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The discrete moment problem is a foundational problem in distribution-free robust optimization, where the

goal is to find a worst-case distribution that satisfies a given set of moments. This paper studies the discrete

moment problems with additional “shape constraints” that guarantee the worst-case distribution is either

log-concave (LC), has an increasing failure rate (IFR), or increasing generalized failure rate (IGFR). These

classes of shape constraints have not previously been studied in the literature, in part due to their inherent

nonconvexities. Nonetheless, these classes are useful in practice, with applications in revenue management,

reliability, and inventory control. We characterize the structure of optimal extreme point distributions under

these constraints. We show, for example, that an optimal extreme point solution to a moment problem

with m moments and LC shape constraints is piecewise geometric with at most m pieces. This optimality

structure allows us to design an exact algorithm for computing optimal solutions in a low-dimensional space

of parameters. We also leverage this structure to study a robust newsvendor problem with shape constraints

and compute optimal solutions.
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1. Introduction

The moment problem is a classical problem in analysis and optimization, with roots dating

back to the middle of the nineteenth century. At that time, the goal was to bound tail

probabilities and expectations with given distributional moment information. This initial

goal remains an active one to the present day. For example, Bertsimas and Popescu (2005)

provide tight closed-form bounds of Pr(X ≥ (1 + δ)EX) given the first three moments of a

random variable X. He et al. (2010) extend the problem for random variables given first-,

second- and fourth-order moments.

Beyond these foundational questions, the moment problem serves as an important build-

ing block in a variety of applications in the stochastic and robust optimization literatures

(Prékopa 2013, Popescu 2005, Saghafian and Tomlin 2016, Rujeerapaiboon et al. 2018,

Tian et al. 2017). In particular, moment problems are foundational to distribution-free

robust optimization, where insight into the structure of optimal distributions is used to

devise algorithms and describe properties of optimal decisions. A classic example of this

approach is due to Scarf et al. (1958), who leverage the fact that an optimal solution to the

moment problem given the first two moments is a sum of two Dirac measures. This insight

provides an analytical formula for the optimal inventory decision in a robust version of

the newsvendor problem. A vast literature on robust optimization builds on these initial

insights in a variety of facets (see, e.g., Goh and Sim (2010), Delage and Ye (2010), Jiang

et al. (2012), Bandi and Bertsimas (2012), Bertsimas et al. (2018), Long and Qi (2014),

Gao and Kleywegt (2016), Gao et al. (2017), Natarajan et al. (2017), Chen et al. (2018)

among many others).

The focus of this paper is the discrete moment problem, an important special case of

the general moment problem that is less well-studied in the literature. In the discrete

moment problem, the underlying sample space is a discrete set. The focus on discrete

distributions is well-justified. In operations-management applications, unknown demand

distributions are often “bulky”, representing, for instance, bulk orders in a supply chain

(Swaminathan and Shanthikumar 1999). Banciu and Mirchandani (2013) motivate the

importance of modeling demand as a discrete distribution. They cite a number of papers

that model demand as continuous distributions that need to be adjusted when the realism
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of discrete distributions is incorporated. For example, Bagnoli et al. (1989) show how

standard results in durable-goods monopolies (including the Coase conjecture) fail when

demand is discretely distributed. Similar observations hold in the supply-chain literature

(see, in particular, Swaminathan and Shanthikumar (1999)).

Coming back to discrete moment problems, the work of Prékopa (see, e.g., Prékopa

(1990)) makes a fundamental contribution by devising efficient linear programming meth-

ods to study discrete moment problems. Prékopa and co-authors use these insights to

study a variety of applications, including project management (Prékopa et al. 2004), net-

work reliability (Prékopa and Boros 1991), and finance applications (Prékopa et al. 2016).

Project management has also been studied in the robust optimization literature (see, e.g.,

Bertsimas et al. (2006)).

In classical versions of the moment problem (including the previously mentioned works of

Prékopa and his co-authors), constraints arise from specifying a finite number of moments.

One criticism of this approach is that it can result in bounds that are too weak to be

meaningful, or in the case of robust optimization with only moment constraints, result

in decisions that are too conservative. For instance, Scarf’s solution for the newsvendor

problem can suggest ordering no inventory even when the profit margin is relatively high

(Perakis and Roels 2008). This conservatism has driven researchers to introduce addi-

tional constraints, including those on the shape of the distribution. For example, Perakis

and Roels (2008) study the newsvendor problem by leveraging non-moment information,

including symmetry and unimodality. Han et al. (2014) study the newsvendor problem by

relaxing the usual assumption of risk neutrality. Saghafian and Tomlin (2016) analyze the

problem with a bound on tail probabilities, and Natarajan et al. (2017) recently developed

closed-form solutions under asymmetric demand information. In all cases, more intuitive

and less conservative inventory decisions result. Other robust optimization papers that

consider shape constraints include Li et al. (2017), who study the chance constraints and

conditional value-at-risk constraints when the distributional information consists of the

first two moments and unimodality, Lam and Mottet (2017), who study tail distributions

with convex-shape constraints, and Hanasusanto et al. (2015), who study the multi-item

newsvendor problems with multimodal demand distributions.
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Introducing shape constraints brings new theoretical challenges. A seminal paper by

Popescu (2005) provides a general framework for studying continuous moment problems

under shape constraints. Her framework captures symmetry and unimodality constraints,

among others. These moment problems are formulated as semi-definite programs (SDPs)

that are polynomial-time solvable. For the discrete moment problem, we are aware of only

one paper (Subasi et al. 2009) that considers shape constraints. Subasi et al. (2009) adapt

Prékopa’s linear programming (LP) methodology to include unimodality, which is modeled

by an additional set of linear constraints.

Both Popescu (2005) and Subasi et al. (2009) illustrate how a class of constraints can be

adapted into existing computational frameworks, SDP-based in the case of Popescu (2005)

and LP-based in the case of Subasi et al. (2009). However, important shape constraints

of practical significance remain that do not naturally fit into these settings. In this paper,

we focus on three shape constraints: log-concavity (LC), increasing failure rate (IFR), and

increasing generalized failure rate (IGFR) for discrete distributions (defined in Section 2

below). Here, we briefly highlight the importance of each class of distributions.

(i) LC distributions arise naturally in many applications. For example, Subasi et al.

(2009) illustrate how the length of a critical path in a PERT model, where beta

distributions describe individual task times, has an LC distribution but its other

properties (other than moments inferred by the beta distributions) are unknown.

Log-concavity has a wide range of applications to statistical modeling and estima-

tion (Walther 2000). For instance, Duembgen et al. (2011) show how log-concavity

allows the estimation of a distribution based on arbitrarily censored data (which is

a common form of data for demand observations). Log-concavity also plays a critical

role in economics (Bagnoli and Bergstrom 2005). For example, in contract theory,

one commonly assumes an agent’s type is an LC random variable (Laffont and Tirole

1988). The log-concavity of a distribution function has also been widely used in the

theory of regulation (Baron and Myerson 1982, Lewis and Sappington 1988), and in

characterizing efficient auctions (Myerson and Satterthwaite 1983, Matthews 1987).

(ii) IFR distributions play an important role in reliability theory (Barlow and Proschan

1996), inventory management (Gavirneni et al. 1999), and contract theory (Dai and
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Jerath 2016). The IFR property is often useful for simplifying optimality conditions

to facilitate the derivation of properties of optimal decisions that yield managerial

insights. One reason for the prevalence of IFR distributions in applications is that

they are closed under sums of random variables (and the associated convolutions of

distribution functions).

(iii) IGFR distributions are prevalent in the theory of revenue management and supply

chain management (see Lariviere (2006), Ziya et al. (2004), Banciu and Mirchandani

(2013) and the references therein), where it is typically assumed to ensure expected

revenue is unimodular in the choice of price or quantity. Banciu and Mirchandani

(2013) pointed out that the definition of IGFR in the case of discrete distributions

needs to be adapted from the continuous case to ensure this unimodularity. We use

their definition in this paper (see Definition 3). Banciu and Mirchandani (2013) also

show many of the most common discrete distributions used in applications (see Table

2 in that paper) satisfy the IGFR property.

The above references motivate LC, IFR, and IGFR distributions generally, either their

continuous or discrete versions, although continuous distributions appear more frequently

in the literature. However, solving a moment problem with continuous shape constraints

is technically challenging and beyond the scope of this paper. We hope the techniques

developed in this paper (especially a connection to reverse convex optimization) shed light

on the continuous version in future work. Second, discrete distributions find important

applications. Examples include discrete IFR in reliability systems (Chakraborty 2015) and

discrete IGFR in modeling demand (Banciu and Mirchandani 2013). Moreover, given data

points sampled from a discrete distribution, statistical tests have been well developed for

testing whether the underlying discrete distribution is an IFR distribution (Sudheesh et al.

2015).

In Section 2, we show the standard characterizations of discrete LC, IFR, and IGFR

distributions, when added to the moment problem, make the resulting problem noncon-

vex and thus not amenable to either an SDP or LP formulation. Indeed, when Subasi

et al. (2009) derive LC distributions in their applications, they relax the LC property to

unimodality, a shape constraint that can be approached by LP techniques.
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Given this nonconvex problem, one could turn to approximation methods, including

conic-optimization techniques. The copositive cone and its dual are well known to be

powerful tools to convert nonconvex problems equivalently into convex ones (see, e.g.,

Natarajan et al. (2011), Peña et al. (2015), Xu and Burer (2018), Burer (2009), Hana-

susanto and Kuhn (2018)). Natarajan et al. (2011) consider a moment problem without

shape constraints, using copositive cones in representing an underlying nonconvexity due

to integrality. Tools needed to directly connect copositive cones to modeling nonconvexities

due to shape constraints can be found in Peña et al. (2015), although the authors do not

explicitly note this connection. We show below that the LC discrete moment problem we

consider here can be cast as a polynomial optimization problem (see formulation (2) in

Section 2.1) that can be further written as a completely positive conic problem. Despite

the convexity of completely positive conic problems, they typically remain computationally

intractable. Further relaxation is often required to obtain an approximate solution.

We do not follow an approximation approach. The nonconvexities that arise in our

problems are of a certain type that can be leveraged to provide an exact global optimization

algorithm and analytical results on the structure of optimal solutions. Indeed, the feasible

regions have reverse convex properties (as introduced in Meyer (1970) and later developed

in Hillestad and Jacobsen (1980) among others). A set is reverse convex if its complement

is convex. Reverse-convex programming is a little-studied field that has largely found

application in the global optimization literature (see, for e.g., Horst and Thoai (1999)). To

our knowledge, this theory has not been leveraged in robust optimization.

In Section 3, we extend standard results in the reverse convex programming literature

(in particular, those of Hillestad and Jacobsen (1980)) so that they apply to our setting, by

introducing the notion of reverse convexity relative to another set. The main benefit is that

we can show reverse-convex programs of this type have the following appealing structure:

there exist optimal extreme point solutions with a basic feasible structure analogous to

basic feasible solutions in linear programming. The basic feasible structure reveals (in

Section 4) that optimal extreme point distributions in the LC, IFR, and IGFR settings

have a piecewise geometric structure. Our analytical characterization allows us to solve

these discrete moment problems as low-dimensional systems of polynomial equations. We
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propose a specialized computation scheme for working with such systems, which allows us

to provide numerical bounds on probabilities that are tighter than those in the existing

literature, including those bounds that leverage unimodal shape constraints (see Section 5).

In Section 5.3, we further leverage this structure to numerically study a robust newsvendor

problem, assuming demand satisfies an IGFR distribution.

Due to space constraints, technical proofs are found in the e-companion when not pro-

vided in the main text.

Summary of contributions

The main focus of the paper is on the theoretical properties of LC-, IFR-, and IGFR-

constrained moment problems, where we provide structural results on optimal solutions.

For the LC case, we show optimal solutions exist that are piecewise geometric, and for the

IFR and IGFR cases, we show the tail probabilities of optimal distributions are piecewise

geometric.

Our structural results and computational approaches suggest a wide range of applica-

tions due to the prevalence of these classes of shape-constraints in real applications, as

discussed above. For instance, our results can provide new bounds on tail inequalities (i.e.,

Pr(X ≥ a)) for a random variable X under moment and shape constraints. We provide

a numerical framework for computing these bounds. Of particular interest is showing the

applicability of these methods in robust optimization. We take the robust newsvendor

problem as an illustrative example. We show the optimal structure of solutions to discrete

moment problems proves useful in providing sufficient structure for the inner minimization

problems of max-min robust optimization formulations, greatly enabling the solution of

the outer maximization problem. This result builds on the recent paper Ninh et al. (2019)

that looks at the newsvendor problem under discrete demand distributions by including

shape constraints.

Finally, we prove a new result on a generalized form of reverse convex optimization

(Theorem 2) that may be of independent interest, with potential applications to other

nonconvex optimization problems. We believe the connection between reverse convexity

(in particular, the extreme point characterization of such problems) and the structure of
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discrete distributions is also of interest for those who study optimization under uncer-

tainty. At a high level, our method shows that when a distribution is defined by local

conditions (roughly a single property at each outcome of the distribution) then many of

these constraints will be tight at an extremal distribution. Setting these tight constraints

to equalities then lends useful insights about the structure of optimal extremal solutions.

In what follows, we give several instances that make this high-level reasoning precise.

Notation

We use the following notation throughout the paper. Let R denote the set of real numbers

and Rn the vector space of n-dimensional real vectors. Moreover, let Rn+ denote the set

of n-dimensional vectors with all nonnegative components and let Rn++ denote the set

of n-dimensional vectors with all positive components. The closure of the set S in Rn

(in the usual topology) is denoted cl(S) and its boundary by bd(S). Let E[·] denote the

expectation operator and 1A the indicator function of set A; that is, 1A(x) = 1 if x ∈ A

and 0 otherwise.

