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Abstract4

Principal-agent models are pervasive in theoretical and applied economics, but their analysis5

has largely been limited to the “first-order approach” (FOA) where incentive compatibility is6

replaced by a first-order condition. This paper presents a new approach to solving a wide class of7

principal-agent problems that satisfy certain monotonicity assumptions (such as the monotone8

likelihood ratio property) but may fail to meet the requirements of the FOA. Our approach9

solves the problem via tackling a max-min-max formulation over agent actions, alternate best10

responses by the agent, and contracts.11
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1 Introduction14

Moral hazard principal-agent problems are well-studied, but unresolved technical difficulties persist.15

An essential difficulty is finding a tractable method to deal with the incentive compatibility (IC)16

constraints that capture the strategic behavior of the agent. Incentive compatibility is challenging17

for at least two reasons. First, when the agent’s action space is continuous there are, in principle,18

infinitely-many IC constraints. Second, these constraints turn the principal’s decision into an19

optimization problem over a potentially nonconvex set. Much attention has been given to finding20

structure in special cases that overcome these issues. The first-order approach (FOA), where the IC21

constraints are replaced by the first-order condition of the agent’s problem (Jewitt (1988), Rogerson22

(1985)), applies when the agent’s objective function is concave in the agent’s action. Previous23

studies have proposed various sufficient conditions for the FOA to be valid (see, e.g., Conlon24

(2009), Jewitt (1988), Jung and Kim (2015), Kirkegaard (2016), Rogerson (1985), Sinclair-Desgagné25

(1994)). Nonetheless, there remain natural settings where the FOA is invalid (see Example 5 below).26

When the FOA is invalid, more elaborate methods have been proposed. Grossman and Hart27

(1983) explore settings where there are finitely many output scenarios and reduce incentive com-28

patibility to a finite number of constraints. However, their method does not apply when the29

agent’s output takes on infinitely-many values. An alternate approach is due to Mirrlees (1999)30

(which originally appeared in 1975) and refined in Mirrlees (1986) and Araujo and Moreira (2001).31

This method overcomes the limitations of the FOA by reintroducing a subset of IC constraints,32
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in addition to the first-order condition, to eliminate alternate best responses. These reintroduced33

constraints – called no-jump constraints – isolate attention to contract-action pairs that are incen-34

tive compatible. The main difficulty in Mirrlees’s approach is in producing the required no-jump35

constraints. There is a potential to reintroduce many – if not infinitely many – no-jump constraints.36

Moreover, a general method for generating these constraints is not known and brute force enumer-37

ation is intractable. Araujo and Moreira (2001) use second-order information to refine the search,38

but the essential difficulties remain.39

The procedure described in this paper systematically builds on Mirrlees’s approach. The prob-40

lem of determining which no-jump constraints are needed is recast as a minimization problem that41

identifies the hardest-to-satisfy no-jump constraint over the set of alternate best responses. This42

makes the original problem equivalent to an optimization problem that involves three sequential43

optimal decisions: maximizing over the contract, maximizing over the agent’s action, and minimiz-44

ing over alternate best responses to that chosen action. We then propose a tractable relaxation to45

this problem by changing the order of optimization to “max-min-max” where the former maximiza-46

tion is over agent actions and the latter maximization is over contracts. The analytical benefits of47

this new order are clear. The map that describes which optimal contracts support a given action48

against deviation to a specific alternate best response has desirable topological properties explored49

in Section 3. We call this “max-min-max” relaxation the “sandwich” relaxation since the inner50

minimization is “sandwiched” between two outer maximizations.51

The main technical work of the paper is uncovering when the sandwich relaxation is tight.52

This involves careful consideration of what utility can be guaranteed to the agent by an optimal53

contract. In particular, if the individual rationality constraint is not binding, a family of sandwich54

relaxations indexed by lower bounds on agent utility that are larger than the reservation utility55

must be examined in order to find a relaxation that is tight. Constructing the appropriate bound56

and guaranteeing that the resulting relaxation is tight is a main focus of our development. Our57

development assumes the monotonicity conditions on the output distribution; namely, the monotone58

likelihood ratio property (MLRP).59

It should be noted that the MLRP assumption is common to the usual discussion of the FOA.60

However, it is also well-known that the MLRP is insufficient to guarantee the validity of the FOA61

(Conlon 2009, Grossman and Hart 1983, Jewitt 1988, Rogerson 1985). We illustrate scenarios where62

the sandwich approach is valid (that is, the sandwich relaxation is tight) but the FOA is invalid.63

This is carefully discussed in Section 5 where it is established that the sandwich approach ensures a64

stationarity condition for a worst-case alternate best response that is stronger than the stationarity65

condition in the FOA. This is due to the inner minimization over alternate best responses in the66

sandwich approach that is absent from the FOA. However, when the FOA is valid then the sandwich67

approach is also valid and both approaches result in the same optimal contract.68

Finally, we comment here on some similarities with a related paper written by the authors. In69

Ke and Ryan (2016), we consider a similar problem setting with similar assumptions. The main70

focus of that paper is to establish an important structural result, namely to recover a monotonicity71

result for optimal contracts under MLRP that holds even when the FOA is invalid. To that end,72

that paper takes the approach of Grossman and Hart (1983) of taking the agent’s action as given and73

finds structure on those optimal contracts that implement the given action. Consequently, Ke and74

Ryan (2016) does not provide a general solution procedure for moral hazard problems, and instead75

focuses on establishing structural properties of optimal contracts without explicitly constructing76

such policies. By contrast, the current paper is focused on the full problem that allows the agent’s77
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action to respond optimally to an offered contract. Of course, this adds significant complication78

to the analysis, hence the need for a new paper. Indeed, consider the classical example of Mirrlees79

(1999) that first raised the issue of the failure of the FOA. In fact, if the a tight reservation utility80

and best response are known, a first-order condition is easily shown to suffice in this case. In this81

case, the failure of the FOA is precisely in its inability to identify a target action of the follower.82

See also our Example 1 and Proposition 5 below for a related discussion.83

There is yet a more subtle technical challenge here that is not present in Ke and Ryan (2016) is84

subtle existence issue. The inner minimization in the sandwich problem need not be attained. This85

existence issue is precluded from the analysis of Ke and Ryan (2016). There a target best response86

a∗ is specified and an assumption is made so that an alternate and distinct best response â∗ exists.87

Under this assumption, existence is no longer an issue and the analysis runs smoothly. The cost,88

however, is that this assumption largely precludes the validity of the FOA. In other words, the89

analysis of Ke and Ryan (2016) does not apply to many problems where the FOA is known to90

be valid. This is not an issue in that paper, since the goal is to devise the structure of optimal91

contracts, particularly monotonicity properties, which are already known in the setting where the92

FOA is valid (Rogerson 1985). By contrast, the goal of this paper is to develop a general procedure93

for solving moral hazard problems that satisfy the MLRP, and thus should incorporate cases where94

the FOA additionally holds. The cases where the FOA hold raise existence issues that are only95

covered here and not in Ke and Ryan (2016). Section 5 provides more details on this existence96

issue and its connection to the FOA. Although there are similarities in the development of both97

papers (the current paper and Ke and Ryan (2016)) they can largely be read independently. Ke98

and Ryan (2016) does not references the current paper, and there are only a few references to Ke99

and Ryan (2016) here, all of which appear in the technical appendix.1100

This paper is organized as follows. Section 2 contains the model and reviews existing approaches101

to solve the principal-agent problem. Section 3 describes the sandwich relaxation and gives sufficient102

conditions for the relaxation to be tight given an appropriately chosen lower bound on agent103

utility. Section 4 describes the methodology to construct such lower bounds. Section 6 provides104

three additional examples that illustrate the mechanics of our procedure provide insight into the105

relationship of our approach with the FOA. We consider a quite simplified moral hazard example106

throughout the paper to illuminate the theory. Proofs of all technical results are contained in an107

appendix.108

2 Model and existing approaches109

2.1 Principal-agent model110

We study the classic moral hazard principal-agent problem with a single task and single-dimensional111

output. An agent chooses an action a ∈ A that is unobservable to a principal. This action influences112

the random outcome X ∈ X through the probability density function f(x, a) where x is an outcome113

realization. The principal chooses a wage contract w : X → [w,∞) where w is an exogenously given114

minimum wage. The value of output to the principal obeys the function π : X → R.115

Given an outcome realization x ∈ X , the agent and principal derive the following utilities. The116

1We thank an anonymous for raising and shedding light on this issue during the review process of the paper. We
also thank another anonymous reviewer for drawing attention to the similarities and distinctions between the current
paper and Ke and Ryan (2016).
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agent’s utility under action a is separable in wage w(x) and action cost c(a). In particular, he117

derives utility u(w(x)) − c(a) where u : [w,∞) → R and c : A → R. The principal’s utility for118

outcome x is a function of the net value π(x)−w(x) and is denoted v(π(x)−w(x)) where v : R→ R.119

The agent’s expected utility is U(w, a) =
∫
u(w(x))f(x, a)dx − c(a) and the principal’s expected120

utility is V (w, a) =
∫
v(π(x)− w(x))f(x, a)dx. The agent has an outside option worth utility U .121

The principal faces the optimization problem:2122

max
w≥w,a∈A

V (w, a) (P)123

124

subject to the following conditions125

U(w, a) ≥ U (IR)126

U(w, a)− U(w, â) ≥ 0 for all â ∈ A (IC)127
128

where (IR) is the individual rationality constraint that guarantees participation of the agent by129

furnishing at least the reservation utility U and (IC) are the incentive compatibility constraints130

that ensure the agent responds optimally.131

Assumption 1. The following hold:132

(A1.1) The outcome set X is an interval in R and the action set is the bounded interval133

A ≡ [a, ā],134

(A1.2) the outcome X is a continuous random variable and f(x, a) is continuous in x and135

twice continuously differentiable in a ∈ A,136

(A1.3) for a, a′ ∈ A with a 6= a′, there exists a positive measure subset of X such that137

f(x, a) 6= f(x, a′),138

(A1.4) the support of f(·, a) does not depend on a, and hence (without loss of generality) we139

assume the support is X for all a,140

(A1.5) w is a measurable function on X ,141

(A1.6) the value function π is increasing, continuous, and almost everywhere differentiable,142

(A1.7) the expected value
∫
π(x)f(x, a)dx of output is bounded for all a,143

(A1.8) the agent’s utility function u is continuously differentiable, increasing, and strictly144

concave,145

(A1.9) the agent’s cost function c is increasing and continuously differentiable in a, and146

(A1.10) the principal’s utility function v is continuously differentiable, increasing, and concave.147

The above assumptions are standard, so we will not spend time to justify them here.148

Assumption 2. We also make the following additional technical assumptions:149

(A2.1) either limy→∞ u(y) =∞ or limy→−∞ v(y) = −∞, and150

2The notation w ≥ w is shorthand for expressing w(x) ≥ w for almost all x ∈ X .
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(A2.2) the minimum wage w and reservation utility U and least costly action a for the agent151

are such that u(w)− c(a) < U .152

These two assumptions are required in the proof of Lemma 3 that uses a Lagrangian duality153

method and ensures the existence of optimal dual solutions. Finally, to focus the scope of our paper154

we make one additional assumption.155

Assumption 3. There exists an optimal solution to (P). Moreover, assume the first-best contract156

is not optimal.157

Existence is a challenging issue in its own right and not the focus of this paper. We are interested158

in how to construct an optimal solution when one is known to exist. Several existing papers pay159

careful attention to the issue of existence. For instance, Kadan et al. (2014) provide weak sufficient160

conditions that guarantee the existence of an optimal solution. Moreover, we may assume that161

the first-best contract is not optimal without loss of interest, since finding a first-best contract is a162

well-understood problem not worthy of additional consideration.163

We use the following terminology and notation. Let aBR(w) denote the set of actions that164

satisfy the (IC) constraint for a given contract w. That is, aBR(w) ≡ arg maxa′ U(w, a′). Let F165

denote the set of feasible solutions to (P). That is,166

F ≡
{

(w, a) : w ≥ w, a ∈ aBR(w), U(w, a) ≥ U
}
.167

168

Given an action a, contract w is said to implement a if (w, a) ∈ F . An action a is implementable169

if there exists a w that implements a. Let val(∗) denote the optimal value of the optimization170

problem (∗). In particular, val(P) denotes the optimal value of the original moral hazard problem171

(P). The single constraint in (IC) of the form172

U(w, a)− U(w, â) ≥ 0, (NJ(a, â))173

is called the no-jump constraint at â.174

2.2 Existing approaches175

We discuss the approaches to solve (P) that appear in the literature and their limitations. The176

standard-bearer is the first-order approach (FOA), which replaces (IC) with first-order conditions.177

Every implementable action a is an optimizer of the agent’s problem and so satisfies necessary178

optimality conditions for that problem. In particular, a satisfies the first-order condition necessary179

condition:180

Ua(w, a) = 0 if a ∈ (a, ā), Ua(w, a) ≤ 0 if a = a, and Ua(w, a) ≥ 0 if a = ā (FOC(a))181

where the subscripts denote partial derivatives. Replacing (IC) with (FOC(a)), problem (P) be-182

comes183

max
w≥w,a∈A

{V (w, a) : U(w, a) ≥ U and (FOC(a))}. (FOA)184

When (FOA) and (P) have the same value (that is, val(P) = val(FOA)) and the solution (w, a) to185

(FOA) has a implemented by w, we say the FOA is valid. Otherwise, the first-order approach is186

invalid.187
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Following Mirrlees (1999), we consider a special (very simplified) case of the moral hazard188

model that facilitates a geometric understanding of the technical issues involved. We return to189

this example at several points throughout the paper to ground our intuition. Section 6 has three190

additional examples that are more general moral hazard problems and provide additional insights.191

Example 1. Suppose the principal chooses contract z ∈ R (following Mirrlees (1999)) we use z192

to denote a single-dimensional contract instead of w) and the agent chooses an action a ∈ [−2, 2]193

with reservation utility U = −2. There is no lower bound on z. The principal obtains utility194

v(z, a) = za − 2a2 and the agent receives benefit −za, minus action cost c(a) = (a2 − 1)2, with195

total utility196

u(z, a) = −za− (a2 − 1)2.197

The principal’s problem is198

max
(z,a)
{v(z, a) : u(z, a) ≥ −2 and a ∈ arg max

a′
u(z, a′)}. (1)199

If we use the FOA, the solutions are (z, a) = (3
2 ,

1
2) and (−3

2 ,−1
2) which are not incentive compatible.200

Thus, the FOA is invalid.201

Since this problem is so simple we can solve it by inspection. We show that (z, a) = {(0, 1), (0,−1)}202

is the set of optimal solutions to (1). Clearly, a = ±1 is a best response to z = 0, providing a utility203

of −2 for the principal. To show that z 6= 0 is not an optimal choice for the principal first observe204

that for a fixed z the agent’s first-order conditions set d
dau(z, a) = 0 or205

a(a2 − 1) = −z/4 (2)206
207

where208

sgn(a(a2 − 1)) =


+ if a > 1 or a ∈ (−1, 0)

− if a < −1 or a ∈ (0, 1)

0 otherwise.

