (or when T ′0 (α,γ)> T ′0 (β,γ) by (EC.1)), by Lemma EC.1, there exist slots i

and j (i < j) where t̄i+2 <T
′
0 (α)< t̄i+1 and t̄j+2 <T

′
0 (β)< t̄j+1, such that weight w′ (α) and weight

w′ (β) of slots {1, . . . , i} are negative, w′ (α), and weight w′ (β) of slot i+ 1 can be either positive

or negative; weight w′ (α) of slots {i+ 2, . . . , j} are positive, weight w′ (β) of slots {i+ 2, . . . , j} are

negative, w′ (α), and weight w′ (β) of slot j + 1 can be either positive or negative; weight w′ (α)

and w′ (β) of slots {i+ 2, . . . , j} are positive. By Corollary EC.3, in the optimal schedule, slots

{1, . . . , i} are assigned with element LH; slots {i+ 2, . . . , j} are assigned with element HH; slots

{j+ 2, . . . , n} are assigned with element HL; slot i+ 1 is assigned with either LH or HH;slot j+ 1

is assigned with either HH or HL.

Therefore, (i) When α> β, the optimal structure is a LH-LL-HL sequence. (ii) When α< β, the

optimal structure is a LH-HH-HL sequence. Q.E.D.

Proof of Proposition EC.2. The proof follows Proposition EC.1 with the situation when T < T ′0.

Q.E.D.

We then prove the following lemma regarding coefficient δ, δr and δd and the optimal structure
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Lemma EC.9. When δ 6= 1, δr 6= 1 and δd 6= 1 we have:

(i) Theorems 1 to 2 and Lemma EC.5 still hold with reward ratio k′ = δr
δd
k and difficulty-aversion

degree β′ = δβ, where k is the reward ratio.

(ii) Theorem 3, Propositions EC.1 and EC.2 still hold for any positive constants δr and δd, and

the degree of difficulty-aversion β′ = δβ.

Proof of Lemma EC.9. When δ 6= 1, δr 6= 1 and δd 6= 1, we have

S (π) =
n∑
i=1

∫ ti

ti−1

v (t)e−γ(T−t)dt,S (π) ,

=
n∑
i=1

∫ ti

ti−1

(δrur (t)− δdud (t))e−γ(T−t)dt,

= δr

n∑
i=1

∫ ti

ti−1

((
r(1)− f (0)

)
e−αt̄ +

i∑
j=2

(
r(j)− r(j−1)

)
e−α(t̄−t̄j−1)

)
e−γ(T−t)dt

− δd
n∑
i=1

∫ ti

ti−1

((
d(1)− g (0)

)
e−β

′ t̄ +
i∑

j=2

(
d(j)− d(j−1)

)
e−β

′(t̄−t̄j−1)

)
e−γ(T−t)dt,

= δr

n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− δd
n∑
i=1

d(i) (Φ(t̄i|β′, γ)−Φ(t̄i+1|β′, γ))

(i) When we consider a proportional reward, let k′ = δr
δd
k the player’s remembered utility with

proportional reward can be expressed by:

S (π) = δd

(
n∑
i=1

k′d(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))−
n∑
i=1

d(i) (Φ(t̄i|β′, γ)−Φ(t̄i+1|β′, γ))

)
,

= δd

n∑
i=1

d(i) (Ψ(t̄i|α,β′, γ, k′)−Ψ(t̄i+1|α,β′, γ, k′)) .

By the proofs of Theorems 1 to 2 the optimal structure are the same as mentioned in Theorems 1

to 2 with reward ratio k′ and difficulty-aversion degree β′. By the proof of Lemma EC.5 the selection

of the repeated used elements are the same as mentioned in Lemma EC.5 depending on the reward

ratio k′ and difficulty-aversion degree β′.

(ii) When we consider a general reward scheme, and the elements share a fixed reward ri = r for

all i∈ [n] the LDPGFD can be expressed by:

max
π

S (π) = δr

n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− δd
n∑
i=1

d (Φ(t̄i|β′, γ)−Φ(t̄i+1|β′, γ)) ,

= δr

n∑
i=1

r(i) (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− δddΦ(T |β′, γ) .

When the elements share a fixed reward ri = r for all i∈ [n] the level design problem with general

reward and fixed reward (LDPGFR) can be expressed by

max
π

S (π) = δr

n∑
i=1

r (Φ(t̄i|α,γ)−Φ(t̄i+1|α,γ))− δd
n∑
i=1

d(i) (Φ(t̄i|β′, γ)−Φ(t̄i+1|β′, γ)) ,
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= δrrΦ(T |α,γ) +
n∑
i=1

d(i) (Φ(t̄i+1|β′, γ)− δdΦ(t̄i|β′, γ)) .