Let [k, `] = {k, k+ 1, . . . , `− 1, `} denote the set of consecutive integers, starting with

integer k and ending with integer `. Similarly, let (k, `) = {k+ 1, k+ 2, . . . , `− 2, `− 1}. To

avoid confusion, we do not use [·, ·] and (·, ·) in their usual sense as intervals in R. For k, j

positive integers,
(
k
j

)
denotes the binomial coefficient of k choose j; that is, it counts the

number of ways to choose subsets of size j from k objects.

2. The discrete moment problem with nonconvex shape constraints

We study the discrete version of the classical problem of moments with m moments (cf.

Popescu (2005)):

max
µ∈P

∫
Ω

f(w)dµ

where P is a subset of measures µ on a discrete measurable space Ω (with elements denoted

by w), B is a σ-algebra on Ω, f is a measurable function on Ω, and qi ∈ R for i ∈ [0,m].

We take q0 = 1 to ensure that µ is a probability measure and the remaining m constraints

correspond to requiring the measure µ has q1, q2, . . . , qm as its first m moments.
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Our focus is where Ω = {w1, . . . ,wn} ⊆ R is a finite set of real numbers and B is the

power set of Ω. We assume that Ω = {1,2, . . . , n} and so wj = j. In this setting, a measure

µ can be represented by a nonnegative n-dimensional vector (x1, . . . , xn) where µ(wj) = xj

and f(wj) = fj for j ∈ [1, n]. We refer to the vector (x1, . . . , xn) as a distribution and often

suppress the measure µx that it represents. We thus solve the discrete moment problem

(DMP):

max
x∈Rn

n∑
j=1

fjxj (1a)

(DMP) s.t.
n∑
j=1

wijxj = qi for i∈ [0,m] (1b)

µx ∈P. (1c)

Remark 1. In the results that follow, the choices of standard monomial moments wij in

(1b) (and not, e.g., binomial moments as in Prékopa (1990)) and the sample space Ω =

{1,2, . . . , n} is largely taken for ease of notation. The structure of the moment constraints

only affects the parameters of our optimal measures, not their general structure (which is

detailed in Section 4). The main focus of this paper is uncovering the structure implicit in

the choice of P. The type of moments in (1b) are not of primary interest and, moreover,

any choice of moments leaves (1b) linear in the xj and thus amendable to our approach.

Similarly, the choice of Ω = {1,2, . . . , n} (and not some other set of outcomes) does not

affect the underlying structure of optimal measures implicit in P, as long as the description

of those measures are expressible in the elements of Ω. Indeed, some of the descriptions

we consider for P (in particular, LC and IGFR distributions) are only defined for the

case where Ω = {1,2, . . . , n}. Hence, except when otherwise stated, one may think of Ω =

{1,2, . . . , n} as the standard choice. See Remark 5 for additional discussion.

We study problem (1) under three specifications of the set of distributions P in constraint

(1c).

Definition 1 (cf. Definition 2.2 in Canonne et al. (2018)). A distribution x =

(x1, . . . , xn) is discrete log-concave (or simply log-concave or LC) if (i) for any 1≤ k < j <
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`≤ n such that xkx` > 0 then xj > 0; and (ii) for all j ∈ (1, n), xj−1xj+1 ≤ x2
j . We let PLC

denote the class of all LC distributions.

More precisely, (i) implies every LC distribution has a consecutive support ; that is, there

exists some 1≤ k ≤ `≤ n such that xj > 0 for j ∈ [k, `], and xj = 0 otherwise. For an LC

distribution x with support [k, `], we must then ensure xj−1xj+1 ≤ x2
j holds for j ∈ (k, `).

At all other j, the inequality is trivial because at least one of xj−1 or xj+1 is zero.

Definition 2 (cf. Definition 2.4 in Canonne et al. (2018)). A distribution x =

(x1, . . . , xn) has an increasing failure rate (IFR) if the failure-rate sequence sj :=
xj∑n

k=j xk

is a non-decreasing sequence; that is, sk ≥ sj for all k≥ j. We let PIFR denote the class of

all IFR distributions.

Definition 3 (cf. Banciu and Mirchandani (2013)). A distribution x= (x1, . . . , xn)

has an increasing generalized failure rate (IGFR) if the generalized-failure-rate sequence

gj := j
xj∑n

k=j xk
= jsj is a non-decreasing sequence; that is, gk ≥ gj for all k≥ j. We let PIGFR

denote the class of all IGFR distributions.

Remark 2. We remark that Canonne et al. (2018) develop approaches to test whether

a given data set of samples of a discrete random variable statistically support that the

underlying distribution is LC or IFR. These procedures can be naturally extended to test

for the IGFR property. In other words, the LC, IFR, and IGFR properties are statistically

verifiable. Further discussion of statistical tests is outside of the scope of this paper.

By definition, IFR and IGFR distributions always have consecutive support.

It is well known that PLC is a strict subset of PIFR (An 1997), and PIFR is a strict subset

of PIGFR because the failure rate sj is nonnegative. It is straightforward to see the sets

PLC, PIFR and PIGFR are nonconvex. However, they share one additional common feature

that is critical to our approach.

Definition 4. A set R in Rn is reverse convex if R=Rn \S for some convex set S ⊆Rn.

A set R in Rn is said to be reverse convex with respect to (w.r.t) a set T ⊆Rn if R= T \S

for some convex set S ⊆Rn.
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In the remainder of this section, we show that (DMP) with P equal to PLC, PIFR, or

PIGFR have reverse convex constraints w.r.t. Rn+. This common feature is leveraged to

solve these related problems to global optimality in a unified framework. The seemingly

straightforward generalization of reverse convexity to reverse convexity w.r.t. Rn+, however,

can lead to significantly different analytical properties. For example, observe that if a

function f : Rn → R is quasiconcave (over Rn), its lower-level sets are reverse convex.

However, a function whose lower-level sets are reverse convex w.r.t. some strict subset T

of Rn need not be quasiconcave.

2.1. The moment problem over log-concave distributions

Consider problem (DMP) when P = PLC. We separate the optimization over x into first

determining a support (mapping to condition (i) of Definition 1) and then introducing

inequalities of the form xj−1xj+1 ≤ x2
j for j in that support (mapping to condition (ii) in

Definition 1), thus yielding the two-stage optimization problem:

max
k,`:1≤k≤`≤n

max
x∈Rn

∑̀
j=k

fjxj (2a)

(DMP-LC) s.t.
∑̀
j=k

wijxj = qi for i∈ [0,m] (2b)

xj−1xj+1 ≤ x2
j for j ∈ (k, `) (2c)

xj > 0 for j ∈ [k, `] (2d)

xj = 0 for j /∈ [k, `]. (2e)

The strict constraints (2d) make the feasible region appear not to be closed. However,

the following reformulation of (DMP-LC) reveals the feasible region can be described with

non-strict inequalities involving polynomial functions of x (implying continuity) and are

thus closed:

max
x∈Rn

n∑
j=1

fjxj (3a)

(DMP-LC’) s.t.
n∑
j=1

wijxj = qi for i∈ [0,m] (3b)
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xvj−ux
u
j+v ≤ xu+v

j for j ∈ (1, n), u∈ [1, j− 1], v ∈ [1, n− j] (3c)

xj ≥ 0 for j ∈ [1, n]. (3d)

Notice, moreover, that in (DMP-LC’) there is no outer maximization over the support.

Proposition 1. Problems (DMP-LC) and (DMP-LC’) are equivalent.

Proposition 2 below shows (DMP-LC’) is a nonconvex optimization problem where con-

straint (3c) defines a reverse convex set w.r.t. Rn+.

Proposition 2. The set {(x, y, z) : xuyv > zu+v, x ≥ 0, y ≥ 0, z ≥ 0} is convex for any

positive integers u and v.

Whereas the set {(x, y, z) : xuyv > zu+v, x ≥ 0, y ≥ 0, z ≥ 0} is convex, the set where

nonnegativity is relaxed – that is, S = {(x, y, z) : xuyv > zu+v} – is not convex when u is

an odd integer. Indeed, (−2,−1,0) and (1,2,0) are in S but 1/2(−2,−1,0) + 1/2(1,2,0) =

(−1/2,1/2,0) is not in S, when u is odd.

2.2. The moment problem over IFR distributions

Consider problem (DMP) with P =PIFR. The following result illustrates a tight connection

between the IFR case and the LC case. This result is known in the continuous case (see

(Barlow and Proschan 1996, Chapter 2)). We provide details in the appendix for the

discrete case.

Lemma 1. A distribution x= (x1, . . . , xn) has an increasing failure rate if and only if its

tail-probability sequence {F̄1, . . . , F̄n} is LC, where F̄j =
∑n

k=j xk.

In the IFR case, (DMP) becomes

max
x∈Rn

n∑
j=1

fjxj (4a)

(DMP-IFR) s.t.
n∑
j=1

wijxj = qi for i∈ [0,m] (4b)

xj∑n
k=j xk

is non-decreasing in j (4c)

xj ≥ 0 for j ∈ [1, n]. (4d)
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Here, we define 0/0 to be equal to 1 to allow for a finite support range. Using the trans-

formation described in Lemma 1, where yj =
∑n

k=j xk denotes tail probabilities, we can

reformulate (4) as

max
y∈Rn

+

n−1∑
j=1

fj(yj − yj+1) + fnyn (5a)

(DMP-IFR’) s.t.
n∑
j=1

(wij −wij−1)yj = qi for i∈ [0,m] (5b)

yj−1yj+1 ≤ y2
j for j ∈ (1, n) (5c)

yj − yj+1 ≥ 0 for j ∈ [1, n], (5d)

where wi0 and yn+1 are set to 0. Constraint (5c) captures the log-concavity of the tail

probabilities and (5d) captures the non-increasing property of tail probabilities, and the

non-negativity property follows from the non-increasing property with yn+1 = 0. In the IFR

case, no outer optimization over supports is necessary. The consecutiveness of supports

is immediate from the monotonicity condition of the yj. Indeed, once yj = 0 for some j,

yk = 0 for all k > j by monotonicity.

2.3. The moment problem over IGFR distributions

In the IGFR case, (DMP) with P =PIGFR becomes

max
x∈Rn

n∑
j=1

fjxj (6a)

(DMP-IGFR) s.t.
n∑
j=1

wijxj = qi for i∈ [0,m] (6b)

j
xj∑n

k=j xk
is non-decreasing in j (6c)

xj ≥ 0 for j ∈ [1, n]. (6d)

Similar to the IFR case, we use the transformation yj =
∑n

k=j xk to denote tail probabilities.

The non-decreasing constraint (j − 1)
yj−1−yj
yj−1

≤ j yj−yj+1

yj
in (DMP-IGFR) is equivalent to

yjyj−1 + (j − 1)y2
j ≥ jyj+1yj−1. Observe that yjyj−1 =

[√
j− 1yj +

yj−1

2
√
j−1

]2

− (j − 1)y2
j −
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y2j−1

4(j−1)
and jyj+1yj−1 =

[
j
√
j− 1yj+1 +

yj−1

2
√
j−1

]2

−
(
j
√
j− 1yj+1

)2− y2j−1

4(j−1)
. Combining these

two identities with the inequality above yields that(
j
√
j− 1yj+1

)2

+

[√
j− 1yj +

yj−1

2
√
j− 1

]2

≥
[
j
√
j− 1yj+1 +

yj−1

2
√
j− 1

]2

.

Because yj−1 and yj+1 are both nonnegative, this can be further reformulated as∥∥∥∥( j
√
j− 1yj+1√

j− 1yj +
yj−1

2
√
j−1

)∥∥∥∥≥ j√j− 1yj+1 +
yj−1

2
√
j− 1

,

the reverse of the second-order cone (SOC) type constraint, as shown in Proposition 3

below.

Proposition 3. The set

{
(x, y, z) :

∥∥∥∥( ax
by+ cz

)∥∥∥∥<ax+ cz

}
is convex for any positive

numbers a, b, and c.

We can thus reformulate (6) as

max
y∈Rn

n−1∑
j=1

fj(yj − yj+1) + fnyn (7a)

(DMP-IGFR’) s.t.
n∑
j=1

(wij −wij−1)yj = qi for i∈ [0,m] (7b)∥∥∥∥( j
√
j− 1yj+1√

j− 1yj +
yj−1

2
√
j−1

)∥∥∥∥≥ j√j− 1yj+1 +
yj−1

2
√
j− 1

for j ∈ (1, n)

(7c)

yj − yj+1 ≥ 0 for j ∈ [1, n], (7d)

where wi0, yn+1 are set to 0. Constraint (7c) formulates the defining property of IGFR

distributions into a reverse SOC constraint, and (7d) captures the non-increasing and

non-negativity property of tail probabilities (as yn+1 is set to 0).

3. Reverse convex optimization

In this section, we present a general class of problems (reverse convex optimization prob-

lems) that includes all the problems introduced in Section 2 as special cases. This class

admits optimal extreme point solutions that are determined by setting a sufficient num-

ber of inequalities to equalities. This result is reminiscent of linear programming where

extreme points have algebraic characterizations as basic feasible solutions.
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Our analysis proceeds in two stages. First, we discuss a broad class of optimization

problems that have optimal extreme point solutions. Second, we specialize this general

class to a subclass of nonconvex optimization problems where the source of nonconvexity

arises from reverse convex sets (see Definition 4).

3.1. Optimization over (nonconvex) compact sets

Let us first consider a general optimization problem:

min c(x)

s.t. x∈ S,
(8)

where c is a lower semicontinuous and quasiconcave function and S is a nonempty, com-

pact, but not necessarily convex, subset of Rn. Note the results in this section can be

generalized to any locally convex topological vector space in the sense of Aliprantis and

Border (2006, Chapter 5). This generalization is not required for the study of the discrete

moment problem but is potentially relevant for an exploration of the continuous case.