209

210

Thus, from (2) if z > 0 then the optimal choice of a is either a < −1 or a ∈ (0, 1) (the corner211

solution a = 2 is not optimal since d
dau(z, 2) < 0). Also, observe that a ∈ (0, 1) cannot be optimal212

since choosing action −a instead only improves the agent’s utility. Hence, an optimal response213

to z > 0 must satisfy a < −1. However, this implies that v(z, a) < −2, and so z > 0 is not an214

optimal choice of the principal (setting z = 0 gives the principal a utility of −2). Nearly identical215

reasoning shows that z < 0 is also not an optimal choice for the principal. This verifies that216

(z∗, a∗) = {(0, 1), (0,−1)} are the optimal solutions to (1). J217

To handle situations where the FOA is invalid, Mirrlees (1999) recognized that difficulties218

arise when pairs (w, a) satisfy (FOC(a)) but w fails to implement a. To combat this, Mirrlees219

reintroduced no-jump constraints from (IC). The resulting problem (cf. Mirrlees (1986)) is:220

max
(w,a)

V (w, a) (3a)221

subject to U(w, a) ≥ U, (3b)222

Ua(w, a) = 0 (3c)223

U(w, a)− U(w, â) ≥ 0, ∀â s.t. Ua(w, â) = 0 (3d)224
225
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(where the complication of corner solutions is ignored for simplicity).3 If a candidate contract226

violates a no-jump constraint in (3d) then an optimizing agent can improve his expected utility by227

“jumping” to an alternate best response. The best choice of alternate action â∗ given w is included228

among the no-jump constraints, since such an â∗ satisfies the first-order condition Ua(w, â
∗) = 0.229

Hence if a candidate contract satisfies all no-jump constraints it must implement a∗. The practical230

challenge in applying Mirrlees’s approach is generating all of the necessary no-jump constraints.231

In principle, it requires knowing all of the stationary points to the agent’s problem for every232

feasible contract. This enumeration of policies may well be intractable, and no general procedure233

to systematically produce them is known. However, if additional information can guide the choice234

of no-jump constraints (such as having a priori knowledge of the optimal contract and its best235

responses) then Mirrlees approach can indeed recover the optimal contract. The following example236

demonstrates this approach and is in the spirit of how Mirrlees illustrated his method.237

Example 2 (Example 1 continued). If we know a priori the two best responses to an optimal238

contract, â = 1 and −1 (as determined in Example 1), we may solve (1) in the following manner:239

max
(z,a)

v(z, a)240

subject to the first-order condition241

ua(z, a) = −4a(a2 − 1)− z = 0242

and no–jump constraints243

u(z, a)− u(z, â) ≥ 0244

for â ∈ {1,−1}. According to (3) we should include many more no-jump constraints, but in fact we245

show these two are sufficient to determine the optimal solution. Figure 1 illustrates the constraint246

sets and optimal solutions.247

We plot the first-order condition curve (blue line), the best response set (bold part of blue line)248

and the regions for the two constraints (the shaded regions in the graph):249

u(z, a)− u(z, 1) ≥ 0250

u(z, a)− u(z,−1) ≥ 0.251

The region {(z, a) : u(z, a)− u(z, â) ≥ 0} lies below the curve252

z = −(â+ a)(â2 + a2 − 2)253

for a > â and above the curve for a < â. These constraints preclude the optimal solution of254

the FOA: (z, a) = (3
2 ,

1
2) and (−3

2 ,−1
2). The only contract-action pairs that satisfy are (z∗, a∗) =255

{(0, 1), (0,−1)}, the optimal solutions to (1) (as established in Example 1). J256

In our approach we show how, under additional monotonicity assumptions, that reintroducing257

a single no-jump constraint is all that is required. Moreover, this single constraint can be found by258

solving a tractable optimization problem in the alternate action â. The next two sections describe259

and justify this procedure.260

3If corner solutions are considered, (3c) is replaced by (FOC(a)) and instead of (3d), we have one no-jump
constraint for every â such that (FOC(a)) with a = â holds.
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Figure 1: Figure for Example 2. The blue curve is the first-order condition curve, the light-blue
region captures those points that satisfy u(z, a) − u(z,−1) ≥ 0 and the light-red region captures
those points that satisfy u(z, a)− u(z, 1) ≥ 0.

3 The sandwich relaxation261

We first introduce a family of restrictions of (P) that vary the right-hand side of the (IR) constraint262

(for reasons that will become clear later). Consider the parametric problem:263

max
w≥w,a∈A

V (w, a)264

subject to U(w, a) ≥ b (P|b)265

U(w, a)− U(w, â) ≥ 0 for all â ∈ A266
267

with parameter b ≥ U . The original problem (P) is precisely (P|U). We restrict b ≥ U so that268

val(P|b) ≤ val(P) and a feasible solution of (P|b) remains feasible to (P). We restate (P|b) using269

an inner minimization over â. Observe that (P|b) is equivalent to270

max
w≥w,a∈A

V (w, a)271

subject to U(w, a) ≥ b272

inf
â∈A
{U(w, a)− U(w, â)} ≥ 0. (4)273

274

To clarify the relationships between w, a, and â, we pull the minimization operator out from275

the constraint (4) and behind the objective function. This requires handling the possibility that a276

choice of w does not implement the chosen a, in which case (4) is violated. We handle this issue as277

follows. Given b ≥ U , define the set278

W(â, b) ≡ {(w, a) : U(w, a) ≥ b and U(w, a)− U(w, â) ≥ 0} ,279
280
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and the characteristic function281

V I(w, a|â, b) ≡
{
V (w, a) if (w, a) ∈ W(â, b)

−∞ otherwise.
(5)282

283

This is constructed so that when maximizing V I(w, a|â, b) over (w, a) results in a finite objective284

value then (w, a) ∈ W(â, b). Similarly, if maximizing inf â∈A V
I(w, a|â, b) over (w, a) results in a285

finite objective value then we know (w, a) lies inW(â, b) for all â ∈ A. This implies (w, a) is feasible286

to (P|b) and demonstrates the equivalence of (P|b) and the problem287

max
a∈A

max
w≥w

inf
â∈A

V I(w, a|â, b). (Max-Max-Min|b)288

We explore what transpires when swapping the order of optimization in (Max-Max-Min|b) so289

that â is chosen before w. That is, we consider290

max
a∈A

inf
â∈A

max
w≥w

V I(w, a|â, b)291

which is equivalent to292

max
a∈A

inf
â∈A

max
w≥w
{V (w, a) : (w, a) ∈ W(â, b)} (SAND|b)293

since an optimal choice of a precludes a subsequent optimal choice of â that setsW(â, b) = ∅, imply-294

ing V I(w, a|â, b) = V (w, a) when w is optimally chosen. We call (SAND|b) the sandwich problem295

given bound b, where “sandwich” refers to the fact that the minimization over â is sandwiched296

between two maximizations.297

Our method allows for the nonexistence of a minimizer to the inner minimization over â. On298

the other hand, the next lemma shows that the outer maximization over a always possesses a299

maximizer. This follows by establishing the upper semi-continuity of the value function over the300

inner two optimization problems.301

Lemma 1. There always exist a maximizer to the outer maximization problem in (SAND|b).302

Even when the inner minimization over â does not exist we call (a∗, w∗) where V (w∗, a∗) =303

val(SAND|b)) an optimal solution to (SAND|b). If the inner minimization is attained at an action304

â∗ then we can say (a∗, â∗, w∗) is an optimal solution to (SAND|b) without confusion.305

Lemma 2. For every b ≥ U , val(P|b) ≤ val(SAND|b). Moreover, if there exists an optimal solution306

(w∗, a∗) to (P) such that U(w∗, a∗) ≥ b then val(P) ≤ val(SAND|b).307

From Lemma 2 we are justified in calling (SAND|b) the sandwich relaxation of (P|b). There are308

two related benefits to studying the sandwich relaxation. First, changing the order of optimization309

from Max-Max-Min to Max-Min-Max improves analytical tractability. The map that describes310

which optimal contracts support a given action a against deviation to a specific alternate best311

response â has desirable topological properties and can be used to determine the “minimizing”312

alternative best response without resort to enumeration, as is required in the worst-case in Mirrlees’s313

approach. By contrast, to solve the original problem (Max-Max-Min|b) one must work with the314

best-response set aBR(w) as a constraint for the inner maximization over w. The best-response set315

is notoriously ill-structured. This motivates why the sandwich relaxation is a far easier problem to316

solve than the original problem itself. More details are found in Section 3.1.317

Second, if b satisfies a property called tightness-at-optimality (defined below), and other suffi-318

cient conditions are met, the sandwich relaxation is equivalent to (P). More details are found in319

Section 3.2.320
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3.1 Analytical benefit of changing the order of optimization321

By changing the order of optimization, we solve for an optimal contract w given a choice of imple-322

mentable action a and alternate best response â. The resulting problem is:323

max
w≥w
{V (w, a) : U(w, a) ≥ b, U(w, a)− U(w, â) ≥ 0} . (SAND|a, â, b)324

We show that this problem has a unique solution and provide necessary and sufficient optimality325

conditions.326

The approach is to use Lagrangian duality. The Lagrangian function of (SAND|a, â, b) is327

L(w, λ, δ|a, â, b) = V (w, a) + λ[U(w, a)− b] + δ[U(w, a)− U(w, â)], (6)328

where λ ≥ 0 and δ ≥ 0 are the multipliers for U(w, a) ≥ b and U(w, a)− U(w, â) ≥ 0, respectively.329

The Lagrangian dual is330

inf
λ,δ≥0

max
w≥w
L(w, λ, δ|a, â, b). (7)331

332

Consider the inner maximization problem of (7) over w. By Assumption (A1.4) we can express the333

Lagrangian (6) as334

L(w, λ, δ|a, â, b) =

∫
L(w(x), λ, δ|x, a, â, b)f(x, a)dx335

336

where L(·, ·, ·|x, a, â, b) is a function from R3 → R with337

L(y, λ, δ|x, a, â, b) = v(π(x)− y) + λ(u(y)− c(a)− b) + δ
[
u(y)

(
1− f(x,â)

f(x,a)

)
− c(a) + c(â)

]
338

= v(π(x)− y) +
[
λ+ δ

(
1− f(x,â)

f(x,a)

)]
u(y)− λ(c(a) + b)− δ(c(a)− c(â)) (8)339

340

where the ratio 1− f(x,â)
f(x,a) results from factoring f(x, a) from the terms involving u. This is possible341

since f(·, a) has the same support for all a.342

The inner maximization of L(w, λ, δ|a, â, b) over w in (7) can be done pointwise via343

max
y≥w

L(y, λ, δ|x, a, â, b) (9)344

345

for each x and setting w(x) = y where y is an optimal solution to (9). Two cases can oc-346

cur. If λ + δ
(

1− f(x,â)
f(x,a)

)
≤ 0 then L(y, λ, δ|x, a, â, b) is decreasing function of y by Assump-347

tions (A1.8) and (A1.10). Hence, the unique optimal solution to (9) is y = w.348

On the other hand, if λ + δ
(

1− f(x,â)
f(x,a)

)
> 0 then L(y, λ, δ|x, â) is strictly concave in y (again349

by Assumptions (A1.8) and (A1.10)). If ∂
∂yL(w, λ, δ|x, a, â, b) ≤ 0 then the corner solution y = w350

is optimal, otherwise there exists a unique y such that ∂
∂yL(y, λ, δ|x, a, â, b) = 0 holds. In both351

cases (9) has a unique optimal solution w(x). Hence, the optimal solution w : X → R to the inner352

maximization of (7) satisfies:353

w(x)

{
solves ∂

∂yL(w(x), λ, δ|x, a, â, b) = 0 if λ+ δ
(

1− f(x,â)
f(x,a)

)
> 0 and ∂

∂yL(w, λ, δ|x, a, â, b) > 0

= w otherwise.
354

355
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Expressing the derivatives and dividing by u′(w(x)) (which is valid since u′ > 0 by (A1.8)) yields356

w(x)

{
solves v′(π(x)−w(x))

u′(w(x)) = λ+ δ
(

1− f(x,â)
f(x,a)

)
if v′(π(x)−w)

u′(w) < λ+ δ
(

1− f(x,â)
f(x,a)

)
= w otherwise.

(10)357

358

Since v′ and u′ are both positive, the condition v′(π(x)−w)
u′(w) < λ + δ

(
1− f(x,â)

f(x,a)

)
implies λ +359

δ
(

1− f(x,â)
f(x,a)

)
> 0, handling both cases detailed above.360

As discussed above, given (λ, δ, a, â, b), there is a unique choice w, denoted wλ,δ(a, â, b), that361

satisfies (10). Such contracts are significant for our analysis and warrant a formal definition.362

Definition 1. Any contract that satisfies (10) for some choice of (λ, δ, a, â, b) is called a gener-363

alized Mirrlees-Holmstrom (GMH) contract. These contracts are generalized versions of Mirrlees-364

Holmstrom contracts in the special case of a binary action.365

Observe that GMH contracts are continuous in x. There are five parameters (λ, δ, a, â, b) in a366

GMH contract. However, Lemma 3 below shows each GMH contract is a function of only three367

parameters: a, â and b.368

Lemma 3. Suppose Assumptions 1–3 hold. For every (a, â, b) with â 6= a there exists a unique369

Lagrangian multipliers λ∗ and δ∗ and a unique contract w∗ such that370

(i) w∗ satisfies (10) for λ∗ and δ∗ (in particular, w∗ is a GMH contract),371

(ii) strong duality between (SAND|a, â, b) and (6) holds and, in particular, the complementary372

slackness conditions373

λ∗ ≥ 0, U(w∗, a)− b ≥ 0 and λ∗[U(w∗, a)− b] = 0, (ii-a)374

δ∗ ≥ 0, U(w∗, a)− U(w∗, â) ≥ 0 and δ∗[U(w∗, a)− U(w∗, â)] = 0, (ii-b)375
376

are satisfied.377

Moreover, the following additional properties hold:378

(iii) (λ∗, δ∗) = (λ(a, â, b), δ(a, â, b)) is a upper semicontinuous function of (a, â, b) and is continuous379

and differentiable at any (a, â, b) where a 6= â.380

(iv) w∗ = wλ(a,â,b),δ(a,â,b)(a, â, b) is an upper semicontinuous function of (a, â, b) and continuous381

and differentiable at any (a, â, b) where a 6= â.382

Lemma 3(iv) leaves open the possibility that there is a jump discontinuity when a = â. As383

an illustration, consider the case where the principal is risk-neutral and the first-order approach is384

valid. When â > a, the optimal solution to (SAND|a, â, b) is the first best contract. However, as385

â− a→ 0− we have386

lim
â−a→0−

V (wλ(a,â,b),δ(a,â,b)(a, â, b), a) = max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, a) = 0}387

< max
w≥w
{V (w, a) : U(w, a) ≥ b}.388
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Therefore, the value function is not continuous at that point.4389

Lemma 3 provides insight into the inner “inf” of (SAND|b). Given an a ∈ A, suppose the390

infimizing sequence ân to the inner “inf” converges to some a′. If a′ 6= a then, in fact, the infimum391

is attained by the continuity of w∗ from Lemma 3(iv). An issue arises if a′ = a and the infimum is392

not attained, since this a point of discontinuity of w∗. The following result analyzes this scenario.393

We also refer the reader to Section 5 below which provides additional details.394

Lemma 4. If the minimization of inf â maxw≥w{V (w, a) : U(w, a) ≥ b, U(w, a) − U(w, â) ≥ 0} is395

not attained, then396

inf
â

max
w≥w
{V (w, a) : U(w, a) ≥ b, U(w, a)− U(w, â) ≥ 0} = max

w
{V (w, a) : U(w, a) ≥ b, (FOC(a))}

(11)397

where (FOC(a)) is as defined in Section 2.2.398

This result shows that when the infimum is not attained for a given action a, it suffices to take399

a “first-order approach” at a.400

3.2 Tightness of the sandwich relaxation401

The previous subsection provides a to toolbox for analyzing the sandwich relaxation (SAND|b).402

However, there remains the question of whether that relaxation is worth solving at all. In partic-403

ular, we may ask whether there exists a b that makes d(SAND|b) a tight relaxation; i.e., whether404

an optimal solution (a∗, w∗) to (SAND|b) yields an optimal solution (w∗, a∗) to (P), implying405

val(SAND|b) = val(P). The following example illustrates a situation where such a choice is possi-406

ble.407

Example 3 (Example 1 continued). We solve the sandwich relaxation (SAND|b) of (1) for b = 0.5408

That is, we solve:409

max
a∈[−2,2]

inf
â∈[−2,2]

max
z
{v(z, a) : u(z, a) ≥ 0 and u(z, a)− u(z, â) ≥ 0} (12)410

where411

v(z, a) = za− 2a2 and u(z, a) = −za− (a2 − 1)2.412

We break up the outermost optimization (over a) across two subregions of [−2, 0] and [0, 2]. The413

optimal value of (12) can be found by taking the larger of the two values across the two subregions.414

We consider a ∈ [0, 2] first. In this case v(z, a) is increasing in z and thus â is chosen to minimize415

z. We show how z relates to the choice of a and â. The u(z, a) ≥ 0 constraint cannot be satisfied416

when a = 0 and so is equivalent to417

z ≤ − (a2−1)2

a , (13)418
419

since dividing by a 6= 0 is legitimate. The no-jump constraint u(z, a)− u(z, â) ≥ 0 is equivalent to420

z


≥ −(â+ a)(â2 + a2 − 2) for â > a
≤ −(â+ a)(â2 + a2 − 2) for â < a
∈ (−∞,∞) for â = a.