Given that δd and δr are positive constants, by the proof of Theorem 3, the optimal structure

is exactly the same as mentioned in Theorem 3 with difficulty-aversion degree β′. By the same

reason, the properties presented in Propositions EC.1 and EC.2 still hold with difficulty-aversion

degree β′ by their proofs. Q.E.D.

Appendix F: Calibration of the model

In this section, we discuss how to calibrate the parameters in the model with actual game design

data from Mauro (2019) on the game design-inspired Mario Maker 2 title. In Mario Maker 2,

players can design “mini-levels” to be attempted by other players. Statistics on how hard and

satisfying the levels were captured by Nintendo (the game’s publisher) and hosted on the web-

site supermariomakerbookmark.nintendo.net. We are interested in the level design problem of

combining a sequence of these “mini-levels” (our game elements) into a complete level of gameplay.

Data calibration problem

We assume that the game designer is focused on a specific target player group, such that the players

have homogeneous parameters α, β, and γ in the gameplay. Suppose the rewards r and difficulties

d are given, and the game designer has extracted the players’ satisfaction S′ over the game. Then,

data calibration problem (DCP) is to minimize the square error between the real satisfaction S′

and the remembered utility of the level design problem (12):

min
α,β,γ

m∑
i=1

(S(α,β, γ|π)−S′i)
2
, (DCP-1)

s.t. α,β, γ ≥ 0. (DCP-2)

Observe that (DCP) is a nonlinear minimization problem on the error between the remembered

utility S(α,β, γ|πi) and the sample remembered utility S′.

Game design and data acquisition.

To calibrate the parameters for the targeted customers, the game designer needs to first design the

game elements. As pointed out by Mauro (2019) for a sample i, the reward ri can be obtained by

asking the targeted players to rate the element after playing the game, and the remembered utility

of the sample S′i can be acquired by asking the players to rate the game after completing the whole

game sequence. We normalize the rating into the discrete number from 0.1 to 1.0. The difficulty

of the game elements di can be estimated by computing the clear rate, which is the average times

one player need to take for a single pass of an element over the maximum number of attempts.

supermariomakerbookmark.nintendo.net
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An example data set with nine game elements (i.e., “mini-levels”) and five sequences is shown in

Table EC.5. The reward and difficulty are acquired from Mauro (2019). Because the dataset does

not contain the information on the schedule of the game elements and the remembered utility of

a sequence, we just provide an example sample here to illustrate the method for the parameter

calibration.

Table EC.5 An example dataset for the calibration

Sample i ri di
1-5 (0.2,0.2,0.1,0.1,0.1,0.2,0.1,0.1,0.9)

T
(0.017,0.021,0.035,0.050,0.063,0.155,0.193,0.400,0.860)

T

Sample i πi S′
i

1 (1,2,3,4,5,6,7,8,9, )
T

0.7

2 (9,8,7,6,5,4,3,2,1, )
T

0.3

3 (1,3,5,7,9,8,6,4,2)
T

0.6

4 (8,6,4,2,1,3,5,7,9, )
T

0.5

5 (1,3,5,7,6,4,2,8,9)
T

0.9

Optimizing for calibration

We solve the DCP with the MATLAB fmincon solver. Plugging in the data in Table EC.5, we

obtain the calibrated parameters: α= 0.036, β = 0.537, and γ = 0.001 with multiple trail of different

initial solutions. These parameter setting can then be used to find an optimal level design.

It should be noted that this calibration is a proof-of-concept for an actual calculation a game

designer would use. In particular, we simulated the satisfaction data S′i, where in practice this

would need to be obtained by playtesters.

Appendix G: A description of the model for more general interactive services

A designer of an interactive service must sequence n elements into a complete experience. For

example, consider a head summer camp counselor who must choose from among different activities

(swimming, crafts, survival training, hiking, etc.) to design a program for the campers.

Each element has a reward ri, duration τi, and a difficulty level di. These values are given to the

designer. For example, the head summer camp counselor much choose among pre-designed activities

(walk up a hill and back, learn to make a fire) each of which has a set difficulty (learning to make a

fire is harder than going on a short hike) provides rewards to campers upon their completion (could

be in terms of external rewards like badges but also intrinsic rewards like a sense of excitement or

accomplishment). The same processes of accomplishment and stress can be defined as in Section 3

lead to the design problem (LDPP), assuming rewards and difficulties are proportional. Under

different assumptions, we get the various design problems discussed in the paper.

The results also apply to this setting. For example, an N-shape design starts the campers out

with an easy activity (e.g., hiking to a campsite), leading up to a challenging but rewarding activity

(e.g., starting a fire without using a match in order to make lunch), followed by a sequence of easier
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tasks (e.g., eating lunch), leading to a crescendo of more challenging activities (e.g., swimming to

an island lake and back). The optimal sequence of activities depends on the model parameters α,

β, and γ that characterize the nature of the campers.
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