The goal of this subsection is to prove the following:

Theorem 1. Problem (8) has an optimal extreme point.

Recall that an extreme point of S is any point x ∈ S where the set of d such that

x± εd ∈ S for some ε > 0 is empty. Let extS denote the extreme points of the set S. The

special case to Theorem 1 where S is convex is well known and immediate from Aliprantis

and Border (2006, Corollary 7.75):

Lemma 2. If S is compact and convex then (8) has an optimal extreme point solution.

The proof when S is not convex takes a couple more steps. The first step is to work with

the closed convex hull convS of S, which is the intersection of all closed convex sets that

contain S.

Lemma 3. (Theorem 5.3 in Aliprantis and Border (2006)) The closed convex hull of a

compact set is compact. In particular, convS is a compact convex set.

The following lemma helps us leverage these results about closed convex hulls to learn

about the original problem (8).
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Lemma 4. Let S be a compact subset of Rn. Then ext convS ⊆ extS.

We prove Theorem 1 using Lemmas 3 and 4 in Section EC.5 of the online supplement.

3.2. Reverse convex optimization problem with nonnegative constraints

The following lemma captures the essence of reverse convex optimization and serves as a

visualization tool for understanding our main theoretical result below (see Theorem 2).

Lemma 5. Consider the optimization problem

min
x∈Rn

c(x)

s.t. x∈Rp, for p∈ [1, P ],

where c is a lower semicontinuous and quasiconcave function, P ≥ n, and Rp are closed,

reverse convex sets such that F := ∩pRp is a nonempty and compact subset of Rn. Then,

there exists an optimal solution that lies on the boundary of at least n of the sets Rp.

Lemma 5 extracts some ideas from existing results (particularly from (Hillestad and

Jacobsen 1980, Theorem 2)) and presents them in a clean, geometric form. To facilitate

the understanding of this lemma, we further provide an intuitive graphical illustration in

Figure 1.

Despite its elegance, this lemma is insufficient for our purposes. It only applies when

the Rp are reverse convex. The argument breaks down if the Rp are reverse convex w.r.t.

another convex set S, as needed for the problems in Section 2. In particular, when the

convex set S is a polytope, even though we can use Rp∩S as a reverse convex set to replace

Rp, it may contain the boundary of the polytope S. However, this boundary portion of S

may not be the boundary of the feasible region ∩pRp and thus may not contain an optimal

solution as we might expect. The next discussion handles this idea elegantly in a special

case.

A standard setting in reverse convex optimization is to consider a feasible region

F = {x∈Rn : fp(x)≤ 0 for p∈ [1, P ]}
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C1

C2

C3

C4

x∗

F
Y
F̂

Figure 1 An illustration of the general reverse convex programming in R2. The feasible region F is

the intersection of several Rp, where each Rp is the complement of a convex set Cp. After

constructing the feasible polyhedron F̂ (obtained via intersection of supporting hyperplanes

of cl(Cp) that weakly separate x∗), we can show the optimal extreme point solution x∗ lies

on the boundary of at least two of the sets Rp, using the theory of basic feasible solutions in

linear programming.

and assume properties on the functions fp. These properties typically include differen-

tiability assumptions (so that gradients are defined) and some form of concavity (the

weakest being quasiconcavity) over the whole space Rn (see e.g., Theorem 2 in Hillestad

and Jacobsen (1980)). Under these concavity assumptions, the lower-level sets of fp are

reverse convex (with respect to the whole space), and Lemma 5 applies so that extreme

points are determined by a minimum number of tight constraints of the form fp(x) = 0.

Unfortunately, those results do not directly apply in our setting, because our functions are

not quasiconcave over the whole domain. Instead, our problems involve functions whose

lower-level sets are reverse convex w.r.t. the nonnegative orthant.

These considerations motivate us to establish a more general theory of reverse convex

optimization. In particular, we analyze the following problem:

min c(x)

s.t. Ax= b

fp(x)≤ 0 for p∈ [1, P ] (Rev-Cvx)
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x≥ 0,

where c and the fp are functions from Rn to R, A is an m by n matrix, and for 1≤ p≤ P ,

the set {x : fp(x)≤ 0} is reverse convex w.r.t. the nonnegative orthant Rn+.

Assumption 1. We make the following additional technical assumptions on (Rev-Cvx):

(i) the objective function c(x) is continuous and quasiconcave,

(ii) the matrix A is full-row rank with n≥m,

(iii) for each p, fp is differentiable, and

(iv) the feasible region F = {x ∈ Rn+ : Ax = b, fp(x) ≤ 0, p = 1, . . . , P} is nonempty and

compact.

Under these assumptions, we get our desired result.

Theorem 2. Consider an instance of (Rev-Cvx) where Assumption 1 holds. Then, an

optimal extreme point solution exists. Moreover, for any extreme point optimal solution

x∗, at least n−m of the following P +n inequalities are tight:

fp(x
∗)≤ 0 for p∈ [1, P ] (9)

x∗j ≥ 0 for j ∈ [1, n]. (10)

The proof of theorem largely follows the geometric intuition captured in Figure 1. At its

core, it involves defining separating hyperplanes and inscribing a polyhedral set F̂ inside

the feasible region. Then, the equivalence of extreme points and basic feasible solutions for

the polyhedron F̂ is leveraged to establish the result.

However, the proof has additional technical challenges. It must make sense of how

inequalities that describe the orthant Rn+ interact with the gradients of the constraint func-

tions fp. Moreover, the affine equality constraints, Ax= b, that correspond to the moment

conditions in (1), force us to work within the affine space defined by these constraints for

much of the proof. Technical details of the proof are found in the electronic companion.

Remark 3. One might wonder why the nonnegativity constraints in (Rev-Cvx) are not

included as reverse convex constraints directly and denote them accordingly by fp. We do

this for two reasons. One is to emphasize that fp are only reverse convex with respect to the
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positive orthant, which is highlighted by including the constraints xj ≥ 0 explicitly. The

second reason is that in later arguments, we will show that in the appropriate formulation

of our moment problems we can argue the nonnegativity constraints are not tight at

an optimal solution (see, for instance, the comment following (12)). The fact that these

constraints are not tight allows us to say that at least n−m of the constraints fp(x
∗)≤ 0

are binding at an optimal extreme point x∗. Setting these constraints to be tight yields

the desired structure on our optimal solutions.

4. Characterizing optimal extreme point solutions in the discrete
moment problem

Theorems 1 and 2 are powerful tools for analyzing the moment problems we discussed in

Section 2. They allow us to characterize the structure of optimal extreme point solutions.

In the following three subsections, we analyze the LC, IFR, and IGFR distributions cases

from Sections 2.1, 2.2 and 4.3, respectively.

Our analysis has the following general pattern. Each problem has two alternate for-

mulations, with one indicated by a “prime”. In the LC case, these two formulations are

(DMP-LC) and (DMP-LC’). The “prime” formulation has a closed and compact feasible

region that allows us to leverage Theorem 1 to show the existence of an optimal extreme

point solution x∗. With x∗ in hand, we apply Theorem 2 to a small adjustment of the

“non-prime” formulation that replaces strict inequalities with non-strict inequalities based

on the support of x∗. Theorem 2 implies that a certain number of constraints are tight,

including some number of the reverse convex constraints (e.g., (2c) in (DMP-LC)). Making

these constraints tight determines the structure of the optimal extreme point solutions.

Although the proofs follow a similar pattern, we give details in the appendix for each case.

There are some important details in each case that need special care, so we provide careful

details for completeness.

4.1. Log-concavity

Recall the two alternate formulations, (DMP-LC) and (DMP-LC’). In particular, recall

that there are m+ 1 moment constraints in (2b) and (3b).
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Theorem 3. Every feasible instance of (DMP-LC) has an optimal extreme point solution.

Moreover, when n≥m, every optimal extreme point solution x∗ has the following structure:

there exist (i) integers ui and vi for i ∈ [1,m] with k = u1 < v1 = u2 < v2 · · · < vm−1 =

um < vm = ` where [k, `] is the support of x∗ and (ii) real parameters αi > 0, ri > 0 with

αi+1 = αir
vi−ui
i for i∈ [1,m] such that

x∗j =

{
αir

j−ui
i for j ∈ [ui, vi]

0 otherwise.
(11)

That is, an optimal solution to (DMP-LC) exists with piecewise geometric structure with

(at most) m pieces.

Proof. Consider the (DMP-LC’) representation of the problem. The 0-th order moment

constraint ((3b) for i = 0) is
∑n

i=1 xi = 1, which, along with the nonnegative constraints

(3d), implies the feasible region of the problem (DMP-LC’) is bounded. To leverage Theo-

rem 1 to show that an optimal extreme point solution to (DMP-LC’) exists, it thus suffices

to show the feasible region is closed. This follows since all of the constraint functions are

continuous in the decision vector x. By Proposition 1, (DMP-LC) also has an optimal

extreme point.

Let x∗ be any extreme optimal solution and, for simplicity, we assume its support is

[1, n] (the general case of supposing [k, `] with 1 < k < ` < n follows analogously). Note

that when n≤m, there are at most m points in the interval [1, n], where each point xj,

j ∈ [1, n] could be viewed as a single piece, and the conclusion readily follows. Therefore,

in the remainder of the proof, we assume n≥m+ 1.

Let x := min{x∗j : j ∈ [1, n]}> 0 and define the following problem:

max
x∈Rn

n∑
j=1

fjxj (12a)

s.t.
n∑
j=1

wijxj = qi for i∈ [0,m] (12b)

xj−1xj+1 ≤ x2
j for j ∈ (1, n) (12c)

xj ≥ x/2 for j ∈ [1, n]. (12d)

xj ≥ 0 for j ∈ [1, n] (12e)
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u1 = 1 v1 = u2 = 4 v2 = 7

r2 = 0.5

r1 = 0.8

α1

α2

Prob.

Index, j

mass
x∗j

Figure 2 Piecewise geometric structure of optimal extreme point solutions for a problem with m= 2.

Note that (12) is a restriction of (DMP-LC) with a given support and replacing the strict

inequalities in (2d) with non-strict inequalities in (12d). We have also added redundant

nonnegativity constraints in (12e) so that it fits our reverse convex programming framework

as in Theorem 2. Note also that x∗ is an extreme optimal solution to (DMP-LC) and it is

feasible to (12); hence, x∗ is an extreme optimal solution to (12).

At the extreme point x∗, the constraints (12d) and (12e) cannot be tight, so the appli-

cation of Theorem 2 implies that at most m − 1 of the (12c) constraints are not tight

at x∗. These non-tight indexes can divide the interval [1, n] into at most m pieces, and

within each piece, we have x∗j−1x
∗
j+1 = (x∗j )

2, for j ∈ [ui, vi], where ui and vi are the left

and right endpoints of piece i of the domain. Note that such a system implies x∗j = rj−uii x∗ui

for j ∈ [ui, vi]. Setting αi = x∗ui yields the form (11). �

The piecewise geometric form (11) of optimal extreme point distributions to (DMP-LC)

is illustrated in Figure 2.

Remark 4. Note that a basic count of tight constraints is able to deliver the piecewise

geometric structure since the number of constraints in (DMP-LC) for a given support is

small compared to the number of variables. Consider support [1, n] in (DMP-LC). Theo-

rem 2 implies n−m of the 2n− 2 constraints in (2c)–(2d) are tight. Since all constraints
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in (2d) are strict (shown carefully in the proof), this implies all n−m tight constraints

are from (2c) and thus of the form xj−1xj+1 ≤ x2
j . Setting n−m of these constraints to

equality directly yields the geometric structure (11).

Remark 5. This remark builds on Remark 1 on the choice of the structure of the moment

constraints in (1b), in the specific context of this section. Notice the main contribution

of Theorem 3 is how to handle the shape constraints (2c). We use Theorem 2 to argue a

sufficient number of the shape constraints are tight, lending the optimal solution structure,

as seen in (11). Note this structure holds independently of the form of the moments in

constraint (2b). A different choice other than the power moments will only impact the

parameters in (11) (i.e., the specific αi and ri) and not the overall structure. In our numer-

ical experiments, we focus on computing parameters given the power moments in (1b)

for their simplicity; however, these methods could be adapted for more general moments,

possibly with additional effort needed for computation.

We do remark that changing the domain from Ω = {1,2, . . . , n} to some other domain

could present issues, largely because we do not have definitions of LC and IGFR in

these cases. Indeed, all reference to discrete LC distributions we could find in the litera-

ture (including Canonne et al. (2018), Johnson and Goldschmidt (2006), Wellner (2013),

Johnson et al. (2013), Balabdaoui et al. (2011), Saumard and Wellner (2014)) take Ω =

{1,2, . . . , n}. That domain is hard-coded into the definition of gj in Definition 3.

4.2. Increasing failure rate

Recall the formulation (DMP-IFR’) of the IFR moment problem in Section 2.2 with yj =∑n

k=j xk. We will show the optimal solution has a similar structure to the LC case, again

using Theorems 1 and 2.

Here we notice two facts. First, by the IFR constraint and the non-increasing property

of yj, any feasible solution y has consecutive support naturally, and the support starts

from y1 = 1. This case is different from the LC case. Second, if there is some ` such that

y` = y`+1 > 0, this scenario combined with the constraint y`−1y`+1 ≤ y2
` indicates we have

y`−1 ≤ y`. However, we also have y`−1 ≥ y` in the problem’s constraints, which means

y` = y`+1 > 0 implies y`−1 = y`. Then, by induction, we have y1 = · · ·= y`+1 = 1.
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Combining the two facts above, the interval [1, n] can be divided into three consecutive

parts: [1, k), [k, `), [`,n], where we have y1 = · · · = yk = 1, 1 = yk > · · · > y` = 0, 0 = y` =

· · ·= yn; that is, an all-one interval, a strictly decreasing interval, and an all-zero interval.