(14)421

422

4 We thank an anonymous reviewer for alerting us to this observation.
5In fact, one can show that setting b = U = −2 does not give rise to a tight relaxation. For details see the

discussion following (38) below.
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Clearly, â = a will never be chosen in the inner minimization over â in (12) since it cannot prevent423

sending z →∞, when the goal is to minimize z. When â > a observe that424

inf
â>a
−(â+ a)(â2 + a2 − 2)425

=

{
4a− 4a3 for 1/

√
3 ≤ a ≤ 2

4
27(9a− 5a3) + 4

27

√
2
√

(3− a2)3 for 0 ≤ a ≤ 1/
√

3.
(15)426

When a ∈ [0, 1) one can verify that427

inf
â>a
−(â+ a)(â2 + a2 − 2) > 0 > − (a2−1)2

a428

using (15). By (14) this implies z > (a2−1)2

a when â > a, violating (13). Hence, when a ∈ [0, 1) the429

inner minimization over â in (12) will choose â > a and thus make a choice of z infeasible, driving430

the value of the inner minimization over â to −∞. This, in turn, implies that a ∈ [0, 1) will never431

be chosen in the outer maximization, and so we may restrict attention to a ∈ [1, 2].432

When a ∈ [1, 2] we return to (14) and consider the two cases: (i) â > a and (ii) â < a. In case433

(i) note that434

inf
â>a
−(â+ a)(â2 + a2 − 2) = 4a− 4a3 ≤ − (a2−1)2

a ,435

when a ∈ [1, 2] and so from (13)–(15) we have436

4a− 4a3 ≤ z ≤ − (a2−1)2

a . (16)437
438

However in case (ii) we have from (13) and (14) that439

z ≤ min

{
(a2−1)2

a , inf
â<a
−(â+ a)(â2 + a2 − 2)

}
. (17)440

441

Note that442

inf
â<a
−(â+ a)(â2 + a2 − 2) = 4a− 4a3 for 1 ≤ a ≤ 2 (18)443

and 4a− 4a3 < − (a2−1)2

a when a ∈ [1, 2]. Observe that the infimum is not attained since the only444

real solution to −(â + a)(â2 + a2 − 2) = 4a − 4a3 when a ∈ [1, 2] is â = a. Lemma 4 applies and445

yields446

z∗(a) = 4a− 4a3 (19)447
448

via (18). Since the principal’s utility v(z∗(a), a) is decreasing in a ∈ [1, 2], we obtain the solution449

a∗ = 1 and the optimal choice of z∗ is thus z∗(1) = 0. One can see this graphically in Figure 2.6450

We return to the case where a ∈ [−2, 0]. Nearly identical reasoning (with care to adjust negative451

signs accordingly) shows a∗ = −1 and, again, the optimal choice of z is z∗(1) = 0. Hence, the overall452

problem (12) gives rise to two optimal choices of (z∗, a∗), namely (0, 1) and (0,−1). However, this453

is precisely the optimal solution to the original problem (1), as shown by inspection in Example 1.454

This establishes the tightness of (SAND|b) for b = 0. J455

6This condition reveals that this example has the special structure that the first-order approach applies locally;
that is, given an a the optimal choice of z is uniquely determined by the first-order condition. Mirrlees original
example in Mirrlees (1999) also has this property.
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Figure 2: Figure for Example 3. The blue curve and region are those (z, a) that satisfy the constraint
U(z, a) ≥ 0. The red curve are those (z, a) that satisfy the inner maximization over z given by
(19). Observe that the optimal solution in the region a ∈ [0, 2] is (z, a) = (0, 1) since the principal’s
utility is increasing in z.

Note that by choosing b correctly in the above example we were able to arrive at the first-order456

condition curve Ua(z, a) = 0 used in Mirrlees’s approach. This underscores that we do not need to457

explicitly include the FOC in our definition of the sandwich relaxation as in the relaxations due to458

Mirrlees and others. This issue is taken up more carefully in Section 5. Comparing Figure 1 and459

Figure 2 we see that the (IR) is not needed to specify the optimal contract in Figure 1 but is needed460

(with an adjusted right-hand side) when using the sandwich relaxation in Figure 2. However the461

first-order condition curve does not appear in Figure 2 to characterize the optimal contract.462

Of course, the question remains as to whether there always exists a b such that (SAND|b) is a463

tight relation of (P), and if so, how to determine it. We make the following definition.464

Definition 2. We say b ≥ U is tight-at-optimality (or simply tight) if there exists an optimal465

solution (w∗, a∗) to (P) such that b = U(w∗, a∗).466

By Assumption 3 at least one such b exists. The main result of this section is to show that for467

such a b, the sandwich relaxation (SAND|b) is tight under certain technical assumptions. The key468

assumption is a structural property on the output distribution f , namely the monotone likelihood469

ratio property (MLRP) where for any a, ∂ log f(·,a)
∂a is nondecreasing. This property is well-known in470

the literature (see Holmstrom (1979), Rogerson (1985) and others).471

Assumption 4. The output distribution f satisfies the MLRP condition.472

The following is the key technical result of the paper.473
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Theorem 1. Suppose Assumptions 1–4 hold. If b is tight-at-optimality then (SAND|b) is a tight474

relaxation; that is, val(SAND|b) = val(P) and, moreover, if (a#, â#, w#) is an optimal solution to475

(SAND|b) then (w#, a#) is an optimal solution to (P). If the infimum in (SAND|b) is not attained476

and (a#, w#) is an optimal solution to the inner and outer maximization in (SAND|b) then (w#, a#)477

is an optimal solution to (P).478

The proof of Theorem 1 is involved and relies on several nontrivial, but largely technical,479

intermediate results. Full details are found in the appendices, along with further discussion. We480

note that Lemma 4 is essential for the case where the infimum is not attained.481

For the sake of developing intuition regarding the proof of Theorem 1, we consider here the482

special case where X is a singleton and in the inner infimum is attained. Of course, the single-483

outcome case is not a difficult problem to solve and provides little economic intuition, but it does484

highlight some of the important features of the more general argument. Indeed, in the course of the485

general argument we use a variational approach that reduces consideration to a single-dimensional486

contract, mimicking the singleton case. When X is a singleton, contracts w are characterized by487

a single number z = w(x0) (following the notation of Example 2 and Mirrlees (1999)) and so488

U(w, a) = u(z)− c(a) and V (w, a) = v(π(x0)− z). For consistency we denote the minimum wage489

by z (as opposed to w).490

Proof of Theorem 1 for a single-dimensional contract. Let (z∗, a∗) be an optimal solution of (P)491

(guaranteed to exist by Assumption 3). Let b = U(z∗, a∗). Let (a#, â#, z#) be an optimal solution492

to (SAND|b).493

There are two cases to consider.494

Case 1 : U(z#, a#) = b.495

By Lemma 2 we know val(P) ≤ val(SAND|b). It suffices to argue that val(SAND|b) ≤ val(P).496

By the optimality of (a#, â#, z#) in (SAND|b) we know497

V (z#, a#) = inf
â∈A

max
z≥z

{
V (z, a#) : U(z, a#) ≥ b, U(z, a#)− U(z, â) ≥ 0

}
. (20)498

499

Let â′ be a best response to z#. Then from the minimization over â in (20) we have500

V (z#, a#) ≤ max
z≥z

{
V (z, a#) : U(z, a#) ≥ b, U(z, a#)− U(z, â′) ≥ 0

}
. (21)501

502

Suppose (21) holds with equality. Since V is decreasing in z (under Assumption (A1.10)) and503

the feasible region is single-dimensional, the optimal solution to the right-hand side problem is504

unique and therefore z# must be that unique optimal solution under the equality assumption. This505

implies z# is feasible to the right-hand side problem and so U(z#, a#) ≥ U(z#, â′). Since â′ is a506

best response to z# then so is a#. This implies that (z#, a#) is a feasible solution to (P). Thus,507

val(SAND|b) ≤ val(P), establishing the result.508

Hence, it remains to argue that (21) is satisfied with equality. Suppose otherwise that509

V (z#, a#) < max
z≥z

{
V (z, a#) : U(z, a#) ≥ b, U(z, a#)− U(z, â′) ≥ 0

}
. (22)510

511

There must exist a z′ in the argmax of right-hand side such that V (z#, a#) < V (z′, a#). Since V is512

strictly decreasing in z this implies z# > z′. However, since U is increasing in z this further implies513
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that U(z′, a#) < U(z#, a#) = b (where the equality holds under the assumption of Case 1). That514

is, U(z′, a#) < b, contradicting the feasibility of z′ to (SAND|b).515

Case 2 : U(z#, a#) > b.516

This requires the following intermediate lemma, whose proof is in the appendix:517

Lemma 5. Let (a#, z#) be an optimal solution to the single-dimensional version of (SAND|b) with518

U(z#, a#) > b (in particular, the infimum in (SAND|b) need not be attained). Then there exists519

an ε > 0 such that the perturbed problem (SAND|b+ ε) also has an optimal solution (a#
ε , z

#
ε ) with520

U(z#
ε , a

#
ε ) = b+ ε and the same optimal value; that is, V (z#

ε , a
#
ε ) = V (z#, a#) = val(SAND|b).521

The proof of this lemma relies on strong duality and the fact that if a constraint is slack, the dual522

multiplier on that constraint is 0 by complementary slackness. A small perturbation of the right-523

hand side of a slack constraint does not impact the optimal value. This argument is standard (see524

for instance, Bertsekas (1999)) in the absence of the inner minimization problem inf â in (SAND|b).525

With the inner minimization the proof becomes nontrivial.526

Returning to our proof of Case 2, by Lemma 5 there exists an ε > 0 and an optimal solution527

(a#
ε , z

#
ε ) to (SAND|b + ε) where U(z#

ε , a
#
ε ) = b + ε and val(SAND|b + ε) = val(SAND|b). We can528

apply precisely the logic Case 1 to the problem (SAND|b+ ε) and conclude that val(SAND|b+ ε) =529

val(P). Hence, since val(SAND|b+ ε) = val(SAND|b), (SAND|b) is a tight-relaxation of (P).530

We provide here some intuition behind Theorem 1 in the single-outcome setting. For a given531

target action a∗ we can think of the contracting problem as a sequential game, where the principal532

chooses z and the agent chooses â. The original (IC) constraint is equivalent to the situation that533

the principal chooses z first followed by the agent’s choice of â. So the optimal choice of z should534

take all possible â into consideration. The agent has a second-mover advantage. Now consider a535

change in the order of decisions and let the agent chooses â first, with the principal choosing z in536

response. In this case the principal has a second-mover advantage, since the principal need not537

consider all possible â. This provides intuition behind the bound in Lemma 2. However, if the538

agent utility bound b is tight given a∗, the principal cannot gain an advantage by moving second.539

No choice of contract by the principal can drive the agent’s utility down any further. Since the540

principal and agent have a direct conflict of interest over the direction of z, this means the principal541

cannot improve her utility. In other words, the order of decisions does not matter when b is tight542

and so the sandwich problem provides a tight relaxation. This argument relies on the fact that w543

is unidimensional. In the multidimensional case, we parameterize the payment function through a544

unidimensional z using a variational argument. As long as a conflict of interest exists, we obtain a545

similar intuition and result. An analogous result to Lemma 5 is also leveraged in the argument.546

We remark that Assumption 4 is not used in the proof of Theorem 1 for the singleton case.547

However, Assumption 4 is essential for continuous outcome sets. The MLRP is essential for showing548

that optimal solutions to sandwich relaxations are, in fact, GMH contracts as defined in Section 3.1.549

In particular, monotonicity of the output function greatly simplifies the first-order conditions of550

(P) to reduce them to the necessary and sufficient conditions of (10). Establishing that an optimal551

solution is of GMH form then permits a duality argument using variational analysis that mimics552

the reasoning in the single-outcome case above. See the appendix for further details.553

Of course, there remains the question of finding a tight b. The simplest case is when the554

reservation utility U itself is an appropriate choice for b. The following gives a sufficient condition555

for this to be the case.556
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Proposition 1. Suppose Assumption 1–3 hold, then the reservation utility U is tight-at-optimality557

if there exist an optimal solution w∗ to (P) and an δ > 0 such that w∗(x) > w + δ for almost all558

x ∈ X .559

The task of the next section is provide a systematic approach to finding a b that is tight-at-560

optimality.561

4 The sandwich procedure562

The remaining steps to systematically solve (P) are (i) finding a b that is tight-at-optimality and563

(ii) determining a systematic way to solve (SAND|b). We approach both tasks concurrently using564

what we call the sandwich procedure. The basic logic of the procedure is to use backwards induc-565

tion, leveraging Lemma 3 above and the GMH structure (see Definition 1) of optimal solutions to566

(SAND|a, â, b). The structure of these optimal solutions is used to compute a tight b by solving a567

carefully designed optimization problem in (Step 3) below.568

569

The Sandwich Procedure570

Step 1 Characterize contract: Characterize an optimal solution to the innermost maximiza-571

tion in (SAND|b):572

max
w≥w
{V (w, a) : U(w, a) ≥ b, U(w, a)− U(w, â) ≥ 0} (SAND|a, â, b)573

as a function of a ∈ A, â ∈ A and b ≥ U where â 6= a. Denote the resulting optimal contract574

by w(a, â, b).575

Step 2 Characterize actions: Determine optimal solutions to the outer maximization and576

minimization577

max
a∈A

inf
â∈A

V (w(a, â, b), a) (23)578

as functions of b. If a minimizer â(a, b) exists to the inner minimization, find a(b) ∈579

argmaxa∈A V (w(a, â(a, b), b), a) (we know such a maximizer always exists from Lemma 1)580

and set w(b) = w(a(b), â(a, b), b).581

If the inner “inf” is not attained, solve582

max
a∈A

max
w≥w
{V (w, a) : U(w, a) ≥ b, (FOC(a))},583

584

which uses (11) from Lemma 4. Call the resulting solution (a(b), w(b)).585

Step 3 Compute a tight bound: Solve the one-dimensional optimization problem:586

b∗ ≡ min

{
argminb≥U

{
V (w(b), a(b))− max

a∈aBR(w(b))
V (w(b), a)