Further, the optimal solution in the middle interval has a more detailed characterization

stated here.

Theorem 4. Every feasible instance of (DMP-IFR’) has an optimal extreme point solu-

tion. Moreover, when n≥m+ 1, for every optimal extreme point solution y∗, there exist

integers 1≤ k≤ ` such that yj = 1 when j ≤ k, yj = 0 when j ≥ `. The interval [k, `) can be

divided as follows. There exist (i) integers ui and vi for i ∈ [1,m] with k = u1 < v1 = u2 <

v2 · · ·< vm−1 = um < vm = `− 1 (ii) real parameters αi > 0, 0< ri < 1 with αi+1 = αir
vi−ui
i

for i∈ [1,m] such that

y∗j =


αir

j−ui
i for j ∈ [ui, vi]

1 j ≤ k
0 j ≥ `.

(13)

4.3. Increasing generalized failure rate

Similar to the IFR case, we establish a similar structural result for the IGFR case. The

proof follows the pattern described at the outset of this section.

Theorem 5. Every feasible instance of (DMP-IGFR’) has an optimal extreme point solu-

tion. Moreover, when n≥m+ 1, for every optimal extreme point solution y∗, there exist

integers 1≤ k ≤ ` such that yj = 1 when j ≤ k, yj = 0 when j ≥ `. The interval [k, `) can

be divided as follows. There exist (i) integers ui and vi for i ∈ [1,m] with k = u1 < v1 =

u2 < v2 · · · < vm−1 = um < vm = `− 1 (ii) real parameters αi > 0, 0 < ri < 1 with αi+1 =

αi
∏vi−ui
k=1 (1− ri

k+ui−1
) for i∈ [1,m] such that

y∗j =


αi for j = ui
αi
∏j−ui
k=1 (1− ri

k+ui−1
) for j ∈ (ui, vi]

1 j ≤ k
0 j ≥ `.

(14)

Observe that the tail probabilities are no longer piecewise geometric, as in previous

cases, but nonetheless have an attractive structure that we can work with in later sections.
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5. Numerical results

In this section, we use the results in Section 4 to numerically solve a representative sam-

ple of moment problems and a robust newsvendor problem. We first focus on a practical

method to solve the moment problem over LC distributions, IFR distributions, or IGFR

distributions with two moments as a proof of concept of our approach. Then, we pro-

vide some preliminary numerical results of our method on a binomial moment-constrained

problem and a robust newsvendor problem.

5.1. Computational approach for the moment problems

Our computational approach is based on the structure of optimal extreme point solutions

in Theorems 3 to 5. According to those theorems, when restricting attention to the problem

with two moment constraints, an optimal two-piece distribution exists for the corresponding

moment-constrained problem, (DMP-LC), (DMP-IFR), or (DMP-IGFR). According to

(11), (13), and (14), we can restrict the search on the seven-dimensional decision space–

k, v1, `, α1, α2, r1, and r2– to construct a solution that satisfies the constraints of the

problem with the largest objective value. The transformed objective function over this

seven-dimensional decision space is denoted f̂(·). A more traditional approach to solving

(11), (13), and (14) would take x or y as the decision variable and solve them directly. The

resulting problems are nonconvex and (potentially) high dimensional if n is large, whereas

our approach remains low dimensional as n grows.

We first implement a normalization step to simplify the analysis. Recall that an instance

of a two-moment problem is specified by the elements of the sample space Ω = {w1, . . . ,wn}

and the moments q1 and q2. In the rest of this section, we shift and scale the ele-

ments of the sample space so that the resulting distribution has mean q′1 = 0 and vari-

ance q′2 = 1. For each j ∈ [1, n], this means subtracting the mean q1 from wj and scal-

ing the result by ε := 1/
√
q2− q2

1. The resulting sample space is Ω′ = {w′1, . . . ,w′n} =

{w1ε− q1ε,w2ε− q1ε, . . . ,wnε− q1ε}. That is, w′j = wjε− q1ε for j ∈ [1, n]. Again, for sim-

plicity we assume, as in Section 2, that wj = j so that we have w′j = jε− q1ε.

In the aforementioned seven-dimensional decision space, the first three variables concern

the domain: k and ` describe the support, and v1 describes the “break point” between the
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two pieces of the underlying distribution. For fixed k, `, and v1, we note α2 = α1r
v1−k
1 for

the log-concave and IFR distributions, whereas α2 = α1

∏v1−k
w=1 (1− r1

w+k−1
) for the IGFR

distribution. Furthermore, note that α1 = yk = 1 for the IFR and IGFR distributions,

whereas for the LC distribution the 0-th moment condition of

v1−1∑
j=k

α1r
j−k
1 +

∑̀
j=v1

α1r
v1−k
1 rj−v12 = 1 (15)

implies α1 = 1/(
∑v1−1

j=k rj−k1 +
∑`

j=v1
rv1−k1 rj−v12 ). Therefore, we can represent α1 and α2

explicitly in terms of k and ` and v1. Consequently the first- and second-order moment

constraints give us two equations, g1(r1, r2) = 0 and g2(r1, r2) = 0, in two unknowns r1

and r2. In fact, the equation g1(r1, r2) = 0 implies the existence of a function h(·) such

that r2 = h(r1). Replacing r2 with h(r1) in g2(·) yields a new equation g2(r1, h(r1)) = 0

with one unknown r1. This equation can be solved by any solution method for a one-

dimensional nonlinear equation. In this paper, we adopt Newton’s method. Unfortunately,

we are unable to get analytical forms of h(r1) and g(r1, h(r1)). However, we can evaluate

the values of h(r1), g2(r1, h(r1)), and dg2(r1,h(r1))

dr1
for any r1, which is sufficient for applying

Newton’s method. The treatments for computing these values is different for each of the

three cases (LC, IFR, and IGFR) and are explained separately below. Our method to solve

the two moment problem is made explicit in Algorithm 1.

Algorithm 1 has O(n3) iteration complexity. Giving run-time complexity is difficult

because we apply Newton’s method in each iteration to solve a one-dimensional nonlinear

equation, and Newton’s method does not have a global convergence rate result. However,

we provide the total realized running times of our algorithms for specific instances in

Figure 3 to justify the efficiency of our approach.

Our main focus is problems with two moments. Additional details on this case for LC,

IFR, and IGFR problems are provided in the next subsections. In principle, however, our

approach can be generalized to problems with m moments. We provide a brief discussion

here for the LC case (the IFR or IGFR shape-constrained cases follow from similar argu-

ments). According to Theorem 3, at most m geometric pieces exist and we can enumerate

the endpoints vi and ui of each piece. The probability mass αi at the starting point and
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Algorithm 1 Solving the two-moment problem

Initialization: f∗ =−∞;

for 1≤ k≤ v1 ≤ `≤ n [enumerate all possible k, l and v1] do

Solve equation g2(r1, h(r1)) = 0 by Newton’s method;

if a solution r1 exists then

Compute r2 = h(r1);

Let α1 = 1 for IFR/IGFR (α1 = 1/(
∑v1−1

j=k rj−k1 +
∑`

j=v1
rv1−k1 rj−v12 ) for LC);

Compute α2 = α1r
v1−k
1 for LC/IFR (α2 = α1

∏v1−k
w=1 (1− r1

w+k−1
) for IGFR);

if k, v1, `,α1, α2, r1, r2 satisfy the LC/IFR/IGFR constraint at v1 then

Compute the objective value fTemp = f̂(k, v1, `,α1, α2, r1, r2);

if fTemp > f∗ then

Update f∗ = fTemp and (k∗, v∗1 , `
∗, α∗1, α

∗
2, r
∗
1 , r
∗
2) = (k, v1, `,α1, α2, r1, r2).

end if

end if

end if

end for

Return optimal value f∗ and optimal solution (k∗, v∗1 , `
∗, α∗1, α

∗
2, r
∗
1, r
∗
2).

the slope ri of each piece remains to be found. In fact, it suffices to treat α1 and ri’s as

independent variables because the other αi are determined by the relation αi+1 = αir
vi−ui
i .

Moreover, the choice of α1 is determined (given the r1, . . . , rm) by the 0-th moment condi-

tion in (2b). Consequently, given the endpoints vi and ui, we solve m nonlinear equations

introduced by the m moment constraints in m unknowns r1, · · · , rm. Algorithm 1 specifies

a way to solve these equations when m= 2. For general m, we can resort to algorithms for

solving general nonlinear equations. In particular, we can transform the nonlinear-equation

problem to a nonlinear least-squares problem and then apply the Gauss-Newton method

or Levenberg-Marquardt methods to find numerical solutions. Finding additional structure

that can speed up these computations may be possible, but analysis in this direction is

beyond our scope.
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5.1.1. Log-concave distribution Now, we explain how to solve the equation

g2(r1, h(r1)) = 0 in Algorithm 1 when the underlying distribution is LC. To implement

Newton’s method, we need to evaluate h(r1), g2(r1, h(r1)) and dg2(r1,h(r1))

dr1
numerically. In

this case, we are given the support [k, `] and break point v1 in Algorithm 1. For ease of

computation, we perform a variable transformation by letting ρ= α2 = α1r
v1−k
1 , r2 = eα,

and r1 = e−β for nonnegative scalars α and β such that the 0-th, first and second moment

conditions (recall that via normalization, q′1 = 0, q′2 = 1 and sample point w′j = jε− q1ε)

amount to
k̃∑
j=1

ρeβj +

˜̀∑
j=1

ρeαj + ρ= 1 (16)

k̃∑
j=1

ρeβj(a− jε) +

˜̀∑
j=1

ρeαj(a+ jε) + ρa= 0. (17)

k̃∑
j=1

ρeβj(a− jε)2 +

˜̀∑
j=1

ρeαj(a+ jε)2 + ρa2 = 1, (18)

where a=w′v1 = v1ε− q1ε. We re-index the sums and set k̃= v1−k and ˜̀= `− v1. By first

eliminating ρ, we get two equations in two unknowns:

g1(α,β) :=
k̃∑
j=1

eβ j(a− jε) +

˜̀∑
j=1

eαj(a+ jε) + a= 0 (19)

g2(α,β) :=
k̃∑
j=1

eβ j +

˜̀∑
j=1

eαj + 1−
k̃∑
j=1

eβ j(a− jε)2−
˜̀∑

j=1

eαj(a+ jε)2− a2 = 0. (20)

Next, we want to show that, given an α, a unique choice of β exists such that g1(α,β) = 0,

which further implies the existence of the function h(·) such that β = h(β). We achieve

this task by exploring monotonicity properties of g1. First, a direct computation yields

∂g1(α,β)

∂α
=

˜̀∑
j=1

j · (a+ jε)eαj =E
[
X

ρ
· X − a

ε
·1X>a

]
(21)

∂g1(α,β)

∂β
=

k̃∑
j=1

j · (a− jε)eβ j =E
[
X

ρ
· a−X

ε
·1X<a

]
, (22)

where X is the discrete random variable with distribution x= (x1, . . . , xn). We then use

the following technical lemma.
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Lemma 6. Suppose the polynomial φ(z) =
∑M

j=1 ajz
ij with z ∈R satisfies

a1 ≤ a2 ≤ · · · ≤ aM and 1≤ i1 ≤ i2 ≤ · · · ≤ iM , (23)

where the ai’s are not all zero. Then, φ(z) has at most one root when z > 0 and is increasing

on {z | φ(z)≥ 0}.

It follows from (17) that E [X ·1X>a] =
∑k̃

j=1 e
αj(a + jε) ≥ 0 and E [X ·1X<a] =∑˜̀

j=1 e
β j(a − jε) ≤ 0. Now, apply Lemma 6 to the polynomials

∑k̃

j=1 e
αj(a + jε) and

−
∑˜̀

j=1 e
β j(a− jε), respectively (in the former, z is eα and aj = a+ jε). Supposing roots

exist to these polynomials, define

α0 = min{α :

˜̀∑
j=1

eαj(a+ jε) = 0} and β0 = min{β :
k̃∑
j=1

eβ j(a− jε) = 0}

such that E [X ·1X>a]≥ 0 if and only if α≥ α0, and E [X ·1X<a]≤ 0 if and only if β ≥ β0.

If roots do not exist, set α0 =−∞ and/or β0 =−∞. Thus, it suffices to focus on the region

where α≥ α0 and β ≥ β0. As a result, when α≥ α0,

E [X · (X − a)1X>a] =

{
E [(X − a)21X>a] +E [a · (X − a)1X>a]≥ 0, if a≥ 0
E [X2 1X>a]− aE [X ·1X>a]≥ 0, if a< 0.

Similarly for β ≥ β0, we have

E [X · (a−X)1X<a] =

{
E [−X2 1X<a] + aE [X ·1X<a]≤ 0, if a≥ 0
E [−(X − a)21X<a] +E [a · (a−X)1X<a]≤ 0, if a< 0.

(24)

In summary, we have ∂g1(α,β)

∂α
≥ 0 when α≥ α0, and ∂g1(α,β)

∂β
≤ 0 when β ≥ β0. This mono-

tonicity yields our desired property that we can identify a mapping h(·) such that β = h(α).

Plugging this identity into (20) yields the equation g2(α,h(α)) = 0, which corresponds to

equation g2(r1, h(r1)) = 0 in Algorithm 1. To apply Newton’s method, we must find the

derivative with respect to α. Observe that

∂g2(α,β)

∂α
=

˜̀∑
j=1

j · eαj −
˜̀∑

j=1

j · (a+ jε)2eαj =E
[

1−X2

ρ
· X − a

ε
·1X>a

]
(25)

and

∂g2(α,β)

∂β
=

k̃∑
j=1

j · eβ j −
k̃∑
j=1

j · eβ j(a− jε)2 =E
[

1−X2

ρ
· a−X

ε
·1X<a

]
, (26)
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and so

dg2(α,h(α))

dα
=
∂g2(α,β)

∂α
+
∂g2(α,β)

∂β
· ∂h(α)

∂α
=
∂g2(α,β)

∂α
+
∂g2(α,β)

∂β
·
−∂g1(α,β)

∂α
∂g1(α,β)

∂β

. (27)

Using this derivative, Newton’s method on the interval [α0,+∞] of real numbers finds all

roots of g2(α,h(α)).

It is well known that Newton’s method has local quadratic convergence, provided that

the gradient of function is Lipschitz continuous (see Chapter 2 in Dennis Jr and Schnabel

(1996)). Unfortunately, we are not able to prove that the gradient d
dα
g2(α,h(α)) in our

problem is Lipschitz continuous. However, we can establish that the gradient is continuous.

This requires part the following technical lemma.

Lemma 7. Suppose the discrete random variable X has diameter D, i.e., |X| ≤D for all

X. When the distribution of X has positive mass on both sides of a then the absolute value

of d
dβ
g1(α,β) is uniformly bounded below.

Remark 6. If the distribution of X is only on one side of a (potentially including a) it

must be single piece log-concave distributed, where the densities are determined by (19)

and Lemma 6.

Theorem 6. When the distribution of X has positive mass on both sides of a, the gradient

d
dα
g2(α,h(α)) is continuous.

It is easy to see why d
dα
g2(α,h(α)) is continuous. Given the expression of d

dα
g2(α,h(α))

in (27), this follows from the continuity of ∂g2(α,β)

∂α
, ∂g2(α,β)

∂β
, ∂g1(α,β)

∂α
, ∂g1(α,β)

∂β
, and the fact

that |∂g1(α,β)

∂β
| has a uniform lower bound.

The fact that d
dα
g2(α,h(α)) is continuous (and thus g2(α,h(α)) is continuously differ-

entiable in α) is useful for showing convergence of Newton’s method, as shown in the

following result.

Theorem 7. Suppose the function ϕ is continuously differentiable and γ is a simple root

of φ (i.e. ϕ(γ) = 0 and ϕ′(γ) 6= 0). Then there exists a δ > 0 such that |z0− γ| ≤ δ implies

that the sequence {zk} generated by the Newton’s method applied to ϕ satisfies the following

two properties: (i) |zk+1− γ|< |zk− γ| ≤ δ and (ii) {zk} converges superlinearly.
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Here φ plays the role of g2(α,h(α)) and the target root for α is denoted γ. Since the roots

we seek are of the system of two polynomials (the system (19)–(20)) the target root γ is

almost surely simple. Discussing the degenerate case of Newton’s method on a non-simple

root is beyond the scope of our paper.

Newton’s method starting from a given initial point could converge to one root of

g2(α,h(α)), which is not necessarily an optimal solution to the original moment problem.

Therefore, we need to run Newton’s with multiple initial points to find all roots and pick

the best one. However, the question remains as to how many initial points are required to

get an approximate root within any given tolerance level ε̂. In the theorem below, we shall

show | d
dα
g2(α,h(α))| is uniformly upper bounded by some constant L. Consequently, when

the current solution xk is not an approximate root (i.e. |g2(xk, h(xk))|> ε̂), the Newton step

size is | − g2(xk,h(xk))

g′22(α,h(α))
| ≥ ε̂

L
. Therefore, the distance of two initial points should be greater

than ε̂
L

, otherwise within one Newton step the sequence could jump to a point closer to

other initial points and fall into the convergence regions belong to other initial points.

Theorem 8. When the distribution of X has positive mass on both sides of a, there exists

an L such that | d
dα
g2(α,h(α))| ≤L for all α.

This shows we can find an approximate root of g2 using a convergent Newton’s method

and thus have a convergence method to solve the two-moment problem described in this

section to approximate optimality given an arbitrary tolerance level.

5.1.2. IFR and IGFR distributions We only discuss how to solve equation

g2(r1, h(r1)) = 0 for an IGFR distribution, because solving such an equation for an IFR

distribution follows a similar logic. Recall that α1 = 1 and α2 = α1

∏v1−k
w=1 (1− r1

w+k−1
) for

the IGFR distribution. Then, the first and second moment condition become

g1(r1, r2) :=(k− q1)2ε2 +

v1∑
j=k+1

j−k∏
w=1

(
1− r1

w+ k− 1

)
(j− q1)2ε2

+
l∑

j=v1+1

v1−k∏
w=1

(
1− r1

w+ k− 1

) `−v1∏
w=1

(
1− r2

w+ v1− 1

)
(j− q1)2ε2 = 1, (28)
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g2(r1, r2) :=(k− q1)ε+

v1∑
j=k+1

j−k∏
w=1

(
1− r1

w+ k− 1

)
(j− q1)ε

+
l∑

j=v1+1

v1−k∏
w=1

(
1− r1

w+ k− 1

) `−v1∏
w=1

(
1− r2

w+ v1− 1

)
(j− q1)ε= 0, (29)

where 0< r1, r2 < 1. Obviously, g1(r1, r2) is monotonically decreasing with respect to r2.

Thus, for any given r1, there is at most a unique choice of r2 such that g1(r1, r2) = 1, which

further implies a function h(·) with r2 = h(r1). As a result, for fixed r1, we can compute

the value of r2 through the bisection search on the equation g1(r1, r2) = 1, and the value

of g2(r1, h(r1)) efficiently. Moreover, the derivative dg2(r1,h(r1))

dr1
can also be evaluated by

similar approach described earlier for the LC distribution. Therefore, Newton’s method is

applicable to solve the equation g2(r1, h(r1)) = 0 on the interval [0,1].

5.2. Binomial moment-constrained problem

To illustrate the performance of the proposed computational approach, we implement it on

a concrete example that appears in the literature (Subasi et al. 2009). The main focus of the

paper is the theoretical properties for global optima of shape-constrained discrete moment

problems instead of developing fast algorithms. Therefore, we provide this example only

for illustrative purposes. A more in-depth investigation of efficient computation methods

for general problems is left for future work.

In Subasi et al. (2009), the authors aim to solve a specific discrete moment problem

(Example 4) with the LC constraints in (2). However, their methodology requires relaxing

the constraint to be unimodal, which they solve via linear programming. As a type of

benchmark, we compare their bounds with the bounds derived from our method.

Our benchmark calculations use the unimodal relaxation of Subasi et al. (2009),

described below in our notation. The sample space (before scaling) is always the natural

numbers up to n− 1 (that is, wj = j− 1) and we solve

max
K

max
x∈Rn

n∑
j=1

fjxj

s.t.
n∑
j=1

wijxj = qi for i∈ [0,2]



Chen, He, Jiang, Ryan, and Zhang: Shape-Constrained Moment Problem
32 Article submitted to Operations Research; manuscript no. OPRE-2017-08-413.R1

xj ≤ xj+1 for j ∈ [1,K − 1]

xj ≥ xj+1 for j ∈ [K,n− 1],

where K is the “mode” of the distribution. Instead of moment constraints, we use the

binomial moment constraints of Subasi et al. (2009) with data specified in Table 1; that

is,
n∑
j=1

(
wj
i

)
xj = Si, for i∈ [0,2],

where the data S0, S1, S2 can be transformed to moment data q0, q1, q2 via the linear trans-

formation: q0 = S0, q1 = S1, and q2 = 2S1 +S2. This linear transformation can be extended

to higher moments (see (Prékopa 2013, Section 5.6) for details). The objective function is

the probability mass Pr(X ≥ 1) =
∑n

j=1 fjxj =
∑n

j=2 xj on the positive values of wj. This

objective provides an upper bound on the tail probability given the first two moments.

Optimizing the negative of this objective also allows us to calculate lower bounds on tail

probabilities. The results are shown in Table 1. We consider three different supports: [0,4],

[0,10], and [0,20]. The first two were considered in Subasi et al. (2009). The latter is

included to demonstrate how our approach scales with the support size.

We also include in the table comparisons to naive methods that solve (DMP-LC) in these

instances using the stock global optimization solver in Matlab’s optimization toolkit.1.

As the reader can see, where the Matlab solver converges, it agrees with the results found

using our methodology. Moreover, in many cases, the Matlab solver cannot find an optimal

solution.

The LC constraint gives tighter lower and upper bounds in all cases. This finding is

expected because the unimodal relaxation is indeed a relaxation. By solving the original

LC version of the problem we are able to achieve tighter lower and upper bounds.

5.3. Robust newsvendor problem

We consider the standard newsvendor problem with random demand X distributed by

measure µ, overage cost co and shortage cost cs. Order quantity Q is chosen to minimize

the expected sum of the two costs:

min
Q
f(Q;µ) := coEµ[Q−X]+ + csEµ[X −Q]+.
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Table 1 Numerical results for the bounds for the total probability for non-negative values with

different constraints and methods. The bounds with * in the Naive Method have exit-flags Local

optimal/Infeasible returned from the toolkit.

Unimodal
Log-concave
Algorithm 1

Log-concave
Näıve

n S1 S2 LB UB
Time
(sec) LB UB

Time
(sec) LB UB

Time
(sec)

5 1.9 1.3 0.8750 1 3.2 0.9000 1 3.9 0.9000 1 1.3
5 2.1 1.3 0.9750 1 3.3 0.9920 1 3.4 0.9920 1 0.6
5 1.9 1.7 0.8000 1 3.0 0.8094 0.8433 3.2 0.8096* 0.8232* 0.9
11 5.2 13.1 0.9482 1 7.6 0.9684 1 62.5 0.8699* 1 2.4
11 4.6 13.1 0.8745 1 8.5 0.8924 0.9026 55.2 0.6995* 0.9996* 4.9
11 5.2 15.1 0.9208 1 7.2 0.9310 0.9921 52.9 0.9074* 1* 3.8
21 6.2 28.4 0.79 1 20.0 0.8934 0.97 656.2 0.6214* 1* 5.2
21 15.0 114.5 0.987 1 20.1 0.9956 1 442.5 0.9301* 1* 4.2
21 16.6 132.6 0.9962 1 16.5 0.9997 1 431.6 0.9813* 1* 6.3

Algorithm 2 Solving robust newsvendor problem with LC, IFR, or IGFR shape uncer-

tainty

Input: A lower bound Ql, an upper bound Qu and error tolerance δ;

Let φ= (1 +
√

5)/2, Q1 =Qu− (Qu−Ql)/φ and Q2 =Ql + (Qu−Ql)/φ;

Compute f1 = f̃(Q1) and f2 = f̃(Q2) by Algorithm 1;

while Q2−Q1 ≥ δ do

if f1 ≥ f2 then

Update Qu =Q2, Q2 =Q1 and f2 = f1;

Compute Q1 =Qu− (Qu−Ql)/φ and f1 = f(Q1) by Algorithm 1;

else

Update Ql =Q1, Q1 =Q2 and f1 = f2;

Compute Q2 =Ql + (Qu−Ql)/φ and f2 = f(Q2) by Algorithm 1;

end if

end while

Return (Q1 +Q2)/2.

Given a family of distributions P, the robust newsvendor problem is

min
Q

max
µ∈P

f(Q;µ).
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We further restrict the distributions in P to have common first- and second-order moments

as well as a given shape constraint among LC, IFR, or IGFR:

P =
{
µ is LC, IFR, or IGFR |Eµ[X] = q1, Eµ[X2] = q2

}
.

Note f(Q;µ) is convex in Q for any µ. Therefore, f̃(Q) := maxµ∈P f(Q;µ) is convex in Q

as well. Moreover, for given Q, computing the value f̃(Q) amounts to finding the worst-

case distribution µ from P, which can be solved by Algorithm 1. Hence, we provide a

golden-section search procedure in Algorithm 2 to solve minQ f̃(Q) efficiently.

To test the capability of our approach, we vary the ratios between co and cs to generate

different newsvendor problems while fixing the moment values q1 = 2.155 q2 = 1.527 with

support [0,20] to construct the distribution set P. We solve minQmaxµ∈P f(Q;µ) with

no shape constraint, unimodal constraint, IGFR constraint, IFR constraint, and LC con-

straint. The last three types of constraints are solved by Algorithm 2. When there is no

shape constraint, we have the closed-form solution of Ninh et al. (2018). The problem with

the unimodal constraint is modeled as a linear program and solved by the competitive

commercial solver Gurobi.

The left subfigure in Figure 3 shows the optimal cost curves associated with no shape

constraint (the Scarf solution), IGFR constraint, IFR constraint, and LC constraint plotted

in a decreasing order, which matches the inclusion relations among the distribution set P
defined by those shape constraints. Therefore, the LC constraint gives the least conservative

robust solution, because the set of LC distributions is the most restrictive. The unimodal

and the IFR cost curves because an IFR distribution need not be unimodal, as shown in

the following example.

Example 1. Consider a distribution µ with support [1,4]. Let r1 = 4/5, r2 = 2/3, and the

tail probability y1 = 1, y2 = r1, y3 = r1r2, and y4 = r1r
2
2. Obviously, {y1, y2} and {y3, y4}

satisfy (13) and constitute the two pieces. Moreover, y2
2 = r2

1 > r1r2 = y1y3 satisfies (5c) at

the break point. Therefore, µ indeed is an IFR distribution. On the other hand, according

to the values of the yi, we have that x1 = 1/5, x2 = 12/45, x3 = 8/45, and x4 = 16/45.

Therefore, µ is not unimodal.