}}
. (24)587

Let a∗ ≡ a(b∗), â∗ ≡ â(a∗, b∗) (when it exists), and w∗ ≡ w(b∗).588

589

The work of this section is to provide further explanation of each step. Finally, we explain how590

the procedure, when possible to execute, produces optimal solutions to (P).591
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Proposition 2. For a given b, let a(b), â(a(b), b) (if it exists) and w(b) be as defined at the end592

of Step 2 of the sandwich procedure. Then (a(b), â(a(b), b), w(b)) is an optimal solution to the593

sandwich relaxation (SAND|b). If â(a(b), b) does not exist then (a(b), w(b)) (as defined in Step 2)594

solves (SAND|b).595

The proof is essentially by definition and thus omitted. However, to guarantee the tractability596

of each step we must make Assumptions 1–4. These same conditions ensure that (SAND|b) is, in597

fact, a tight relaxation.598

Theorem 2. Suppose Assumption 1–4 hold and let b∗, a∗, and w∗ be as defined in Step 3 of the599

sandwich procedure. Then b∗ is tight-at-optimality, (w∗, a∗) is an optimal solution to (P), and600

val(SAND|b∗) = val(P).601

Note that if a given b is known to be tight-at-optimality through some independent means, Step602

3 of the procedure can be avoided. A special case of this is when the reservation utility U itself603

is tight-at-optimality. Proposition 1 gives a sufficient conditions for this to hold. When the FOA604

applies and the minimum wage w is sufficiently small then the (IR) constraint is likely to bind (see605

Jewitt et al. (2008)) and so (Step 3) can be avoided.606

In the remaining subsections below we provide lemmas that provides justification for each step of607

the sandwich procedure. This culminates in a proof of Theorem 2 that is relatively straightforward608

given the previous work. In the final subsection we note that even when Theorem 2 does not609

apply, we can sometimes use the sandwich procedure to construct an optimal contract. We use our610

motivating example to illustrate how this can be done.611

4.1 Analysis of Step 1612

We undertake an analysis of this step under Assumptions 1–3 following from Lemma 3 in Section 3.1.613

The optimal contract w(a, â, b) sought in Step 1 is precisely the unique optimal contract guaranteed614

by Lemma 3(i). That lemma also guarantees that w(a, â, b) is a well-behaved function of (a, â, b).615

Indeed, by strong duality (Lemma 3(ii)), the optimal value of (SAND|a, â, b) is616

val(SAND|a, â, b) = inf
λ,δ≥0

max
w≥w
L(w, λ, δ|a, â, b) = L∗(a, â|b)617

where618

L∗(a, â|b) ≡ L(w(a, â, b), λ(a, â, b), δ(a, â, b)|a, â, b) (25)619

is called the optimized Lagrangian for the sandwich relaxation. The following straightforward620

consequence of the Theorem of Maximum and Lemma 3 shows that the optimized Lagrangian has621

useful structure we can use to facilitate Step 2 of the procedure.622

Lemma 6. The optimized Lagrangian L∗(a, â|b) is upper semicontinuous and continuous and623

differentiable in (a, â|b) when a 6= â.624

4.2 Analysis of Step 2625

The case where the inner infimum is not attained is sufficiently handled by Lemma 4 and existing626

knowledge about the first-order approach. Here we examine the case where the inner infimum is627

attained and provide necessary optimality conditions for a and â to optimize (SAND|b) given the628
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contract w(a, â, b) and its associated dual multipliers λ(a, â, b) and δ(a, â, b). In particular, we solve629

(23) in Step 2 by solving:630

max
a∈A

inf
â∈A
L∗(a, â|b) (26)631

using the definition of the optimized Lagrangian L∗ in (25). The optimal solution to the outer632

optimization exists since A is compact and L∗ is upper semicontinuous (via Lemma 6). Moreover, by633

the differentiability properties of L (when â 6= a) we can obtain the following optimality conditions634

for solutions of (26).635

Lemma 7. Suppose a∗ and â∗ solve (26) for a given b ≥ U with â 6= a. The following hold:636

(i) for an interior solution â∗ ∈ (a, ā),637

∂
∂âL∗(a∗, â∗|b) = −δ∗(a∗, â∗, b)Ua(w(a∗, â∗, b), â∗) = 0,638

639

and Ua(w(a∗, â∗, b), â∗) ≥ 0 (≤ 0) for â∗ = ā (â∗ = a);640

(ii) for an interior solution a∗ ∈ (a, ā), the right derivative is641

∂
∂a+

min
â∈A
L∗(a∗, â|b) ≤ 0,642

643

and left derivative is644

∂
∂a− min

â∈A
L∗(a∗, â|b) ≥ 0,645

646

and ∂
∂âL∗(a∗, â∗|b) ≤ 0 (≥ 0) for a∗ = a (a∗ = ā).647

Note that the conditions for a∗ and â∗ are not symmetric in (i) and (ii) above. This is because648

a∗ is a function of â∗ and so has weaker topological properties to leverage for first-order conditions.649

4.3 Analysis of Step 3650

To work with (24) we re-express it in a slightly different way. Note that V (w(b), a(b)) = val(SAND|b)651

via Proposition 2. We also denote the optimization problem in the second term inside the “argmin”652

of (24) as (P |w(b)):653

max
a∈aBR(w(b))

V (w(b), a). (P |w(b))654

655

Thus, we can re-express (24) as:656

b∗ ≡ min
{

argminb≥U {val(SAND|b)− val(P |w(b))}
}
. (27)657

Note that (P |w(b)) is a restriction of (P|b) and so val(P |w(b)) ≤ val(P|b) ≤ val(SAND|b) and658

all three values are decreasing in b. Also from Assumption 3, there exists an optimal solution659

(w∗, a∗) to (P) and so there exists a b (namely, b = U(w∗, a∗)) such that all three problems660

share the same optimal value. Hence, we must have minb≥U (val(SAND|b) − val(P |w(b)) = 0 and661

so b∗ is the first time where val(SAND|b) = val(P |w(b)), forcing val(SAND|b) = val(P|b) and662

implying b∗ is tight-at-optimality. See Figure 3. We make this argument formally in the proof663

of the following lemma, which also shows that the b∗ is well-defined in the sense that the set664

argminb≥U {val(SAND|b)− val(P |w(b))} has a minimum.665

Lemma 8. If Assumptions 1–4 hold then there exists a real number b∗ that satisfies (24). Fur-666

thermore, b∗ is tight-at-optimality.667
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b

val(SAND|b)

val(P|w(b))

val(P|b)

b∗U

Figure 3: An illustration of Step 3 of the sandwich procedure.

4.4 Overall verification of the procedure668

We are now ready to prove Theorem 2, that the sandwich procedure produces an optimal solution669

to (P) when Assumptions 1–4 hold. The proof is a straightforward application of the lemmas of670

this section.671

Proof of Theorem 2. By Lemma 8 there exists a b∗ that satisfies (24) and is tight-at-optimality.672

Hence, by Theorem 1, val(SAND|b∗) = val(P) and every optimal solution (w(b∗), a(b∗)) to (SAND|b∗)673

is optimal to (P). Note that we need not require that the infimum is attained. However, when â is674

attained with â 6= a, the GMH contract w(a(b∗), â(b∗), b∗) resulting from Lemma 3 is precisely one675

such optimal contract where a(b∗) and â(b∗) satisfy the optimality conditions of Lemma 7.676

4.5 An illustrative example677

Our motivating example serves to illustrate the steps of the sandwich procedure and how to work678

with (24), even when Theorem 2 does not apply.679

Example 4 (Example 1 continued). Recall, our problem is to solve680

max
(z,a)
{v(z, a) : u(z, a) ≥ −2 and a ∈ arg max

a′
u(z, a′)}681

where v(z, a) = za − 2a2 and u(z, a) = −za − (a2 − 1)2. We apply each step of the procedure682

and determine an optimal contract. There is some overlap of analysis from Example 3, but our683

approach here is more systematic and follows the reasoning and notation laid out in Step 1–Step 3684

of the sandwich procedure.685

Step 1. Characterize Contract.686

First, we characterize the optimal solutions z(a, â, b) of687

max
z
{v(z, a) : u(z, a) ≥ b, u(z, a)− u(z, â) ≥ 0} (28)688

where a ∈ [0, 2]. The case where a ∈ [−2, 0] is symmetric and analogous reasoning holds throughout.689

Observe that v(z, a) is increasing in z for fixed a and â and so (28) can be solved by simply690
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maximizing z. The constraints on z are (from u(z, a) ≥ b):691

z ≤ Q(a, b) (29)692
693

when a 6= 0, where Q(a, b) ≡ − b+(a2−1)2

a , and (from u(z, a)− u(z, â) ≥ 0):694

z


≥ R(a, â) if â > a

≤ R(a, â) if â < a

∈ (−∞,∞) if â = a,

(30)695

696

where R(a, â) ≡ −(â+ a)(â2 + a2 − 2). Maximizing z subject to (29) and (30) yields:697

z(a, â, b) =



min {Q(a, b), R(a, â)} if (a 6= 0) ∧ (â < a)

Q(a, b) if (a 6= 0) ∧
(
(â = a) ∨ ((â > a) ∧ [Q(a, b) ≥ R(a, â)])

)
R(a, â) if (a = 0) ∧ (b ≤ −1) ∧ (â < a),

+∞ if (a = 0) ∧ (b ≤ −1) ∧ (â ≥ a)

−∞ if (a 6= 0) ∧ (â > a) ∧ [R(a, â) > Q(a, b)]

−∞ if (a = 0) ∧ (b > −1)

698

699

where ∧ is the logical “and” and ∨ is the logical “or”. The value +∞ comes the fact that u(z, a) ≥ b700

does not constrain z when a = 0 and (30) does not constrain z when â = a. Hence, the value of z can701

be driven to +∞. The value −∞ comes from two cases that we separate for clarity. In the first case,702

z ≤ Q(a, b) and z ≥ R(a, â) with R(a, â, b) > Q(a, b) leaving no choice for z and thus we set z = −∞703

to denote the maximizer of an empty set. In the second case a = 0 and b > 1 so the constraint704

u(z, a) ≥ 0 is assuredly violated and so again z = −∞. The case where z(a, â, b) = R(a, â, b) comes705

from the fact (29) does not constrain z when a = 0 as long as u(z, 0) = −1 ≥ b. Since â < a, z is706

driven to the upper bound R(a, â, b) from (30).707

Step 2. Characterize Actions.708

The next step is to solve709

inf
â∈[−2,2]

v(z(a, â, b), a) (31)710

711

As noted in Example 3, this infimum may not be attained and s we work with the possibility that712

no â(a, b) exists. For fixed a, v(z(a, â, b), a) is a increasing function of z(a, â, b) and so â should be713

chosen to minimize z(a, â, b). Immediately this eliminates the case where z(a, â, b) = +∞. A key714

step is remove the dependence of R(a, â, b) on â through optimizing. To this end, we define:715

R↑(a) ≡ sup
â>a

R(a, â),716

R↓(a) ≡ inf
â<a

R(a, â), and717

718

Since â is chosen to minimize z(a, â, b) we have:719

z(a, b) ≡


min

{
Q(a, b), R↓(a)

}
if (a 6= 0) ∧ [R↑(a) ≤ Q(a, b)]

R↓(0) if (a = 0) ∧ (b ≤ −1)

−∞ if (a = 0) ∧ (b > −1)

−∞ if (a 6= 0) ∧ [R↑(a) > Q(a, b)]

(32)720

721
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If it exists, we may set722

â(a, b) =

{
â↑(a) if (a 6= 0) ∧ [R↑(a) > Q(a, b)]

â↓(a) otherwise.
723

724

where725

â↑(a) ∈ argmaxâ>aR(a, â), and726

â↓(a) ∈ argminâ<aR(a, â)727
728

if they exist. The rest of the development is not contingent on the existence of â(a, b), â↑(a), and729

â↓(a). In the case where the infimum is not attained, Lemma 4 can be used to determine w(b)730

given a(b) directly. Whether the infimum is attained or not depends on b, but does not impact the731

analysis that follows, which simply works with the values R↑(a) and R↓(a).732

Finally, we choose a(b) to maximize v(z(a, b), a). We first examine the choice of b. If b is733

such that infa(R
↑(a) − Q(a, b)) > 0 then z(a, b) = −∞ and so v(z(a, b), a) is −∞, no matter the734

choice of a. Moreover, since Q(a, b) is decreasing in b, any larger b will also not be chosen. Let735

b̄ := infb≥−2{infa(R
↑(a)−Q(a, b)) > 0}. As discussed, any b > b̄ will not be chosen. To compute b̄736

we can use the expressions:737

R↑(a) =

{
4a(1− a2) if 1/

√
3 ≤ a ≤ 2

4
27(9a− 5a3 +

√
2(3− a2)3/2) if 0 ≤ a ≤ 1/

√
3

738

R↓(a) =

{
4a(1− a2) if 1 ≤ a ≤ 2

− 4
27(9a− 5a3 +

√
2(3− a2)3/2) if 0 ≤ a ≤ 1.

739

740

The reader may verify that b̄ is finite and strictly greater than 0. We can write an expression for741

a(b) as follows:742

a(b)


= 0 if − 2 ≤ b ≤ −1

= a↑(b) if − 1 ≤ b < b̄

∈ [0, 2] if b ≥ b̄
(33)743

744

where a↑(b) is an optimal solution to745

max
a∈(0,2]

min
{
Q(a, b), R↓(a)

}
a− 2a2 (34)746

s.t. R↑(a) ≤ Q(a, b). (35)747
748

Our expression for a(b) in (33) follows since if b ≤ −1 then v(z(a, b), a) < 0 if a > 0 because we are749

in the first case of (32) and min
{
Q(a, b), R↓(a)

}
< 0. Hence a(b) = 0 since v(z(a, b), a) = 0. When750

−1 ≤ b < b̄ we cannot set a = 0, otherwise z(a, b) = −∞ and the problem is infeasible. The only751

other option is the first case of (32) where a(b) solves (34). Finally, when b ≥ b̄ then z(a, b) = −∞752

from (32) and so the choice of a is irrelevant.753

With a(b) as defined above we may write754

z(b) ≡ z(a(b), b) =


R↓(0) if − 2 ≤ b ≤ −1

min
{
Q(a↑(b), b), R↓(a↑(b))

}
if − 1 ≤ b < b̄

−∞ if b ≥ b̄
755

756
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and finally757

val(SAND|b) = v(z(b), b) =


0 if − 2 ≤ b ≤ −1

z(b)a↑(b)− 2(a↑(b))2 if − 1 ≤ b < b̄

−∞ if b ≥ b̄.
(36)758

759

Since the original problem is feasible we can eliminate b ≥ b̄ from consideration. In (36) we now760

have first term in the “inner” minimization of (24) for determining b∗. The second term can be761

expressed:762

max
a∈aBR(z(b))

v(z(b), a). (37)763

764

We claim that b = 0 solves (24) in Step 3 of the sandwich procedure. To see this, we make the765

following observation:766

b < 0 implies a(b) < 1 and z(b) < 0. (38)767
768

This follows by observing that when b < 0 there are two cases, b ≤ −1 and b > −1. When b ≤ −1769

then a(b) = 0 and z(b) = R↓(0) < 0. When b > −1 observe that min
{
Q(a, b), R↓(a)

}
< 0 for770

all a ∈ (0, 2] and so z(b) < 0 and the objective function in (34) is decreasing in a implying the771

constraint in (34) is tight; that is, R↑(a) = Q(a, b). The reader may verify that this implies a < 1772

and so a(b) = a↑(b) < 1. This yields (38).773

Returning to (37), suppose b < 0. Consider the set aBR(z(b)) when (from (38)) z(b) < 0.774