Finally, the right subfigure of Figure 3 shows the run time for solving the problem with

LC, IFR, and IGFR constraints are consistent across different instances.
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Figure 3 Performance comparison and run time for robust newsvendor model. Recall that co is the

overage cost and cs is the shortage cost, so the horizontal axis in both figures in the relative

cost cs/co.

6. Conclusion

In summary, we use a reverse convex optimization approach to characterize optimal

extreme point distributions for moment problems with reverse convex shape constraints.

This characterization allowed us to design an exact low-dimensional algorithm for solving

these problems to optimality.

The results in this paper can be applied and built on in several directions, which we

leave for future work. First, exploration of additional applications in robust optimization

involving shape constraints is one obvious example. Our work on the robust newsvendor

problem is a proof of concept of this direction of research. Second, although these results

are for the discrete moment problem, we believe they can be extended through limiting

arguments to the continuous case. Lastly, future research could more deeply explore imple-

mentations of our computational approach paying attention to issues of numerical stability

and scaling properties.
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Proofs

EC.1. Proof of Proposition 1

Setting u= v= 1 in (3c) specializes to (2c). Further, (3c) guarantees consecutive support:

if there exist j1 < j2 < j3 such that xj1 , xj3 > 0, xj2 = 0, by setting u= j2− j1, v = j3− j2,

the constraint xvj−ux
u
j+v ≤ xu+v

j for j = j2 is violated. Hence, every feasible distribution of

(DMP-LC’) is a feasible distribution of (DMP-LC) with the same objective value (note

the objectives of both problems are identical).

On the other hand, any feasible distribution to problem (2) with support [k, `] satisfies

(3c), and by a straightforward induction starting with (2c) as a base case. To be specific,

we assume that for some u and v, xvj−ux
u
j+v ≤ xu+v

j holds for j ∈ (k, `), j−u≥ k, j+ v ≤ `,

and we want to show that xv+1
j−ux

u
j+v+1 ≤ xu+v+1

j . Then it suffices to establish

xj−ux
u
j+v+1 ≤ xuj+vxj, (EC.1)

From (2c), we have that x2
j+v ≥ xj+v−1xj+v+1, x2

j+v−1 ≥ xj+v−2xj+v, · · · , x2
j−k ≥

xj−k+1xj−k−1. Putting those equalities together by applying multiplications to and cancel-

ing out the same terms on both sides give that

xj+vxj−k ≥ xj+v+1xj−k−1, 0≤ k≤ j− 2. (EC.2)

Hence, starting from xj+vxj ≥ xj+v+1xj−1, multiplying it by (EC.2) with 1≤ k≤ u−1, and

(EC.1) follows as required by canceling out the same terms on both sides.

For those points j such that j − u or j + v is outside the support, or the middle point

j outside the support, the constraint xvj−ux
u
j+v ≤ xu+v

j holds naturally because the left-

hand side is zero for these cases. In other words, (3c) is satisfied. Hence, every feasible

distribution of (DMP-LC) is a feasible distribution of (DMP-LC’) with the same objective

value. �
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EC.2. Proof of Proposition 2

We first prove a preliminary lemma for establishing Proposition 2.

Lemma EC.1. The set {(x, y, z) : xuyv ≥ zu+v, x≥ 0, y≥ 0, z ≥ 0} is convex for any positive

integers u and v. Moreover, the set {(x, y, z) : xuyv ≥ (z+ ε)u+v, x≥ 0, y ≥ 0, z ≥ 0} is also

convex for any positive integers u and v and nonnegative real ε.

Proof of Lemma EC.1. For any integers u and v, let t be an integer such that u+v≤ 2t.

From point 11 on page 95 of Ben-Tal and Nemirovski (2001)), the set {(x1, · · · , x2t , z) :

xj ≥ 0, 1 ≤ j ≤ 2t, z ≤ (Π2t

j=1xj)
1/2t} is conic-quadratic representable, and thus convex.

Therefore, when intersecting with linear constraints, the set

{(x1, . . . , x2t , z) : xj ≥ 0, 1≤ j ≤ 2t, 0≤ z ≤ (Π2t

j=1xj)
1/2t , xj = xk for j, k ∈ [1, u]

xj = xk for j, k ∈ [u+ 1, u+ v], and xj = z for j, k ∈ [u+ v+ 1,2t]}
(EC.3)

is also convex. Now, consider the image of this set under the coordinate projection onto

x1 (relabeled as x), xu+1 (relabeled as y), and z. The set in (EC.3) becomes

S := {(x, y, z) : z ≤ (xuyvz(2t−u−v))1/2t, x≥ 0, y≥ 0, z ≥ 0},

which is convex because the projection of a convex set is convex. Observe that the con-

straint z ≤ (xuyvz(2t−u−v))1/2t is equivalent to zu+v ≤ xuyv and so the set S is precisely the

set in the statement of the lemma. The fact S is a convex set proves the result.

To show the “moreover”, simply define w= z+ ε and the set in question can be written

T = {(x, y,w) : xuyv ≥ wu+v, x ≥ 0, y ≥ 0,w ≥ ε}. Note that this set is the intersection of

{(x, y,w) : xuyv ≥ wu+v, x ≥ 0, y ≥ 0,w ≥ 0} (convex by the previous part of the lemma)

and the convex set {(x, y,w) :w≥ ε}. Thus, T is convex because the intersection of convex

sets is convex. �

Proof of Proposition 2. First, define the set

S(ε), {(x, y, z) : xuyv ≥ (z+ ε)u+v, x≥ 0, y≥ 0, z ≥ 0}.

By Lemma EC.1, S(ε) is convex for every ε > 0 and the sets are nested; that is, S(ε1)⊆ S(ε2)

for ε1 ≥ ε2, which implies the union
⋃
ε>0S(ε) is also a convex set (the union of convex

nested sets is convex).
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Next, we make the following claim:

S , {(x, y, z) : xuyv > zu+v, x≥ 0, y≥ 0, z ≥ 0}=
⋃
ε>0

S(ε). (EC.4)

This claim suffices to prove the result because
⋃
ε>0S(ε) is convex.

The ⊇ containment in (EC.4) holds because S(ε)⊆ S for all ε > 0. Conversely, to show

⊆ in (EC.4), let (x, y, z) ∈ S. Hence, we must have xuyv − zu+v = δ > 0. Next, we show

there exists an ε > 0 such that xuyv = (z+ ε)u+v, in which case, (x, y, z)∈ S(ε) and we are

done. Taking ε= (zu+v + δ)
1

u+v − z does the trick. �

EC.3. Proof of Lemma 1

According to Definition 2, we have the following inequality if x is an IFR distribution:

xj∑n
k=j xk

− xj+1∑n
k=j+1 xk

≤ 0, for j ∈ [1, n− 1],

which is equivalent to

xj

n∑
k=j+1

xk−xj+1

n∑
k=j

xk ≤ 0, for j ∈ [1, n− 1], (EC.5)

whereas if {F̄1, . . . , F̄n} is log-concave, we have

n∑
k=j−1

xk

n∑
k=j+1

xk−

(
n∑
k=j

xk

)2

≤ 0, for j ∈ [2, n− 1],

which is equivalent to

xj

n∑
k=j+1

xk−xj+1

n∑
k=j

xk ≤ 0, for j ∈ [1, n− 2]. (EC.6)

Inequalities (EC.5) and (EC.6) are the same except that (EC.6) does not include the case

in which j = n−1. In this case, the inequality holds naturally: xn−1xn−xn(xn−1 +xn)≤ 0.

Thus, the two definitions of IFR distribution are equivalent. �
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EC.4. Proof of Proposition 3

First, define the set

S(ε),

{
(x, y, z) :

∥∥∥∥( ax
by+ cz

)∥∥∥∥≤ ax+ cz− ε
}
.

Obviously, S(ε) is a standard SOC and thus convex for every ε > 0. Moreover, the sets are

nested as S(ε1)⊆ S(ε2) for ε1 ≥ ε2, which implies that the union
⋃
ε>0S(ε) is also a convex

set, because the union of convex nested sets is convex. Next, we make the following claim:

S ,

{
(x, y, z) :

∥∥∥∥( ax
by+ cz

)∥∥∥∥<ax+ cz

}
=
⋃
ε>0

S(ε). (EC.7)

This claim suffices to prove the result because
⋃
ε>0S(ε) is convex. The ⊇ containment in

(EC.7) holds since S(ε)⊆ S for all ε > 0. Conversely, to show ⊆ in (EC.7), let (x, y, z)∈ S.

Hence, we must have

ax+ cz−
∥∥∥∥( ax

by+ cz

)∥∥∥∥= δ > 0.

Taking ε= δ, we have (x, y, z)∈ S(ε). �

EC.5. Proof of Theorem 1 and Lemma 4

Proof of Lemma 4. The fact that ext convS ⊆ S follows immediately from Klee (1957,

Theorem 3.5). Suppose, by way of contradiction, that there exists an x∈ ext convS that is

not an extreme point of S. Then, there exist y, z ∈ S with y 6= z such that x= λy+(1−λ)z

where λ > 0. However, since y, z ∈ convS, this contradicts that x ∈ ext convS. The result

then holds. �

With Lemma 2, Lemma 3, and Lemma 4 in hand, we can now establish Theorem 1.

Proof of Theorem 1. The problem min{c(x) : x∈ convS} has an optimal extreme point

solution x∗ ∈ ext convS by Lemma 2 and the fact that convS is a compact convex set

by Lemma 3. Since S ⊆ convS, min{c(x) : x∈ convS} ≤min{c(x) : x∈ S}. However, since

x∗ ∈ S, by Lemma 4, we have c(x∗) = min{c(x) : x∈ convS} ≤min{c(x) : x∈ S} ≤ c(x∗)

since x∗ is optimal to the minimization over convS and feasible to the minimization over

S. However, all inequalities must therefore be equalities and so min{c(x) : x∈ S}= c(x∗).

Since x∗ ∈ extS by Lemma 4, (8) must have an optimal extreme-point solution. �
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EC.6. Proof of Lemma 5

Since c is lower-semicontinuous and quasiconcave and F is compact, Theorem 1 implies

that there exists an optimal extreme point solution x∗. Let F ∗ denote the connected

component of F that contains x∗ and restrict attention to those Rp that intersect F ∗. Let

Cp =Rn \Rp. Then, Cp is an open convex set since Rp is closed and reverse convex. Since

x∗ ∈ F , x∗ /∈ Cp for all p. For all p, let yp be such that dist(x∗, cl(Cp)) = dist(x∗, yp); that

is, yp minimizes the distance between x∗ and the closure of Cp.

Since x∗ is an extreme point of F , there exists a p such that x∗ ∈ bd(Rp). By definition,

bd(Cp) = bd(Rp) and so there exists a p such that x∗ ∈ bd(Cp). Clearly, if x∗ ∈ bd(Cp)

then dist(x∗, cl(Cp)) = 0 and so yp = x∗. Hence, there always exists a p such that yp = x∗ ∈

bd(Cp).

Using the vector yp, we can define for all p ∈ [1, P ] a supporting hyperplane of cl(Cp)

with normal αp and right-hand side βp that weakly separates Cp from the point x∗. These

hyperplanes define the polyhedron F̂ = {x : α>p x ≥ βp, for p ∈ [1, P ]} so that α>p x
∗ ≥ βp

for all p. Such a choice is always possible since each hyperplane weakly separates Cp from

the point x∗, which implies x∗ ∈ F̂ . In the special case in which yp 6= x∗, the hyperplane

{x : (x∗− yp)>(x− yp)≤ 0} does the trick, by the standard projection theorem. Next, we

claim F̂ ⊆ F ∗. Indeed, since α>p x ≤ βp is a supporting hyperplane of cl(Cp), the set of x

that satisfies α>p x≥ βp lies on the boundary of Cp or outside of Cp. Such an x lies entirely

inside of Rp, which implies F̂ is a subset of Rp for all p, and so F̂ ⊆ F ∗.

Consider the optimization problem

min c(x)

s.t. α>p x≥ βp for p∈ [1, P ].
(EC.8)

Since x∗ ∈ F̂ ⊆ F ∗ and x∗ is an optimal solution of the original problem, x∗ is an optimal

solution of (EC.8). Moreover, x∗ is an extreme point of F̂ and so at least n linearly inde-

pendent constraints at x∗ are tight, by the characterization of extreme points of polyhedra

(Bertsimas and Tsitsiklis 1997, Theorem 2.3). Hence, at least n of the inequalities α>p x≥ βp
must be tight at x= x∗. The points in F̂ that satisfy α>p x= βp are boundary points of Cp

since α>p x= βp is a supporting hyperplane of the convex set Cp. Since bd(Rp) = bd(Cp),
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the points in F̂ that satisfy α>p x = βp are boundary points of Rp. Hence, x∗ lies on the

boundary of at least n of the sets Rp. �

EC.7. Proof of Theorem 2

This proof uses the following notation. For any feasible solution x to (Rev-Cvx), let S(x)

denote the support of x; that is, S(x) = {j : xj > 0}. Let Ai denote the i-th row of the matrix

A and Aj the j-th column. For any subset S of [1, n] (e.g., the support of a feasible solution),

let AS = [Aj]j∈S. That is, AS is the submatrix of A consisting of the columns indexed by S.

Note ArS denotes the r-th row of the matrix AS and let L(S) = span({(A1
S)>, . . . , (AmS )>}

denote the span of the rows of AS. Finally, let ∇fp(x) denote the gradient of fp at x, where

[∇fp(x)]S is the gradient of fp restricted to the components in the subset S.

Now, for the proof. Since c is continuous and quasiconcave and F is a compact set, by

Theorem 1 there exists an optimal extreme point solution. For any such optimal extreme

point x∗ with support S = S(x∗), define

F0 := {x :Ax= b, xj = 0 for j 6∈ S, xj > 0 for j ∈ S}.

Then, the feasible region F includes {x : fp(x)≤ 0, p= 1, . . . , P} ∩X0. Let δ1 = min{x∗j :

x∗j > 0} and denote

F (δ1) := {x :Ax= b, xj = 0 for j 6∈ S, xj ≥ δ1/2, for j ∈ S}.

Our goal is as follows. For p= 1, . . . , P , we want to construct sets F̂p of the form

F̂p := {x : α>p (x−x∗)≤ βp}∩X(δ1), (EC.9)

such that

F̂ :=∩Pp=1F̂p = {x : α>p (x−x∗)≤ βp, p= 1, . . . , P}∩F (δ1) (EC.10)

is a subset of F , where αp and βp ≥ 0 will be specified later. Since βp ≥ 0, x∗ ∈ F̂p for all p,

and is thus in F̂ . So, as long as F̂ ⊆ F since x∗ is an extreme point of F , it must also be

an extreme point of F̂ . Note F̂ is defined by linear equalities and inequalities and so there

must exist n of them that are tight at point x∗, and we can further check which constraints

are tight.
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0 /∈ cl(Yp) αp = α̂p, βp = β̂p/2, α̂p and β̂p obtained by strong separation
0∈ cl(Yp) αp = α̂p, βp = 0, α̂p are obtained weak separation

0∈ cl(Yp), [∇fp(x∗)]S 6∈ L(S) αp =∇fp(x∗) and βp = 0
Table EC.1 Specifying αp and βp in X̂p.

We now construct the F̂ in (EC.10). Let xS = [xj]j∈S and

Fp = F0 ∩{(xS; 0) : fp(xS; 0)> 0}. (EC.11)

Here, (xS; 0) denotes a vector with value 0 outside of the index set S. A key property of Fp

is that it admits a strong separation property useful for our arguments (see Claim EC.1

below). To describe this property, we explore a related set in a smaller subspace. Construct

matrix B ∈R|S|×(|S|−rank(AS)) such that its columns span the whole null space of AS. That

is, ASB = 0 and rank(B) = |S| − rank(AS). Then, we have that

{(xS; 0) :AS xS = b}= {(By+x∗S; 0) : y ∈R(|S|−rank(AS))}. (EC.12)

Letting

Yp := {y :By+x∗S > 0, fp(By+x∗S; 0)> 0},

we can define the “strong separation” property of Fp as follows:

Claim EC.1. (Strong separation) For all p, there exist α>p and β̂p > 0 such that{
α̂>p (x−x∗)≥ β̂p > 0, for x∈ Fp if 0 6∈ cl(Yp)

α̂>p (x−x∗)> 0, for x∈ Fp if 0∈ cl(Yp).
(EC.13)

Moreover, if we further assume [∇fp(x∗)]S 6∈ L(S) then ∇f(x∗)>(x−x∗)> 0 for all x∈ Fp.

The proof of this claim is somewhat technical and so is relegated to the end of this section.

We take it as given and return to constructing F̂ . According to (EC.10), it suffices to show

how to construct F̂p such that

F̂p ⊆ {x : fp(x)≤ 0}, p∈ [1, P ], (EC.14)

since F (δ1)⊆ F0. In other words, we need to prove that x∈ F̂p implies fp(x)≤ 0.

We show (EC.14) in two cases: (i) 0 6∈ cl(Yp) and (ii) 0 ∈ cl(Yp). We use Table EC.1 to

track some of the notation and details.
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In case (i), according to Claim EC.1, there exist a α̂p 6= 0 and β̂p 6= 0 such that

α̂>p (x−x∗)≥ β̂p > 0 for all x∈ Fp. (EC.15)

By letting αp = α̂p and βp =
β̂p
2

, one has x∗ ∈ F̂p 6= ∅. Moreover, from definition (EC.9) of

F̂p, any x∈ F̂p satisfies x∈ F (δ1)⊆ F0 and

α̂>p (x−x∗) = α>p (x−x∗)≤ βp = β̂p/2.

Combining this statement with (EC.15) yields that x 6∈ Fp for any x∈ F̂p. Then, according

to (EC.11), such x does not belong to Fp, simply because it violates the constraint fp(x)>

0. Therefore, we can conclude fp(x)≤ 0 for all x∈ F̂p.
In case (ii), again by Claim EC.1, we have α̂>(x−x∗)> 0 for x∈ Fp, where α̂=∇f(x∗)

if [∇fp(x∗)]S 6∈ L(S). Then, we can take αp =∇fp(x∗) and βp = 0 in (EC.9). Obviously,

x∗ ∈ F̂p 6= ∅ and x 6∈ F̂p for any x ∈ Fp. Similarly, we can argue such an x does not belong

to F̂p due to the violation of the constraint fp(x)> 0. Then, it follows that fp(x)≤ 0 for

all x∈ F̂p.
So far, we have constructed F̂p in the form of (EC.11) (as in Table EC.1) and F̂ based

on (EC.10). Moreover, we have shown F̂ ⊆ F . Since x∗ is an extreme point of F and lies

both in F and F̂ , it is an extreme point of F̂ as well. Note F̂ is defined by a number

of linear equalities and inequalities, then there must exist n of them that are tight and

linear independent at point x∗ by standard theory (see e.g. Bertsimas and Tsitsiklis (1997,

Theorem 2.3)).

Since A is an m by n matrix of rank m, there are n−m tight constraints from

α>p (x−x∗)≤ βp for p such that 0 6∈ cl(Yp)
αp
>(x−x∗)≤ 0 for p such that 0∈ cl(Yp)

xj = 0 for j 6∈ S
xj ≥ δ1/2 for j ∈ S,

where αp = ∇fp(x∗) if [∇fp(x∗)]S 6∈ L(S). Now, we investigate which of the above con-

straints are tight. First, obviously x∗j = 0 is tight for all j 6∈ S, and x∗j ≥ δ1 > δ1/2 can

not be tight for all j ∈ S. Then, for the constraint p such that 0 6∈ cl(Yp) since βp > 0,

α>p (x∗−x∗) = 0<βp cannot be tight. Finally, recall we have proved in the previous discus-

sion that fp(x
∗)≥ 0 for all p such that 0 ∈ cl(Yp). That is, when fp(x

∗)< 0, it holds that
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0 6∈ cl(Yp), and thus the corresponding constraint α>p (x− x∗)≤ βp cannot be tight at x∗.

In summary, all n−m tight constraints come from

αp
>(x−x∗)≤ 0 for p such that fp(x

∗) = 0 and 0∈ cl(Yp)
xj = 0 for j 6∈ S, (EC.16)

which implies n−m of the inequalities

fp(x
∗)≤ 0 for p∈ [1, P ]
x∗j ≥ 0 for j ∈ [1, n]

in (Rev-Cvx) are tight. This completes the proof of Theorem 2. �

The proof of Claim EC.1 relies on the following two subclaims.

Subclaim 1 The set Yp is a convex and open set for p= 1, . . . , P .

Proof of Subclaim 1: By assumption, S1 := {x : fp(x) > 0, x ≥ 0} is convex. Therefore,

S2 := {x : fp(x) > 0, x ≥ 0} ∩ {x : Ax = b} is also a convex set since we are intersecting

S1 with the convex set {x : Ax = b}. Moreover, the set S3 := S2 ∩ {x : xS > 0, xS̄ = 0} is

again convex since {x : xS > 0, xS̄ = 0} is a convex set. Finally, consider the affine map

y 7→ (By+x∗S,0). Note that Yp is the inverse image of this map and therefore convex.

Moreover, for any y1 ∈ Yp, let

0< δ= min
j∈{1,...,|S|}

{(By1 +x∗S)j : fp(By1 +x∗S; 0)> 0}.

Since fp(·) is continuous, there exists an ε > 0 such that for any y with ‖y− y1‖2 ≤ ε, we

have

min
j∈{1,...,|S|}

{(By+x∗S)j : fp(By+x∗S; 0)> 0} ≥ δ/2> 0.

Thus, y ∈ Yp and Yp is open. This completes the proof of Subclaim 1. �

Moreover, we have a “strong separation property” of Yp described as follows.

Subclaim 2 There exist a dp 6= 0 and β̂p > 0 such that{
d>p y≥ β̂p > 0, for y ∈ Yp if 0 6∈ cl(Yp)

d>p y > 0, for y ∈ Yp if 0∈ cl(Yp).
(EC.17)

Moreover, letting gp(y) = fp(By + x∗S; 0) and assuming ∇gp(0) 6= 0, if 0 ∈ cl(Yp) then

∇gp(0)>y > 0 for all y ∈ Yp.
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Proof of Subclaim 2: Note that fp(B ·0 +x∗S; 0) = fp(x
∗
S; 0) = fp(x

∗)≤ 0, thus 0 6∈ Yp. Since,

by Subclaim 1, Yp is convex, cl(Yp) is both closed and convex. Then if 0 6∈ cl(Yp), by the

strong separation theorem for closed convex sets (see, for instance, Aliprantis and Border

(2006, Corollary 5.80)), there exist dp 6= 0 and β̂p > 0 such that d>p y≥ β̂p > 0 for y ∈ Yp. In

the case of 0∈ cl(Yp), weak separation holds. That is, there exists an α̂p 6= 0 such that

α̂>p y≥ 0>y= 0 for all y ∈ Yp. (EC.18)

Since Yp is open, that weak separation becomes strict; that is, α̂>p y > 0 for all y. Otherwise,

if there exists a y′ ∈ Yp such that α̂>p y
′ = 0 then since Yp is open there exists a y′′ ∈ Yp in

a small neighborhood of y′ such that α̂>p y
′′ < 0. This violates the condition shown above

that α̂>p y≥ 0 for y ∈ Yp. Together this yields (EC.17).

To establish the “moreover” part, note gp(y) = fp(By + x∗S; 0) ≥ 0 for any y ∈ cl(Yp).

Hence, gp(0) = fp(x
∗
S; 0) = fp(x

∗)≤ 0. Combining these two facts gives that gp(0) = 0 when

0∈ cl(Yp). That is, 0 is a global minimizer of the problem

min gp(y)
s.t. y ∈ cl(Yp).

Thus, the following optimality condition in the form of variational inequality holds:

∇gp(0)>(y − 0)≥ 0 for y ∈ cl(Yp), which trivially leads to ∇gp(0)>y ≥ 0 for y ∈ Yp. Since

Yp is open, we get strict separation ∇gp(0)>y > 0 for all y ∈ Yp. This completes the proof

of Subclaim 2. �

Proof of Claim EC.1: We show (EC.13) holds with α̂p = (B(B>B)−1dp;γp), with dp being

defined in Subclaim 2 and any γp ∈Rn−|S| and β̂p as constructed in Subclaim 2. Indeed, for

any x∈ Fp, due to (EC.12), we can find a y ∈ Yp such that x= (By+x∗S; 0) = (By; 0) +x∗.

Consequently,

α̂>p (x−x∗) = d>p (B>B)−>B>By+ γ>p 0 = d>p y.

Then, according to Subclaim 2, (EC.13) holds.

To establish the “moreover” of Claim EC.1, observe that when∇gp(0) 6= 0 and 0∈ cl(Yp),

by letting α̂p = (B(B>B)−1∇gp(0);γp) with any γp ∈ Rn−|S|, we have α̂>p (x− x∗) > 0 for

x∈ Fp. The argument here is analogous to what we used when establishing (EC.13).
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Now, suppose [∇fp(x∗)]S 6∈ L(S) and 0∈ cl(Yp). We argue that

∇f(x∗)>(x−x∗)> 0, for x∈ Fp. (EC.19)

First, a direct computation yields

∇gp(0) = [B> 0]∇fp(B y+x∗S; 0)
∣∣
y=0

= [B> 0]∇fp(x∗S; 0) = [B> 0]∇fp(x∗) =B>[∇fp(x∗)]S.

(EC.20)

Since [∇fp(x∗)]S 6∈ L(S), we have ∇gp(0) 6= 0. Otherwise, due to (EC.20), [∇fp(x∗S)]S

belongs to the null space of B>, which is exactly L(S), giving rise to a contradiction.

For any x ∈ Fp, AS (xS − x∗S) = AS xS − AS x∗S = 0, thus xS − x∗S ∈ Null(AS). Moreover,

recall that the columns of B span the whole Null(AS); then there exists a θ 6= 0 such that

xS − x∗S =B θ. Now, let α̂p = (B(B>B)−1B>∇fp(x∗S);γp) with any γp ∈Rn−|S|. According

to (EC.13), we have

∇f(x∗)>(x−x∗) = (∇f(x∗)− α̂p)>(x−x∗) + α̂>p (x−x∗)

=
(
[∇f(x∗)]S −B(B>B)−1B> [∇fp(x∗)]S

)>
(xS −x∗S) + α̂>p (x−x∗)

= [∇fp(x∗)]>S
(
I −B(B>B)−1B>

)
B θ+ α̂>p (x−x∗)

= α̂>p (x−x∗)> 0.

Thus, (EC.19) holds, completing the proof of Claim EC.1. �

EC.8. Proof of Theorem 4

In (4), the 0-th moment constraint that
∑n

j=1 xj = 1, together with constraint (4d), guar-

antees the feasible region without constraint (4c) is compact. Further, constraint (4c) can

be rewritten as
xj∑
k=j xk

− xj+1∑
k=j+1 xk

≤ 0 for j ∈ [1, n− 1],

where the LHS is continuous w.r.t. x. This gives us that the set where (4c) holds is closed,

thus the feasible region is compact. By Theorem 1, problem (4) has an extreme point

solution x∗. This extreme point solution corresponds to an extreme point solution y∗ to

problem (5) by equivalence.
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Note that by constraint (4c), x∗ must have consecutive support. Otherwise, assume there

exist 1≤ j1 < j2 < j3 ≤ n such that x∗j1 > 0, x∗j3 > 0, x∗j2 = 0; however,

x∗j1∑n

k=j1
x∗k

>
x∗j2∑n

k=j2
x∗k

= 0,

indicating x∗ is not feasible. Without loss of generality, we can assume the support of x∗

is [1, n]; that is, constraints (4d) are strict.