Taking the derivative of u(z, a) with respect to a when a ≤ 1 yields:775

d
dau(z(b), a) = −z(b)− 4a(a2 − 1) > 0776

777

and so any a ≤ 1 cannot be a best response to z(b). This implies a(b) (which is greater than 1 from778

(38)) is not a best response to z(b) and hence779

val(SAND|b) > max
a∈aBR(z(b)

v(z(b), a) (39)780

781

when b < 0. In Example 3 we showed (SAND|b) when b = 0 is a tight-relaxation. In particular this782

means (z(0), a(0)) is an optimal solution to (P) and thus a(0) is a best response to z(0). Thus,783

val(SAND|0) = max
a∈aBR(z(0))

v(z(0), a)784

785

and so b = 0 is in the “argmin” in (24). Since (39) holds for any b < 0 this implies that b∗ = 0. J786

5 Non-existence of the inner minimization and the relationship787

with the first-order approach788

In this section we remark on a few connections between the sandwich approach and the FOA. We789

show how this relationship is connected to the issue of non-existence of a minimizer to the inner790

minimization in the definition of (SAND|b). We have already remarked (and Example 5 below791
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verifies) that our procedure applies when the FOA is invalid. However, there is more to say about792

the connection between these two approaches.793

The astute reader will have noticed that (SAND|b) does not include the first-order constraint794

(FOC(a)) common to both the FOA and Mirrlees’s approach. The fact that the (FOC(a)) is not795

present is connected to how we have handled the agent’s optimization problem via (4), and how796

this optimization was pulled into the objective in (Max-Max-Min|b). Indeed, the minimization over797

the alternate best response included in (Max-Max-Min|b) and (SAND|b) can be understood as our798

way for accounting for the optimality of the agent’s best response. In this perspective, first-order799

conditions are not explicitly necessary in the formulation, they are implied when the sandwich800

approach is valid.801

We have already discussed the case when the inner minimization over â in (SAND|b) is not802

attained in Lemma 4, where the sandwich problem is equivalent to one with a local stationarity803

condition. In the case where the inner minimization is attained for some â 6= a and the first-best804

contract is not optimal(the remaining case) we recover first-order conditions via Lemma 7 when805

â∗ is an interior point. In this case, −δ∗(a∗, â∗, b)Ua(w(a∗, â∗, b), â∗) = 0 and since δ∗(a∗, â∗, b) = 0806

would imply the first-best contract is optimal, contradicting Assumption 3, we conclude that807

Ua(w(a∗, â∗, b), â∗) = 0, implying the first-order condition holds for â∗. Since U(w(a∗, â∗, b), a∗) ≥808

U(w(a∗, â∗, b), â∗) from the no-jump constraint in (SAND|b), this further implies Ua(w(a∗, â∗, b), a∗) =809

0 must also be satisfied since a∗ will also be a best response (here we have assumed for simplicity810

that a∗ is an interior point).811

We examine this phenomenon from a more basic perspective. Suppose the sandwich approach is812

valid (for instance, because b is tight-at-optimality) and sandwich relaxation (SAND|b) has optimal813

solution (a∗, â∗, w∗). Moreover, suppose (i) the Lagrangian multiplier δ(a∗, â∗, b) from Lemma 3814

is strictly positive and (ii) â∗ < a∗. Condition (ii) is reasonable since typically an alternate best815

response is to deviate to a lower effort level, not a higher effort level. Recall that cost is assumed816

to be nondecreasing (A1.9). In a special case we can show this formally.817

Proposition 3. If the principal is risk neutral and the FOA is not valid then there exists an818

alternate best response â such that â < a∗.819

In other words, with a risk neutral principal, unless the FOA is valid the agent will have a820

best-response “shirking” action. Observe that this assumption does not require any monotonicity821

assumptions on the output distribution f .822

Given this scenario, we have the following equivalence823

val(SAND|b) = inf
â∈A

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, U(w, a∗)− U(w, â) ≥ 0}824

= inf
â≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, U(w, a∗)− U(w, â) ≥ 0}.825

826

To understand the above equivalence, we note that the “≤” direction is always true since the right-827

hand side has additional restriction on the minimization, but â = â∗ ≤ a∗ attains the minimum828

that is achieved by the left-hand side problem.829

The right-hand side problem above is equivalent to830

inf
â≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, U(w,a∗)−U(w,â)

a∗−â ≥ 0}831

since a∗ − â ≥ 0 in the range of choices for â. Since U(w, a) is differentiable in a, by the mean-832

value theorem there exist some ã ∈ [â, a∗] such that U(w,a∗)−U(w,â)
a∗−â = Ua(w, ã). Therefore, we have833
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equivalence834

val(SAND|b) = inf
â≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, U(w,a∗)−U(w,â)

a∗−â ≥ 0}835

= max
w≥w

inf
â≤a∗
{V (w, a∗) : U(w, a∗) ≥ b, U(w,a∗)−U(w,â)

a∗−â ≥ 0}836

= max
w≥w

inf
ã≤a∗
{V (w, a∗) : U(w, a∗) ≥ b, Ua(w, ã) ≥ 0}837

≤ inf
ã≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, Ua(w, ã) ≥ 0} (40)838

≤ max
a∈A

inf
ã≤a

max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, ã) ≥ 0}839

≤ max
a∈A

max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, a) ≥ 0}840

= val(FOA).841
842

The second equality follows from the tightness of b, the third equality uses the main-value theorem,843

and the first inequality is simply the min-max inequality. Note that the constraint Ua(w, ã) ≥ 0844

usually is binding for the problem maxw≥w{V (w, a∗) : U(w, a∗) ≥ b, Ua(w, ã) ≥ 0}, particularly if845

the principal is risk-neutral (Jewitt 1988, Rogerson 1985). Then846

inf
ã≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, Ua(w, ã) ≥ 0}847

= inf
ã≤a∗

max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b, Ua(w, ã) = 0},848

849

which means that the sandwich relaxation must satisfy the stationary condition Ua(w, ã) = 0 as a850

constraint. Note that in the FOA, ã must be taken as a∗ and so is a weaker requirement.851

Note that even when the sandwich approach is not valid, the formulation in (40) reveals that it852

is a stronger relaxation than the FOA. Indeed, the FOA requires Ua(w, a) = 0 whereas the sandwich853

approach requires Ua(w, ã) = 0 where ã is a minimizer. The latter is a more stringent condition to854

satisfy.855

These observations provide an interpretation of the sandwich relaxation as a strengthening of856

the FOA, where we are required to satisfy an additional first-order condition over a worst-case857

choice of alternate best response.858

There remains the question of how the sandwich procedure proceeds when the FOA is, in fact,859

valid. The next result shows that the two approaches are compatible in this case.860

Proposition 4. When the first-order approach is valid, val(SAND|U) = val(FOA) = val(P). That861

is, both the sandwich approach and the first-order approach both recover the optimal contract of862

the original problem.863

Observe that the validity of the FOA implies that the starting reservation utility U is tight-at-864

optimality. The next result reveals a partial converse in the case where the infimum in (SAND|b) is865

not attained. We emphasize that the MLRP assumption is needed to establish the following result,866

which we pull out of a proof of an earlier result stated and proven in the appendix.867

Proposition 5. Suppose b is tight optimality and the sandwich problem (SAND|b) has solution868

(a∗, w∗) where the inner minimization does not have a solution. Then, given the action a∗ and with869

modified (IR) constraint U(w, a∗) ≥ b, the FOA is valid. That is,870

val(P) = max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b and (FOC(a∗))} (41)871

872
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and the optimal solution to the right-hand side implements a∗.873

6 Additional examples874

In this section we provide three additional examples that further illustrate the sandwich procedure.875

The first example is one where the FOA is invalid but nonetheless satisfies Assumptions 1–4 and876

so amenable to the sandwich procedure.877

Example 5. Consider the following principal-agent problem. The distribution of output X is878

exponential with f(x, a) = 1
ae
−x/a, for x ∈ X = R+ and a ∈ A := [1/10, 1/2]. The principal is879

risk-neutral (and so v(y) = y), the value of output is π(x) = x, the agent’s utility is u(y) = 2
√
y,880

the agent’s cost of effort c(a) = 1 − (a − 1/2)2, and the outside reservation utility is U = 0. The881

minimum wage w = 1/16. It is straightforward to check that Assumptions 1 and 2 are satisfied.882

Existence of an optimal solution is guaranteed by Kadan et al. (2014) and so Assumption 3 is also883

satisfied. Finally, the monotonicity conditions in Assumption 4 hold trivially for f . This means884

that Theorems 1 and 2 apply.885

Note also that the FOA is invalid. To see this, using the first-order condition Ua(w, a) = 0 to886

replace the original IC constraint, the resulting solution is afoa = 1/2 and wfoa(x) = 1/4. Clearly,887

wfoa(x) is a constant function and under wfoa(x), the agent’s optimal choice is a = 1/10, not888

afoa = 1/2. Hence the FOA is invalid.889

Now we apply the sandwich procedure to derive an explicit solution.890

Step 1. Characterize Contract.891

According to Lemma 3 the unique optimal contract to (SAND|a, â, b) is of the form892

wλ,δ(a, â, U) =
[
λ+ δ

(
1− f(x,â)

f(x,a)

)]2
893

assuming that w(x) > w for all x (we verify this is the case below). Plugging the above contract894

into the two constraints U(wλ,δ(a, â, U), a) = U and U(wλ,δ(a, â, U), a) = U(wλ,δ(a, â, U), â), we895

find896

λ(a, â, U) = 1
2(1− (a− 1/2)2)897

δ(a, â, U) = (2a−â)â(a+â−1)
2(a−â)2

.898

Step 2. Characterize Actions.899

We plug wλ(a,â,U),δ(a,â,U)(a, â, U) from Step 1 into the principal’s utility function to obtain the900

optimized Lagrangian from (25)901

L∗(a, â|U) = a− 1
4 [1− (a− 1/2)2]2 − 1

4(2a− â)â(a+ â− 1)2.902

Now we solve the max-min problem in (26) where L∗(a, â|U) is a fourth order polynomial equation903

of â with first-order condition904

∂
∂âL∗(a, â|U) = 1

4(a+ â− 1)[â(a+ â− 1)− (2a− â)(a+ â− 1)− 2(2a− â)â] = 0.905
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This yields three solutions, â = a − 1, â = 1
2(a + 1

2 −
√

3a2 − a+ 1/4) and â = 1
2(a + 1

2 +906 √
3a2 − a+ 1/4). Since â ∈ [1/10, 1/2], the only feasible interior minimizer is907

â(a, U) = 1
2(a+ 1

2 −
√

3a2 − a+ 1/4).908

Plugging the â(a, U) into the L∗, we can solve the outer maximization problem in (26) over a,909

which yields a∗ = 1
2 , â∗ = 1

4(2−
√

2), and910

w∗ =

[
1
2 + 1

16(1− f(x,
1
4 (2−

√
2))

f(x,1/2) )

]2

=
[

1
2 + 1

16(1− (2 +
√

2)e−2x(1+
√

2))
]2
> 1/16.911

Next we show that solving (24) in Step 3 is unnecessary. According to Theorem 1, (w∗, a∗) is912

an optimal solution to original problem if we can show that U is tight-at-optimality. Note that913

under w∗, the agent’s utility is914

U(w∗, a) = −12+5
√

2−2(8+
√

2)a−8(3
√

2−2)a2+16
√

2a2

8(2−
√

2+2
√

2a)
,915

which is indeed maximized at a∗ = 1/2 with U(w∗, 1/2) = 0. Hence the IR constraint is binding916

U(w∗, a∗) = U = 0. This completes the example. J917

Second, the equivalence of the sandwich approach and the FOA when the FOA is valid (from918

Proposition 4) is illustrated by examining the classical example of Holmstrom (1979).919

Example 6. The distribution of output X is exponential with f(x, a) = 1
ae
−x/a, for x ∈ X = R+920

and a ∈ A := [0, ā]. The principal is risk-neutral (and so v(y) = y), the value of output is π(x) = x,921

the agent’s utility is u(y) = 2
√
y, the agent’s cost of effort c(a) = a2, minimum wage w = 0, and922

the outside reservation utility is U ≥ 7−2/3.7923

Holmstrom (1979) showed that the first-order approach applies to this problem. Now we apply924

the sandwich procedure to derive an explicit solution.925

Step 1. Characterize Contract.926

According to Lemma 3 the unique optimal contract to (SAND|a, â, b) is of the form927

wλ,δ(a, â, U) =
[
λ+ δ

(
1− f(x,â)

f(x,a)

)]2
928

assuming that w(x) > w for all x (we verify this is the case below). Plugging the above contract929

into the two constraints U(wλ,δ(a, â, U), a) = U and U(wλ,δ(a, â, U), a) = U(wλ,δ(a, â, U), â) yields930

λ(a, â, U) = 1
2(a2 + U)931

δ(a, â, U) = max{0, (2a−â)â(a2−â2)
2(a−â)2

} = max{0, (2a−â)â(a+â)
2(a−â) }.932

Step 2. Characterize Actions.933

7This number is chosen to ensure that the minimum wage constraint is strictly satisfied at the optimum, as
explicitly assumed in Holmstrom (1979). For example, U = 0 may lead to that there is a positive probability for the
payment to be equal to w.
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We plug wλ(a,â,U),δ(a,â,U)(a, â, U) from Step 1 into the principal’s utility function to obtain the934

optimized Lagrangian from (25)935

L∗(a, â|U) =

{
a− 1

4(a2 + U)2 − 1
4(2a− â)â(a+ â)2 if (2a−â)â(a+â)

2(a−â) > 0

a− 1
4(a2 + U)2 if (2a−â)â(a+â)

2(a−â) ≤ 0
936

937

Now we solve the max-min problem in (26) where L∗(a, â|U) is a fourth order polynomial938

equation of â with first-order condition939

∂
∂âL∗(a, â|U) = −(a+ â)(a2 + 2aâ− 2â2) = 0.940

This yields two solutions, â = (1−
√

3)a/2, and (1 +
√

3)a/2. Since a > 0, â = (1−
√

3)a/2 is not941

feasible. And it is not optimal to choose â ≥ 2a as a minimizer, which makes−1
4(2a−â)â(a+â)2 ≥ 0.942

Also a ≤ â < 2a is not optimal, since with this choice, L∗(a, â|U) = a− 1
4(a2+U)2. So the minimizer943

should be taken on 0 ≤ â < a, where −(a + â)(a2 + 2aâ − 2â2) is decreasing in â. Therefore, the944

infimum is not attained and we have945

inf
â
L∗(a, â|U) = a− 1

4(a2 + U)2 − a4,946

which yields a solution a∗(U) that is specified by the first-order condition of the above optimization947

problem:948

1− 5a3 − 2aU = 0,949

where we may assume U ≥ 7−2/3 so that950

w∗(x = 0) = 1
2(a∗2 + U)− a∗2 = 1

2(U − a∗(U)2) ≥ 0.951

By L’Hôpital’s rule, we have952

lim
â→a

δ(a, â, U)
(

1− f(x,â)
f(x,a)

)
→ a3 x−a

a2
= a(x− a),953

so the optimal GMH contract according to the sandwich procedure is954

w∗ = 1
2a
∗2 + a∗(x− a∗2).955

The resulted solution is consistent with the solution by FOA, where the resulting Lagrangian956

multiplier for the first-order condition is µ(a) = a3 (Holmstrom 1979) and the principal’s value957

function is exactly the same:958

V (wfoa(a), a) = a− λ(a)2 − µ(a)2E
(
∂ log f(X,a)

∂a

)2
= a− 1

4(a2 + U)2 − a4.959

This completes the example. J960

We point out the similarity in the set-up of Examples 5 and 6. The first can be seen as a961

relatively minor variation on the second, and yet the FOA approach fails in the first but holds962

in the second. In both cases the sandwich procedure applies. This illustrates, in a concrete way,963

aspects of the rigidity of the FOA and the robustness of the sandwich approach.964
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Our final example we solve an adjustment of the problem proposed by Araujo and Moreira965

(2001), who show that the FOA fails but nonetheless construct an optimal solution by solving966

a nonlinear optimization problem with 20 constraints using Kuhn-Tucker conditions. Although967

this problem fails the conditions of Theorem 2 (it fails Assumption (A1.1) since there are only968

two outcomes), we can nonetheless use our approach (specifically Lemma 2 and Proposition 2) to969

construct an optimal contract. We remark that this example has the nice feature that all best970

responses are interior to the interval of actions A = [−1, 1], in contrast to all previous examples. As971

can be seen below, and in relation to remarks in Section 5, stationarity conditions at these interior972

points are implicitly recovered via the sandwich approach.973

Example 7. The principal has expected utility V (w, a) =
∑2

i=1 pi(a)(xi − wi), where p1(a) = a2,974

p2(a) = 1 − a2 for a ∈ [−1, 1] where there are two possible outcomes x1 = 1 and x2 = 3/4 and975

where we denote wi = w(xi) for i = 1, 2. The minimum wage is w = 0. The agent’s expected utility976

is U(w, a) =
∑2

i=1 pi(a)
√
wi − 2a2(1− 2a2 + 4

3a
4) with reservation utility U = 0. We apply Step 1977

and Step 2 of the sandwich procedure.978

Step 1. Characterize Contract.979

The first-order conditions (10) imply that an optimal solution (SAND|a, â, b) must satisfy:980

w∗i = w∗(xi) = 1
4

[
λ+ δ

(
1− pi(â)

pi(a)

)]2
for i = 1, 2, (42)981

assuming that w∗i ≥ w for i = 1, 2 (we check below that this is the case) for some choice of λ and δ.982

To characterize these λ and δ we plug the above contract into the two constraints of (SAND|a, â, b),983

U(w∗, a) = U and U(w∗, a) = U(w∗, â), we find984

λ(a, â, 0) = 4a2(1− 2a2 + 4
3a

4) and δ(a, â, 0) = 4a2(1−a2)[3+4a4+4â4+4a2â2−6(â2+a2)]
3(a2−â2)

. (43)985

Step 2. Characterize Actions.986

We solve (26) where987

L∗(a, â|0) =
2∑
i=1

pi(a)(xi − w(a, â, 0)i)988

=

2∑
i=1

pi(a)xi − 1
4λ(a, â, 0)2 − 1

4
δ(a,â,0)2∑2

i=1

(
1−pi(â)

pi(a)

)2

pi(a)

989

= a2 + 3
4(1− a2)− 4

9a
4(3− 6a2 + 4a4)2 − 4

9a
2(1− a2)[3 + 4a4 + 4â4 + 4a2â2 − 6(â2 + a2)]2990

by leveraging Lemma 7. Note that only the last term t(a, â) ≡ [3 + 4a4 + 4â4 + 4a2â2− 6(â2 + a2)]2991

in the last line of the above expression involves â. By taking the first-order condition with respect992

to â, we obtain three solutions993

â = 0, â =
√

3−2a2

2 , â = −
√

3−2a2

2 .994

We can verify that for any a ∈ [−1, 1],995

t(a, 0) = (3− 6a2 + 4a4)2 < 9
16(1− 2a2)4 = t(a,

√
3−2a2

2 ) = t(a,−
√

3−2a2

2 ).996
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Therefore, the unique minimizer of L∗(a, â|0) over â is â∗(a) ≡ 0. Then,997

L∗(a, 0|0) = a2 + 3
4(1− a2)− 4

9a
4(3− 6a2 + 4a4)2 − 4

9a
2(1− a2)[3 + 4a4 − 6a2]2998

has a maximum at a∗ =
√

3
2 (there are three maximizers, a∗ = −

√
3

2 and a∗ = 0, all interior to A,999

we just pick a∗ =
√

3
2 ). This completes the sandwich procedure and we have produced an optimal1000

solution to (SAND|0) of the form (a∗, â∗, w∗) where a∗ =
√

3
2 , â∗ = 0 and w∗1 = 1 and w∗2 = 0 (using1001

the fact λ(
√

3
2 , 0, 0) = 3

4 and δ(
√

3
2 , 0, 0) = 1/4). Note, in particular, that w∗i ≥ w = 0 for i = 1, 2.1002

Second, we show that (w∗, a∗) is feasible to (P). It suffices to show that a∗ is a best response to1003

w∗. The agent’s expected utility under the contract w∗ = w(a, â, 0) and taking action ã is (using1004

(42) and (43))1005

U(w∗, ã) = 4
3(a2 − ã2)(ã2 − â2)(2a2 + 2â2 + 2ã2 − 3).1006

Given a∗ =
√

3
2 and â∗ = 0, U(w∗, ã) is indeed maximized at ã = ±

√
3

2 and ã = 0. This shows that1007

a∗ is a best response to w∗ and hence (w∗, a∗) is feasible to (P).1008

Finally, by Lemma 2 we know val(SAND|0) ≥ val(P) and this implies (w∗, a∗) achieves the best1009

possible principal utility in (P). We conclude that w∗ is an optimal contract. However, one can1010

check that the FOA is not valid. The solution to (FOA) will yield afoa = 0.798, which cannot be1011

implemented by the corresponding wfoa. Details are suppressed. J1012

7 Conclusion1013

We provide a general method to solve moral hazard problems when output is a continuous random1014

variable with a distribution that satisfies certain monotonicity properties (Assumption 4). This1015

involves solving a tractable relaxation of the original problem using a bound on agent utility derived1016

from our proposed procedure.1017

We do admit that, in general, Step 3 of the sandwich procedure may be a priori intractable1018

unless sufficient structural information is known about the set aBR(w(b)). However, as the exam-1019

ples in this paper illustrate, this may not be an issue in sufficiently well-behaved cases. Indeed,1020

Proposition 1 is helpful in this regard, and finding additional criteria for the (IR) constraint to be1021

tight is an important area for further investigation. Finding other scenarios where (24) is tractable1022

is also of interest. Examples 4–7 show that the basic framework of our approach can help solve1023

problems that may not satisfy all the assumptions used in our theorems.1024
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A Appendix: Proofs1056

A.1 Proof of Lemma 11057

We set the notation V ∗(a, â) = maxw≥w{V (w, a) : (w, a) ∈ W(â, b)} and V ∗(a) = inf â∈A V
∗(a, â).1058

The result follows by establishing the following claim:1059

Claim 1. V ∗(a) is upper-semicontinuous in a.1060

Indeed, if V ∗(a) is upper semicontinuous then, since A is compact, an outer maximizer a1061

certainly exists.1062

We now establish the claim. By definition of upper semicontinuity, we want to show that for1063

any constant α ∈ R, {a|V ∗(a) < α} is open, where α is independent of a. This is to show that1064

31



there exists an ε > 0 such that ∀a′ ∈ Nε(a), V ∗(a′) < α, where Nε(a) is an open neighborhood of a.1065

Now we pick any a0 ∈ {a|V ∗(a) < α}. Note that inf â V (a0, â) < α implies that there exists some1066

â0 such that1067

V (a0, â0) < α.1068

On the other hand, since V (a, â) is upper-semicontinuous, we have that the set1069

{(a, â)|V (a, â) < α}1070

is open. Therefore, there exists an ε > 0 such that V (a′, â′) < α for any (a′, â′) ∈ Bε(a0, â0) where1071

Bε(a0, â0) is an the open ball in R2 centered at (a0, â0) with radius ε. Thus, we can find an open1072

neighborhood Nε1(a0) of a0 and Nε2(â0) of â0 such that1073

Nε1(a0)×Nε2(â0) ⊆ Bε(a0, â0).1074

Therefore, we have V (a′, â′) < α for any a′ ∈ Nε1(a0) and â′ ∈ Nε2(â0). As a result, for any,1075

a′ ∈ Nε1(a0), we have1076

V ∗(a′) = inf
â
V (a′, â) ≤ V (a′, â′) < α,1077

for a given â′ ∈ Nε2(â0), which shows that {a|V ∗(a) < α} is open and thus obtain the desired1078

upper-semicontinuity of inf â V (a, â).1079

This proof is related to the proof of Lemma 6, but we provide complete details here in order to1080

be self-contained and not call ahead to later material.1081

A.2 Proof of Lemma 21082

Observe that1083

val(P|b) = val(Max-Max-Min|b)1084

= max
a∈A

max
w≥w

inf
â∈A

V I(w, a|â, b)1085

≤ max
a∈A

inf
â∈A

max
w≥w

V I(w, a|â, b)1086

= val(SAND|b),1087
1088

where the inequality follows by the min-max inequality. Note that if there exists an optimal1089

solution (w∗, a∗) to (P) such that U(w∗, a∗) ≥ b (and thus is also a feasible solution to (P|b)) then1090

val(P) ≤ val(P|b). However, we already argued in the main text that val(P) ≥ val(P|b). This1091

implies val(P) = val(P|b) and so the above inequality implies val(P) ≤ val(SAND|b).1092

A.3 Proof of Lemma 31093

The proof of (i) and (ii) is analogous to the proof of Theorem 3.5 in Ke and Ryan (2016). In both1094

cases a, â and b are fixed constants. The difference here is that the no-jump constraint defining1095

(SAND|b) is an inequality, while in Ke and Ryan (2016) the no-jump constraint is an equality.1096

Moreover, in Ke and Ryan (2016) we need not entertain the case where â = a. Fortunately, the1097

case where â = a is straightforward since then (SAND|a, â, b) is solved by the first-best contract,1098

which is unique. Further details are omitted.1099

The proof of (iii) and (iv) is standard by applying the theorem of maximum. Details are omitted.1100

We do point out that Assumption 2 is required in the proof of Theorem 3.5 in Ke and Ryan1101

(2016), and that is why Assumption 2 is required here as well.1102
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A.4 Proof of Lemma 41103

If the inf â V
∗(a, â|b) is not attained, it must be that the infimizing sequence converges to a (for1104

more details on this argument see the discussion following Lemma 3 is the main text of the paper).1105

We can decompose the minimization problem as1106

inf
â

max
w≥w
{V (w, a) : U(w, a) ≥ b, U(w, a)− U(w, â) ≥ 0} = inf{ inf

â≤a
V ∗(a, â|b), inf

â≥a
V ∗(a, â|b)}.1107

where for convenience we denote1108

V ∗(a, â|b) = max
w≥w
{V (w, a) : U(w, a) ≥ b, U(w, a)− U(w, â) ≥ 0}.1109

1110

Case 1. inf â≤a V
∗(a, â|b) = inf â V

∗(a, â|b)1111

We begin by observing that if inf â≤a V
∗(a, â|b) has an infimizing sequence that does not converge1112

to a, then by the supposition of non-existence, we must have1113

inf
â≤a

V ∗(a, â|b) > inf
â
V ∗(a, â|b).1114

In this case, we will switch to consider inf â≥a V
∗(a, â|b), which is discussed in Case 2 below.1115

By the mean-value theorem, there exists an ã ∈ [â, a] such that U(w,a)−U(w,â)
a−â = Ua(w, ã).1116

Therefore, we have the equivalence1117

inf
â≤a

V ∗(a, â|b) = inf
â≤a

max
w≥w
{V (w, a∗) : U(w, a) ≥ b, U(w,a)−U(w,â)

a−â ≥ 0}1118

= lim
â→a−

max
w≥w
{V (w, a∗) : U(w, a) ≥ b, U(w,a)−U(w,â)

a−â ≥ 0}1119

= lim
ã→a−

max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, ã) ≥ 0}. (44)1120

1121

Note that maxw≥w{V (w, a) : U(w, a) ≥ b, Ua(w, ã) ≥ 0} is continuous in ã (since U is continuously1122

differentiable in a) and, as mentioned above, the infimizing sequence converges to a and so a1123

minimizer exists to (44), yielding1124

inf
â≤a

V ∗(a, â|b) = max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, a) ≥ 0}.1125

It remains to show that the constraint Ua(w, a) ≥ 0 is binding for any a ∈ intA and slack is only1126

possible for a = ā. Suppose that the constraint in the above problem is slack at optimal, i.e.,1127

Ua(w, a) > 0, then the Lagrangian multiplier for Ua(w, a) > 0 is zero, and we have1128

max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, a) ≥ 0} = max

w≥w
{V (w, a) : U(w, a) ≥ b},1129

which means wfb(a|b) solves maxw≥w{V (w, a) : U(w, a) ≥ b, Ua(w, a) ≥ 0}, where wfb(a|b) is the1130

first-best contract. Equivalently, we have1131

inf
â
V ∗(a, â|b) = max

w≥w
{V (w, a) : U(w, a) ≥ b}. (45)1132

We now claim that wfb(a|b) implements a. Continuing from (45), let â′ ∈ aBR(wfb(a|b)), we have1133

inf
â
V ∗(a, â|b) ≤ V ∗(a, â′|b) ≤ max

w≥w
{V (w, a) : U(w, a) ≥ b} = inf

â
V ∗(a, â|b),1134
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where the first inequality is by the definition of minimization, and the second inequality is straight-1135

forward by withdrawing constraint of a maximization problem. Therefore, all inequalities become1136

equalities, and wfb(a|b) should satisfy the no-jump constraint U(w, a) − U(w, â′) ≥ 0, which im-1137

plies a ∈ aBR(wfb(a|b)). Therefore, for any a ∈ intA, we have Ua(w
fb(a|b), a) = 0 is binding, and1138

Ua(w
fb(a|b), a) > 0 only occurs when a = ā, where wfb(ā|b) implements ā. This completes case 1.1139

Case 2. inf â≥a V
∗(a, â|b) = inf â V

∗(a, â|b)1140

In this case, we have the equivalence1141

inf
â≥a

V ∗(a, â|b) = lim
â→a+

max
w≥w
{V (w, a∗) : U(w, a) ≥ b, U(w,a)−U(w,â)

a−â ≤ 0}1142

= lim
â→a+

max
w≥w
{V (w, a) : U(w, a) ≥ b, Ua(w, ã) ≤ 0}. (46)1143

1144

The rest of argument is quite similar to Case 1 and thus omitted.1145

Combining these two cases, we have the desired conclusion.1146

A.5 Proof of Lemma 51147

We require the following lemma:1148

Lemma 9 (Theorem 6 in Section 8.5 of Lasdon (2011)). Consider a maximization problem1149

max
y
{f(y) : g(y) ≥ 0}1150

1151

where f : Y → R, and g : Y → Rk for some compact subset Y ⊂ Rn. Assume that both f and g1152

are continuous and differentiable. If the Lagrangian L(y, α) = f(y) + α · g(y) is strictly concave in1153

y, then1154

max
y
{f(y) : g(y) ≥ 0} = inf

α≥0
max
y
L(y, α)1155

1156

where we assume the maximum of L(y, α) over y exists for any given α.1157

Proof of Lemma 5. When the infimum in (SAND|b) is not attained or attained at a#, the result1158

follows a standard application of duality theory via Lemma 9, due to Lemma 4.1159

We now consider the case where the infimum is attained. Let (a∗, â∗, z∗) be an optimal solution1160

(SAND|b); that is,1161

V (z∗, a∗) = max
a∈A

inf
â∈A

max
z≥z
{V (z, a) : U(z, a) ≥ b, U(z, a)− U(z, â) ≥ 0}.1162

Given a∗, consider the Lagrangian dual of the inner maximization problem over z; that is,1163