Let x := min{x∗j : j ∈ [1, n]} and define the following problem:

max
y∈Rn

n−1∑
j=1

fj(yj − yj+1) + fnyn (EC.21a)

s.t.
n∑
j=1

(wij −wij−1)yj = qi for i∈ [0,m] (EC.21b)

yj−1yj+1 ≤ y2
j for j ∈ (1, n) (EC.21c)

yj − yj+1 ≥ x/2 for j ∈ [1, n] (EC.21d)

yj ≥ 0 for j ∈ [1, n]. (EC.21e)

The problem above is a restriction of (5) with given support, and plus (redundant) non-

negativity constraint (EC.21e) so that it fits our reverse convex programming frameworks.

Since y∗ is an extreme point solution to (5), it is also an extreme point solution to (EC.21).

Thus, we only need to verify the conditions of Theorem 2.

Again, the 0-th order moment constraint guarantees the feasible region is compact. As

argued in Section 2.2, the constraint (EC.21c) is reverse convex relative to the nonnegative

orthant, and so is the linear constraint (EC.21d), which implies all of the conditions in

Theorem 2 are satisfied when applied to (EC.21).

At the extreme point solution y∗, the constraints (EC.21d) and (EC.21e) cannot be

tight since x∗j = y∗j − y∗j+1 >x/2 and y∗j are all positive since the x∗j are positive. Applying

Theorem 2, we have that at least n−m−1 of the (EC.21c) constraints are tight at y∗, or,

equivalently, there are at most m− 1 of the (EC.21c) constraints that are not tight at y∗.

These non-tight indexes can divide the interval [1, n] into at most m pieces, and within

each piece, we have

yj−1yj+1 = y2
j , for j ∈ (ui, vi),
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where ui and vi are the left and right endpoints of piece i of the domain. Thus, letting

αi = yui and ri = yui+1/yui yields the solution (13). �

EC.9. Proof of Theorem 5

In (6), the zeroth moment constraint that
∑n

j=1 xj = 1 together with constraint (6d) guar-

antees the feasible region without constraint (6c) is compact. Further, constraint (6c) can

be rewritten as

j
xj∑
k=j xk

− (j+ 1)
xj+1∑
k=j+1 xk

≤ 0 for j ∈ [1, n− 1],

where the LHS is continuous w.r.t. x. This gives us that the set where (6c) holds is closed,

thus the feasible region is compact. By Theorem 1, problem (6) has an extreme point

solution x∗. This extreme point solution corresponds to an extreme point solution y∗ to

problem (7) by equivalence.

Note that by constraint (6c), x∗ must have consecutive support. Otherwise assume there

exist 1≤ j1 < j2 < j3 ≤ n such that x∗j1 > 0, x∗j3 > 0, x∗j2 = 0, however

j1
x∗j1∑n

k=j1
x∗k

> j2
x∗j2∑n

k=j2
x∗k

= 0,

indicating x∗ is not feasible. Without loss of generality, we can assume the support of x∗

is [1, n], i.e. constraints (6d) are strict (otherwise we can redefine on the support [k, `] and

use analogous arguments).

Let x := min{x∗j : j ∈ [1, n]} and define the following problem:

max
y∈Rn

n−1∑
j=1

fj(yj − yj+1) + fnyn (EC.22a)

s.t.
n∑
j=1

(wij −wij−1)yj = qi for i∈ [0,m] (EC.22b)∥∥∥∥( j
√
j− 1yj+1√

j− 1yj +
yj−1

2
√
j−1

)∥∥∥∥≥ j√j− 1yj+1 +
yj−1

2
√
j− 1

for j ∈ (1, n) (EC.22c)

yj − yj+1 ≥ x/2 for j ∈ [1, n] (EC.22d)

yj ≥ 0 for j ∈ [1, n]. (EC.22e)

Note that the problem above is a restriction of (7) with given support, and plus (redundant)

negativity constraint (EC.22e) so that it fits our reverse convex programming frameworks.
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Since y∗ is an extreme point solution to (7), it is also an extreme point solution to (EC.22).

Thus, we only need to verify the conditions of Theorem 2.

Again, the zeroth order moment constraint guarantees the feasible region is compact. As

argued in Section 2.3, the constraint (EC.22c) is reverse convex relative to the nonnegative

orthant, and so is the linear constraint (EC.22d). This implies that all of the conditions

in Theorem 2 are satisfied when applied to (EC.22).

At the extreme point solution y∗, the constraints (EC.22d) and (EC.22e) cannot be

tight since x∗j = y∗j − y∗j+1 >x/2 and y∗j are all positive since the x∗j are positive. Applying

Theorem 2, we have that at least n−m− 1 of the (EC.22c) constraints are tight at y∗, or

equivalently there are at most m− 1 of the (EC.22c) constraints that are not tight at y∗.

These non-tight indexes can divide the interval [1, n] into at most m pieces, and within

each piece, we have∥∥∥∥( j
√
j− 1yj+1√

j− 1yj +
yj−1

2
√
j−1

)∥∥∥∥= j
√
j− 1yj+1 +

yj−1

2
√
j− 1

, for j ∈ (ui, vi)

where ui and vi are the left and right endpoints of piece i of the domain. Note the equalities

above are equivalent to

(j− 1)
yj−1− yj
yj−1

= j
yj − yj+1

yj
, for j ∈ (ui, vi).

Letting

ri := j
yj − yj+1

yj
, for j ∈ (ui, vi),

we have

yj = yj−1(1− ri
j− 1

), for j ∈ (ui, vi].

using the fact that j
yj−yj+1

yj
= r is equivalent condition yj+1 = yj(1 − r

j
). Thus, letting

αi = yui yields the solution (14). �
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EC.10. Proof of Lemma 6

If the aj are all nonnegative or nonpositive, then φ(z) is monotone and has at most one

root. Otherwise, there is an m such that aj ≤ 0 when j ≤m and aj ≥ 0 when j >m. Denote

φ1(z) :=−
∑m

j=1 ajz
ij and φ2(z) =

∑M

j=m+1 ajz
ij . Obviously, φ(z) = φ2(z)−φ1(z). Suppose

z0 > 0 is a root of φ(z), from non-negativity of φ1 and φ2 we have φ2(z0) = φ1(z0) 6= 0.

Given any z1 > z0, due to (23) we have that

φ2(z1) =
M∑

j=m+1

aj

(
z1

z0

)ij
(z0)ij ≥

(
z1

z0

)im+1

φ2(z0)

φ1(z1) =
m∑
j=1

−aj
(
z1

z0

)ij
(z0)ij ≤

(
z1

z0

)im
φ1(z0).

Combining these two inequalities yields

φ(z1)≥
(
z1

z0

)im+1

φ2(z0)−
(
z1

z0

)im
φ1(z0)>

(
z1

z0

)im
(φ2(z0)−φ1(z0)) = 0. (EC.23)

Similarly, for any z2 < z0, it holds that φ(z2)<
(
z2
z0

)im
(φ2(z0)−φ1(z0)) = 0.

Consequently, z0 is the only root. Moreover, when z0 is not a root and satisfies φ(z0)≥
0, then according to (EC.23) φ(z1) >

(
z1
z0

)im
(φ2(z0)−φ1(z0)) > φ2(z0) − φ1(z0) = φ(z0)

implying that φ(z) is monotonically increasing on {z | φ(z)≥ 0}. �

EC.11. Proof of Lemma 7

It suffices to provide a uniform bound on |∂g2(α,β)

∂β
|/|∂g1(α,β)

∂β
|. When a≤ 0, since the distri-

bution has positive mass on both sides of a, it has positive mass at X <a. This combined

with (24) implies that E [X · (a−X)1X<a]≤ E [−(X − a)21X<a]< 0. By further invoking

(26) and (22), we have that

|∂g2(α,β)

∂β
|

|∂g1(α,β)

∂β
|

=
|E [(1−X2)(a−X)1X<a] |
|E [X · (a−X)1X<a] |

≤ |E [(1−X2)(a−X)1X<a] |
E [(X − a)21X<a]

≤ max
x:x=a−jε,j=1,2,··· ,k̃

|(1−x2)(a−x)|
(x− a)2

≤
maxx:x=a−jε,j=1,2,··· ,k̃ |(1−x2)|

minx:x=a−jε,j=1,2,··· ,k̃(a−x)

≤ 1 +D2

ε
,



ec16 e-companion to Chen, He, Jiang, Ryan, and Zhang: Shape-Constrained Moment Problem

where the second inequality is due to the fractional linear function y
z

is quasi-convex and

thus
∑

i αiyi∑
i αizi

≤maxi{yizi } for
∑

iαi = 1 and αi ≥ 0.

Similarly, when a> 0 and EX = 0 implies that E [X ·1X<a] +E [X ·1X≥a] = 0. Therefore,

aE [X ·1X<a] =−aE [X ·1X≥a]≤−a2P (X ≥ a),

and due to (24)

E [X · (a−X)1X<a]≤E
[
−X2 1X<a

]
− a2P (X ≥ a)≤E

[
min(X,a)2

]
< 0,

where the last inequality follows from the fact that X has positive mass at both a and

X <a. Since the domain of X is bounded with diameter D, we also have that for any b > 0

1 =EX2 =E[X21|X|<b] +E[X21|X|≥b] ≤ b2E[1|X|<b] +D2E[1|X|≥b]

= b2(1−P (|X| ≥ b)) +D2P (|X| ≥ b).

That is P (|X| ≥ b)≥ 1−b2
D2−b2 . Furthermore, note that for any |X| ≥ b we have |min(X,a)| ≥

min(b, a). Then,

E
[
min(X,a)2

]
= E

[
min(X,a)2 ·1|X|≥b

]
+E

[
min(X,a)2 ·1|X|<b

]
≥ E

[
min(X,a)2 ·1|X|≥b

]
≥ min(b, a)2P (|X| ≥ b)

≥ min(b, a)2 1− b2

D2− b2
.

Since E[X] = 0 and E[X2] = 1, the upper bound D of |X| is greater than 1. Therefore,

when a> 0 by taking b= 0.5, we have D2− b2 > 0 and when a> 0 it holds that

|∂g2(α,β)

∂β
|

|∂g1(α,β)

∂β
|

=
|E [(1−X2)(a−X)1X<a] |
|E [X · (a−X)1X<a] |

≤ |E [(1−X2)(a−X)1X<a] |
E [min(X,a)2]

≤ (1 +D2)(a+D)

min(0.5, a)2 0.75
D2−0.25

.

Combining the bound on a≤ 0, we conclude that

|∂g2(α,β)

∂β
|

|∂g1(α,β)

∂β
|
≤

{
(1+D2)(a+D)(D2−0.25)

(0.75) min(0.5,a)2
, a > 0

1+D2

ε
, a≤ 0

.

That is, the absolute value of | δ
δβ
g1(α,β)| is uniformly bounded below. �



e-companion to Chen, He, Jiang, Ryan, and Zhang: Shape-Constrained Moment Problem ec17

EC.12. Proof of Theorem 7

Since φ′ is a continuous function, there exists δ > 0 such that |φ′(z) − φ′(γ)| ≤ 1
4
|φ′(γ)|

whenever |z− γ| ≤ δ. Consider a Newton step with |zk− γ| ≤ δ and

zk+1− γ = zk− γ−
φ(zk)−φ(γ)

φ′(zk)
=
φ(γ)−φ(zk)−φ′(zk)(γ− zk)

φ′(zk)

=
(φ′(γk)−φ′(zk))(γ− zk)

φ′(zk)
,

where γk is a point between γ and zk. Note that |φ′(γk)−φ′(zk)|= |φ′(γk)−φ′(γ)+φ′(γ)−

φ′(zk)| ≤ 1
2
|φ′(γ)| and |φ′(zk)| ≥ 3

4
|φ′(γ)|. Therefore,

|zk+1− γ| ≤
|(φ′(γk)−φ′(zk)| · |γ− zk|

|φ′(zk)|
≤ 2

3
|zk− γ| ≤ δ.

Moreover, we have

lim
k→∞

|zk+1− γ|
|zk− γ|

= lim
k→∞

|φ′(γk)−φ′(zk)|
|φ′(zk)|

= 0,

and we conclude that {zk} is superlinear convergent. �

EC.13. Proof of Theorem 8

According to (25) and (21), we have that |∂g2(α,β)

∂α
| ≤ (1+D2)(a+D)

ρ·ε and |∂g1(α,β)

∂α
| ≤ (a+D)D

ρ·ε

respectively. Finally, by invoking (27) we obtain an upper bound of gradient of g2(·, h(·)):∣∣∣∣dg2(α,h(α))

dα

∣∣∣∣ =

∣∣∣∣∣∂g2(α,β)

∂α
+
∂g2(α,β)

∂β
·
−∂g1(α,β)

∂α
∂g1(α,β)

∂β

∣∣∣∣∣
≤
∣∣∣∣∂g2(α,β)

∂α

∣∣∣∣+ ∣∣∣∣∂g2(α,β)

∂β

∣∣∣∣ ·
∣∣∣∣∣−∂g1(α,β)

∂α
∂g1(α,β)

∂β

∣∣∣∣∣
≤


(1+D2)(a+D)

ρε

(
1 + D(a+D)(D2−0.25)

(0.75) min(0.5,a)2

)
, a > 0

(1+D2)(a+D)

ρε

(
1 + D

ε

)
, a≤ 0

.
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