L(z, λ, δ|a∗, â∗, b) = V (z, a∗) + λ[U(z, a∗)− b] + δ[U(z, a∗)− U(z, â∗)].1164

Note that L is strictly concave in z since V (z, a∗) = v(π(x0) − z) is concave and U(z, a∗) = u(z)1165

is strictly concave in z and the term involving δ is a function only of a since U(z, a∗) − U(z, â) =1166

u(z)− c(a∗)− (u(z)− c(â)) = c(â)− c(a∗). Lemma 9 implies:1167

inf
â∈A

max
z≥z
{V (z, a∗) : U(z, a∗) ≥ d, U(z, a∗)− U(z, â) ≥ 0} = inf

â∈A
inf
λ,δ≥0

max
z≥z
L(z, λ, δ|a∗, â, d) (47)1168

1169
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for all d ∈ [b, b+ ε). We now consider three cases. We show the first two cases do not occur, leaving1170

only the third case where we can establish the result. The cases consider how perturbing b can1171

effect the primal and dual problems in (47).1172

Case 1. The set ∩â∈A{z : U(z, a∗) ≥ b + ε, U(z, a∗) − U(z, â) ≥ 0} is empty, for any arbitrarily1173

small ε > 0. We want to rule out this case. Note that in this case, the Lagrangian multiplier1174

λ(a∗, â∗ε ) ∈ arg inf
λ,δ≥0

max
z≥z
L(z, λ, δ|a∗, â, b+ ε)1175

is unbounded, where â∗ε ∈ arg min
â

infλ≥0,δ≥0 maxz≥z L(z, λ, δ|a∗, â, b + ε). Also, U(z∗ε , a
∗) < b + ε1176

for any z∗ε such that1177

L(z∗ε , λ(a∗, â∗ε ), δ(a
∗, â∗ε )|a∗, â∗ε , b+ ε)) = inf

λ≥0
inf
δ≥0

max
z≥z
L(z, λ, δ|a∗, â, b+ ε).1178

Therefore, we choose a sequence εn = ε
n , and we have1179

U(z∗εn , a
∗)− b− εn < 0,1180

where z∗εn is a sequence such that1181

V (z∗εn , a
∗) = inf

â∈A
inf

λ≥0,δ≥0
max
z≥z

L(z, λ, δ|a∗, â, b+ εn).1182

Note that (z∗ε , a
∗
ε , â
∗
ε ) is upper hemicontinuous in ε, as a solution to the optimization problem.1183

Then as n → ∞, the limit (z∗0 , a
∗
0, â
∗
0;λ(a∗0, â

∗
0), δ(a∗0, â

∗
0)) is a solution to the problem without1184

perturbation (ε = 0). Without loss of generality, we choose1185

(z∗, a∗, â∗;λ(a∗, â∗), δ(a∗, â∗)) = (z∗0 , a
∗
0, â
∗
0;λ(a∗0, â

∗
0), δ(a∗0, â

∗
0)).1186

Then, passing to the limit (taking a subsequence if necessary), z∗εn → z∗, we have1187

lim
n→∞

[
U(z∗εn , a

∗)− b− εn
]

= U(z∗, a∗)− b ≤ 0,1188

which contradicts of the supposition U(z∗, a∗) > b. Therefore, the set1189

∩â∈A{z : U(z, a∗) ≥ b+ ε, U(z, a∗)− U(z, â) ≥ 0}1190

is non-empty for a sufficiently small ε.1191

Case 2. The set ∩â∈A{z : U(z, a∗) ≥ b+ ε, U(z, a∗)− U(z, â) ≥ 0} is nonempty and λ(a∗, â∗ε ) > 0,1192

for any ε > 0.1193

We also want to rule out this case. Note that λ(a∗, â∗ε ) > 0 implies the constraint U(z∗ε , a
∗) ≥ b+ε1194

is binding given strong duality. We choose a sequence εn = ε
n . Passing to the limit (taking a1195

subsequence if necessary), z∗εn → z∗, we have1196

0 = lim
n→∞

[
U(z∗εn , a

∗)− b− εn
]

= U(z∗, a∗)− b,1197

which contradicts with the supposition U(z∗, a∗) > b.1198

Case 3. The set ∩â∈A{z : U(z, a∗) ≥ U∗+ ε, U(z, a∗)−U(z, â) ≥ 0} is nonempty and λ(a∗, â∗ε ) = 0,1199

for some arbitrarily small ε > 0.1200
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Given λ(a∗, â∗ε ) = 0, then we have1201

V (z∗ε , a
∗) = max

z
V (z, a∗) + λ(a∗, â∗ε )(U(z, a∗)− b− ε) + δ(a∗, â∗ε )(U(z, a∗)− U(z, â∗ε ))1202

= max
z
V (z, a∗) + λ(a∗, â∗ε )(U(z, a∗)− b) + δ(a∗, â∗ε )(U(z, a∗)− u(z, â∗ε ))1203

≥ inf
â

inf
λ,δ≥0

max
z
V (z, a∗) + λ(U(z, a∗)− b) + δ(U(z, a∗)− U(z, â∗ε ))1204

= V (z∗, a∗).1205

We already know V (z∗, a∗) ≥ V (z∗ε , a
∗) by ε > 0. Therefore, we have shown V (z∗ε , a

∗) =1206

V (z∗, a∗), as required.1207

The above argument this shows that we can increase b to b+ ε, find a new optimal contract and1208

not change the objective value. This can be repeated until we find a sufficiently large ε such that1209

U(z∗ε , a
∗
ε ) = b+ ε. This completes the proof of Claim 6.1210

A.6 Proof of Theorem 11211

There are two cases to consider. The first is when the inner “ inf” in (SAND|b) is not attained.1212

This is handled by the following proposition.1213

Lemma 10. Suppose b is tight optimality and the sandwich problem (SAND|b) has solution (a∗, w∗)1214

where the inner minimization does not have a solution. Then, given the action a∗ and with modified1215

(IR) constraint U(w, a∗) ≥ b, the FOA is valid. That is,1216

val(P) = max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b and (FOC(a∗))} = val(SAND|b). (48)1217

1218

Proof. We first argue that aBR(w(b)) is not a singleton. Suppose there exists an â∗ 6= a∗ such that1219

the GMH contract w(a∗, â∗, b) implements a∗ (see Proposition 6 and also Remark 4.17 in Ke and1220

Ryan (2016)), i.e., V (w(a∗, â∗, b), a∗) = val(P ). Note that for any â ∈ A,1221

val(SAND|a∗, â, U∗) ≥ max
(w,a∗)

{V (w, a∗) : U(w, a∗) ≥ U∗, a∗ ∈ aBR(w)}.1222

Therefore, â∗ is the solution to the inner minimization problem1223

â∗ ∈ arg min
â
V ∗(a∗, â|U∗),1224

which contradicts the supposition of non-existence. Therefore, the best response set aBR(w(b))1225

must be singleton, i.e., a∗ is the unique best response at the optimal. In this case, according to1226

Mirrlees (1999), all no-jump constraints are slack at optimality and the FOA is valid (up to the1227

modified IR constraint U(w, a∗) ≥ b).1228

Finally, by Lemma 4, we know that val(SAND|b) is equal the value of first-order approach with1229

modified IR constraint U(w, a∗) ≥ b. This establishes the result in this case.1230

This ends the proof of Lemma 10.1231

We now return to the case where the infimum in (SAND|b) is attained. The proof proceeds in1232

two stages. In the first stage we examine a subclass of problems where the agent’s action a is given.1233

In the second stage we illustrate how to determine the right choice for a.1234
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Remark 1. We remark that the analysis of the first stage of the proof is drawn from results in Ke1235

and Ryan (2016). In that paper it is assumed that an action a∗ is given and is implemented by an1236

optimal contract w∗ such that U(w∗, a∗) = U . In this setting, the assumption that U(w∗, a∗) = U1237

is without loss of interest, since we assume that a∗ and w∗ are given and so U can be defined as1238

U(w∗, a∗). The focus there is simply to characterize w∗, and in particular prove that is nondecreas-1239

ing under certain conditions. The assumption that U(w∗, a∗) = U is critical in Section 4 of Ke and1240

Ryan (2016). See Remark 4.16 of that paper for further discussion on this point. However, this is1241

an important difference with our current analysis. Here we no longer assume that a target a∗ is1242

given and so we cannot assume without loss of generality that U(w∗, a∗) = U . Indeed, uncovering1243

a method to find w∗ and a∗ is the focus of this paper.1244

Accordingly, the analysis here proceeds in a different manner than Ke and Ryan (2016). First,1245

Ke and Ryan (2016) considers a simpler version of (Min-Max|a, b′) where the no-jump constraint1246

was an equality. This is sufficient in that setting because we do not need further analyze this1247

problem to determine a∗, it is simply given to us. This oversimplifies the current development.1248

Moreover, Stage 2 is not needed to analyze the situation in Ke and Ryan (2016). The added1249

complexity of Stage 2 arises precisely because the optimal action for the agent and the utility1250

delivered to the agent at optimality are both a priori unknown.1251

A.6.1 Analysis of Stage 11252

Define the intermediate problem, which is the parametric problem (P|b) with b′ ≥ U and where the1253

agent’s action is fixed:1254

max
w≥w

V (w, a)1255

subject to U(w, a) ≥ b′ (P|a, b′)1256

U(w, a)− U(w, â) ≥ 0 for all â ∈ A.1257
1258

We isolate attention to where the above problem is feasible; that is, a is an implementable action1259

that delivers at least utility b to the agent. Note we need not take b′ equal to the b that is tight-1260

at-optimality provided in the hypothesis of the theorem. It is arbitrary b′ ≥ U with the above1261

property.1262

We can define the related problem1263

inf
â∈A

max
w≥w

{
V (w, a) : U(w, a) ≥ b′, U(w, a)− U(w, â) ≥ 0

}
. (Min-Max|a, b′)1264

We denote an optimal solution to (Min-Max|a, b′) by â(a, b′) and wa,b′ .1265

Note that (P|a, b′) is analogous to (P|b) and (Min-Max|a, b′) is analogous to (SAND|b), however1266

with a given.1267

The key result is an implication of Theorem 4.15 in Ke and Ryan (2016) carefully adapted1268

to this setting. As mentioned above, that theorem is driven by Assumption 3 of that paper that1269

implies that the given a∗ is implementable with U(w∗, a∗) = U for an optimal contract w∗. This1270

result can be generalized as follows.1271

Proposition 6. Suppose Assumptions 1–4 hold. Let a be an implementable action and let b′ =1272

U(wa,U , a) where wa,U is an optimal solution to (P|a, U). Then wa,b
′

is equal to wa,b′ , an optimal1273

solution to (Min-Max|a, b′). In particular, wa,b′ is a GMH contract, implements a, U(wa,b, a) = b′1274
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and â(a, b′) is an alternate best response to wa,b′ . Moreover, the Lagrange multipliers wa,b′ in1275

problem (SAND|a, â(a, b′), b′) from Section 3.1 are λ(a, b′), δ(a, b′) > 0.1276

Proof. The proof mimics the development in Section 4 of Ke and Ryan (2016) two key differences.1277

First, Ke and Ryan (2016) does not work with problem (Min-Max|a, b′), instead with a relaxed1278

problem where â is given.8 Moreover, the relaxed problem (P |â) in Ke and Ryan (2016) was1279

defined where the no-jump constraint was an equality. This suffices there because the target action1280

a∗ is given. We need more flexibility here, and hence to follow to logic of Ke and Ryan (2016) we1281

must establish the following claims.1282

Claim 2. Let (wa,b′ , â(a, b′)) be an optimal solution to (Min-Max|a, b′), then1283

U(wa,b′ , a)− U(wa,b′ , â(a, b′)) = 0. (49)1284
1285

Proof. We argue that the Lagrangian multiplier δ∗ in Lemma 3 applied to (SAND|a, â(a, b′), b′) is1286

strictly greater than zero. Then complementary slackness (Lemma 3(ii-b)) implies (49) holds.1287

Suppose δ∗ = 0. This implies that wa∗ is the first best contract, denoted wfb(b′). We want to1288

show a∗ is implemented by wfb(b′). This, in turn, implies that the first-best contract is optimal,1289

contradicting Assumption 3. Let â′ ∈ aBR(wfb(b′)) and observe1290

val(SAND|a∗, â(a∗), b′) = V (wfb(b′), a∗)1291

= inf
â∈A

inf
λ,δ

max
w≥w
L(w, λ, δ|a∗, â, b′)1292

≤ inf
λ,δ

max
w≥w
L(w, λ, δ|a∗, â′, b′)1293

= max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b′, U(w, a∗)− U(w, â′) ≥ 0}1294

≤ max
w≥w
{V (w, a∗) : U(w, a∗) ≥ b′} (50)1295

= V (wfb(b′), a∗),1296

where the second equality is by strong duality, the first inequality is by the definition of minimizer,1297

the third equality is again by strong duality, and the final inequality follows since we have relaxed1298

a constraint. Therefore, all inequalities in the above formula become equalities.1299

If U(wfb(b′), a∗) = U(wfb(b′), â′) then a∗ is a best response to wfb(b′) and we are done. Oth-1300

erwise from (50) we must assume δ(a∗, â′) = 0. This follows by the uniqueness of Lagrangian1301

multipliers (Lemma 3). Therefore, wfb(b′) is the solution to arg maxw≥w{V (w, a∗) : U(w, a∗) ≥1302

b′, U(w, a∗) − U(w, â′) ≥ 0} and U(wfb(b′), a∗) − U(wfb(b′), â′) ≥ 0 is satisfied. Since â′ ∈1303

aBR(wfb(b′)), we have a∗ ∈ aBR(wfb(b′)) as desired.1304

The next two claims are adapted from Ke and Ryan (2016). To state them we need some1305

additional definitions. We let1306

T (x) ≡ v′(π(x)−w∗(x))
u′(w∗(x)) (51)1307

1308

and1309

R(x) ≡ 1− f(x,â(a,b′))
f(x,a) . (52)1310

1311

8In that paper, determining the optimal choice of â∗, see the definition of â∗ in (4.31) of Ke and Ryan (2016).
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Let1312

X ∗w = {x ∈ X : w∗(x) = w} . (53)1313
1314

We say two functions ϕ and ψ with shared domain X are comonotone on the set S ⊆ X if ϕ1315

and ψ are either both nonincreasing or both nondecreasing n S. If ϕ and ψ are comonotone on all1316

of X we simply say that ϕ and ψ are comonotone.1317

Claim 3. If both T (x) and R(x) are comonotone functions of x on X \X ∗w then w∗ is equal to wa,b′ .1318

Moreover, the Lagrangian multipliers λ and δ associated with the dual of (SAND|a, â(a, b′), b′) are1319

strictly positive.1320

Proof. This is Corollary 4.13 of Ke and Ryan (2016) setting U in that paper to b′. Note that the1321

condition that a be an implementable action and b′ = U(wa,U , a) where wa,U is an optimal solution1322

to (P|a, U) is required for this proof to hold.1323

The next result is to establish how our assumptions on the output distribution (Assumption 4)1324

guarantee comonotonicity.1325

Claim 4. If Assumptions 1–4 hold then T (x) and R(x) are comonotone on X \ X ∗w.1326

Proof. This is Lemma 4.14 of Ke and Ryan (2016). Note that the condition that a be an im-1327

plementable action and b′ = U(wa,U , a) where wa,U is an optimal solution to (P|a, U) is required1328

for this proof to hold. Moreover, this also requires Claim 2, where the equality of the no-jump1329

constraint is used to establish equation (C.14) in Ke and Ryan (2016).1330

Putting the last two claims together yields Proposition 6.1331

An easy implication of the above proposition is that1332

val(Min-Max|a, b′) = val(P|a, b′)1333
1334

whenever a is implementable and delivers the agent utility b′ in optimality. This will prove to be a1335

useful result in the rest of the proof of Theorem 1. It remains to determine the right implementable1336

a, which is precisely the task of Stage 2.1337

A.6.2 Analysis of Stage 21338

Recall that we are working with a specific b = U(w∗, a∗) where (w∗, a∗) is an optimal solution1339

to (P) (guaranteed to exist by Assumption 3). The goal of the rest of the proof is to show that1340

val(P) = val(SAND|b).1341

We divide this stage of the proof into two further substages. The first substage (Stage 2.1)1342

shows the equivalence between the original problem and a variational max-min-max problem. This1343

intermediate variational problem allows us to leverage the single-dimensional reasoning on display1344

in the proof of Theorem 1 in the single-outcome case in the main body of the paper.1345

The second substage (Stage 2.2) shows the equivalence between this variational max-min-max1346

and the sandwich problem (SAND|b).1347
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Stage 2.1. We lighten the notation of Stage 1, and let wa denote an optimal solution to (Min-Max|a, b)1348

with optimal alternate best response â(a) when b is our target agent utility. We construct a varia-1349

tional problem based on wa as follows. Given z ∈ [−1, 1] we define a set of variations1350

H(a, z) ≡ {h ≤ h̄(x) : h(x) = 0 if wa(x) = w and wa + zh ≥ w otherwise}1351

where h̄(x) > wa(x) is a sufficiently large but
∫
h̄(x)f(x, a)dx < K < ∞ for a sufficient large real1352

number K. We add an additional restriction1353

M(a, z) = {h ∈ H(a, z) :

∫
v′(π(x)− wa(x))h(x)f(x, a)dx ≥ 0,

∫
u′(wa(x))h(x)f(x, a)dx ≥ 0}.1354

If h ∈ M(a, z) then it is not plausible for both the principal and agent to be strictly better off1355

under the variational problem as compared to the original problem. Thus, the principal and agent1356

have a direct conflict of interest in z. This puts into a situation analogous to the single-outcome1357

case.1358

We now show the following equivalence:1359

val(P) = val(Var|b) (54)1360

where (Var|b) is the variational optimization problem1361

max
a∈A

inf
â∈A

max
z∈[−1,1]

max
h∈M(a,z)

{V (wa + zh, a) : (wa, a) ∈ W(â, b)}. (Var|b)1362

The “≤” direction of (54) is straightforward since1363

max
a∈A

inf
â∈A

max
z∈[−1,1]

max
h∈M(a,z)

{V (wa + zh, a) : (wa, a) ∈ W(â, b)}1364

≥ inf
â∈A

max
z∈[−1,1]

max
h∈M(a∗,z)

{V (wa∗ + zh, a∗) : (wa∗ + zh, a∗) ∈ W(â, b)}1365

≥ V (wa∗ , a
∗) = val(P),1366

1367

where the first inequality follows since the optimal action a∗ is a feasible choice for a in the outer-1368

maximization, the second inequality follows by taking z = 0, and the final equality holds from1369

Proposition 6. This establishes the “≤” direction of (54).1370

It remains to consider the “≥” direction of (54). The reasoning is inspired by single-outcome1371

case established in the main body of the paper. The following claim is analogous Lemma 9 in the1372

proof of Lemma 5.1373

Claim 5. Given any â and a, strong duality holds for the variational problem in the right-hand1374

side of (54). That is, for a given z ∈ [−1, 1]1375

max
h∈M(a,z)

{V (wa + zh, a) : (wa + zh, a) ∈ W(â, b)} (55)1376

= inf
λ,δ,γ≥0

max
h∈H(a,z)

Lh(zh, λ, δ, γ|a, â, b)1377

1378

where1379

Lh(zh, λ, δ, γ|a, â, b) = V (wa + zh, a) + λ[U(wa + zh, a)− b] + δ[U(wa + zh, a)− U(wa + zh, â)]1380

+ sgn(z)γ1

∫
v′(π(x)− wa(x))zh(x)f(x, a)dx+ sgn(z)γ2

∫
u′(wa(x))zh(x)f(x, a)dx1381

1382
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is the Lagrangian function (which combines the choice of z and h into the product zh since this is1383

how z and h appear in both the objective and constraints), and λ ≥ 0, δ ≥ 0 and γ = (γ1, γ2) ≥ 01384

are the Lagrangian multipliers for the remaining constraints defining M(a, z). Moreover, given1385

h∗(·|z) solves (55) as a function of z, complementary slackness holds for the optimal choice of1386

z ∈ argmaxz∈[−1,1] maxh∈M(a,z) {V (wa + zh, a) : (wa + zh, a) ∈ W(â, b)}; that is,1387

λ[U(wa + zh∗(·|z), a)− b] = 0, λ ≥ 0, U(wa + zh∗(·|z), a)− b ≥ 01388

δ[U(wa + zh, a)− U(wa + zh∗(·|z), â)] = 0, δ ≥ 0, U(wa + zh∗(·|z), a) ≥ U(wa + zh∗(·|z), â)1389

γ1

∫
v′(π(x)− wa(x))h∗(x|z)f(x, a)dx = 0, γ1 ≥ 0,

∫
v′(π(x)− wa(x))h∗(x|z)f(x, a)dx ≥ 01390

γ2

∫
u′(wa(x))h∗(x|z)f(x, a)dx = 0, γ2 ≥ 0,

∫
u′(wa(x))h∗(x|z)f(x, a)dx ≥ 0.1391

1392

Proof. By weak duality the “≤” direction of (55) is immediate. It remains to consider the “≥” direc-1393

tion. For every λ, δ and γ, maxh∈H(a,z) Lh(zh, λ, δ, γ|a, â, b) is convex in (λ, δ, γ). Let ((zh)∗, λ∗, δ∗, γ∗)1394

denote an optimal solution to the right-hand side of (55). To establish strong duality, we want1395

show a complementary slackness condition with (λ∗, δ∗, γ∗).1396

The optimization of Lh(zh, λ, δ, γ|a, â, b) over zh can be done in a pointwise manner similar to1397

how we approached (SAND|a, â, b). Given z, by the concavity and monotonicity of v and u, the1398

optimal solution h(x|z) to maxh∈H(a,â,z) Lh(zh, λ, δ, γ|a, â, b) must satisfy the following necessary1399

and sufficient condition:1400

(i) when z ≥ 0, zh(x|z) satisfies:1401 

v′(π(x)−wa(x)−zh(x|z))
u′(wa(x)+zh(x|z))

= [λ+ δ(1− f(x,â)
f(x,a))] + γ1v′(π−wa)+γ2u′(wa)

zu′(wa(x)+zh(x|z))
if

v′(π(x)−wa(x))
u′(wa(x)) (1− γ1

z ) < λ+ δ(1− f(x,â)
f(x,a)) + γ2

z

≤ v′(π(x)−wa(x)−zh̄(x))

u′(wa(x)+zh̄(x))
− γ1v′(π−wa)+γ2u′(wa)

zu′(wa(x)+zh̄(x))

h(x|z) = 0 if v′(π(x)−wa(x))
u′(wa(x)) (1− γ1

z ) ≥ λ+ δ(1− f(x,â)
f(x,a)) + γ2

z

h(x|z) = h̄(x) if
λ+ δ(1− f(x,â)

f(x,a)) + γ2
z

> v′(π(x)−wa(x)−zh̄(x))

u′(wa(x)+zh̄(x))
− γ1v′(π−wa)+γ2u′(wa)

zu′(wa(x)+zh̄(x))

1402

(ii) when z ≤ 0, zh(x|z) satisfies:1403 

v′(π(x)−wa(x)−zh(x|z))
u′(wa(x)+zh(x|z))

= [λ+ δ(1− f(x,â)
f(x,a))] + γ1v′(π−wa)+γ2u′(wa)

u′(wa(x)+zh(x|z))
if

v′(π(x)−wa(x))
u′(wa(x)) (1− γ1

z ) > λ+ δ(1− f(x,â)
f(x,a)) + γ2

z

≥ v′(π(x)−wa(x)−zh̄(x))

u′(wa(x)+zh̄(x))
− γ1v′(π−wa)+γ2u′(wa)

zu′(wa(x)+zh̄(x))

h(x|z) = 0 if v′(π(x)−wa(x))
u′(wa(x)) (1− γ1

z ) ≤ λ+ δ(1− f(x,â)
f(x,a)) + γ2

z

h(x|z) = h̄(x) if
λ+ δ(1− f(x,â)

f(x,a)) + γ2
z

< v′(π(x)−wa(x)−zh̄(x))

u′(wa(x)+zh̄(x))
− γ1v′(π−wa)+γ2u′(wa)

zu′(wa(x)+zh̄(x))
.

1404

We divide the reasoning into two steps. The first step is to show that given z, we have the1405

strong duality1406

max
h∈M(a,z)

{V (wa + zh, a) : (wa + zh, a) ∈ W(â, b)} = inf
λ,δ,γ≥0

max
h∈H(a,z)

L̃h(zh, λ, δ, γ|a, â, b)1407
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where the Lagrangian is1408

L̃h(zh, λ, δ, γ|a, â, b) = V (wa + zh, a) + λ[U(wa + zh, a)− U∗] + δ[U(wa + zh, a)− U(wa + zh, â)]1409

+γ1

∫
v′(π(x)− wa(x))h(x)f(x, a)dx+ γ2

∫
u′(wa(x))h(x)f(x, a)dx.1410

This result follows the uniqueness of h(x|z) as the maximizer of L̃h(zh, λ, δ, γ|a, â, b) over h.1411

Therefore, the Lagrangian dual function ψ(λ, δ, γ|z) = maxh∈H(a,z) Lh(zh, λ, δ, γ|a, â, b) is contin-1412

uous and differentiable and convex in (λ, δ, γ). This allows us to establish strong duality using1413

similar reasoning as in the proof of Lemma 3.1414

Let z∗ denote the optimal choice of z. We discuss the case z∗ > 0. The case z∗ < 0 is similar1415

and thus is omitted. In this case the constraint1416 ∫
v′(π(x)− wa(x))h(x)f(x, a)dx ≥ 01417

is equivalent to
∫
v′(π(x) − wa(x))zh(x)f(x, a)dx ≥ 0 and

∫
u′(wa(x))h(x)f(x, a)dx is equivalent1418

to
∫
u′(wa)zhf(x, a)dx ≥ 0. Since h(x|z) is uniquely determined so it is continuous in z. Let1419

h∗(x|z∗) ∈ arg max
h∈H(a,z)

{V (wa + z∗h, a) : (wa + z∗h, a) ∈ W(â, b)}1420

1421

be the unique solution to the problem given z∗. Note that
∫
v′(π(x)−wa(x))h∗(x|z∗)f(x, a)dx > 01422

and
∫
u′(wa(x))h∗(x|z∗)f(x, a)dx > 1

z

∫
(u(wa(x) + z∗h∗(x|z))− u(wa(x))f(x, a)dx ≥ 0 and1423

−
∫
v′(π(x)− wa(x)− z∗h(x|z∗))h∗(x|z∗)f(x, a)dx1424

< −
∫
v′(π(x)− wa(x))h∗(x|z∗)f(x, a)dx1425

< 0.1426

Then, there must exist Lagrange multipliers (λo, δo, γo) such that1427

0 = ∂
∂zLh(z∗h∗(x|z∗), λo, δo, γo|a, â, b)1428

=

∫ ( −v′(π(x)− wa(x)− z∗h∗(x|z∗)) + [λo + δo(1− f(x,â)
f(x,a))]u′(wa(x) + z∗h∗(x|z∗))

+γo1v
′(π(x)− wa(x)) + γo2u

′(wa(x))

)
h(x|z∗)f(x, a)dx1429

and (λo, δo, γo) satisfies the complementarity slackness condition.1430

The above claim is used to establish another important technical result. The proof is completely1431

analogous to the proof of Lemma 5 in the single-outcome case and thus omitted.1432

Claim 6. Let (a∗, â∗, z∗, h∗) be an optimal solution to (Var|b) such that U(wa∗ + z∗h∗, a∗) > b.1433

Then there exists an ε > 0 and optimal solution (a∗ε , â
∗
ε , z
∗, h∗ε ) such that U(wa∗ε + z∗h∗ε , a

∗
ε ) = b+ ε1434

and V (wa∗ + z∗h∗, a∗) = V (wa∗ε + z∗h∗ε , a
∗
ε ).1435

Via Claim 6 there exists a b∗ ≥ b and an optimal solution (ã∗, â∗, z∗, h∗) to (Var|b) such that1436

val(Var|b) = val(Var|b∗) and U(wã∗ + z∗h∗, ã∗) = b∗. It then suffices to argue that ã∗ is imple-1437

mentable (and thus feasible to (P)), thus satisfying (54).1438
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To establish implementability, we let â′ ∈ aBR(wã∗ + z∗h∗) and claim1439

V (wã∗ + z∗h∗, ã∗) (56)1440

= max
z∈[−1,1]

max
h∈M̃(ã∗,z)

{V (wã∗ + z∗h∗ + zh, ã∗) : (wã∗ + z∗h∗ + zh, ã∗) ∈ W(â′, b∗)},1441

where1442

M̃(ã∗, z) =

{
h ∈ H̃(ã∗, z) :

∫
v′(π(x)− wã∗(x)− z∗h∗(x))h(x)f(x, ã∗)dx ≥ 0,∫
u′(wã∗(x) + z∗h∗(x))h(x)f(x, ã∗)dx ≥ 0

}
1443

1444

and1445

H̃(a, z) ≡ {h ≤ h̄(x) : h(x) = 0 if wa(x) + z∗h∗(x) + zh(x) = w and wa + z∗h∗ + zh ≥ w otherwise}.14461447

If (56) holds then ã∗ is indeed implementable since zh = 0 is a solution to the right-hand1448

side problem, and the condition in the right-hand side that (wã∗ + z∗h∗, ã∗) ∈ W(â′, b∗) implies1449

U(wã∗ + z∗h∗, ã∗) ≥ U(wã∗ + z∗h∗, â′) and so ã∗ itself must be a best response to wã∗ + z∗h∗.1450

To establish (56) note that “≤” follows immediately since (ã∗, â∗, z∗, h∗) solves the left-hand side1451

of (54), where there is a minimization over â, whereas in the right-hand side of (56), a particular1452

â is chosen (namely â′) and additional degree of freedom zh. Next suppose that1453

V (wã∗ + z∗h∗, ã∗) (57)1454

< max
z∈[−1,1]

max
h∈M̃(ã∗,z)

{V (wã∗ + z∗h∗ + zh, ã∗) : (wã∗ + z∗h∗ + zh, ã∗) ∈ W(â′, b∗)},1455

and derive a contradiction.1456

Let (z∗′, h∗′) denote an optimal solution to maxz∈[−1,1] maxh∈M̃(ã∗,z){V (wã∗ + z∗h∗ + zh, ã∗) :1457

(wã∗ + z∗h∗ + zh, ã∗) ∈ W(â′, b∗)}. If (57) holds then this implies V (wã∗ + z∗h∗, ã∗) < V (wã∗ +1458

z∗h∗ + z∗′h∗′, ã∗) and thus1459

0 < V (wã∗ + z∗h∗ + z∗′h∗′, ã∗)− V (wã∗ + z∗h∗, ã∗)1460

≤ −z∗′
∫
h∗′(x)v′(π(x)− wã∗(x) − z∗h∗(x))f(x, ã∗)dx1461

since v is concave. Note that
∫
h∗′v′(π−wã∗ − z∗h∗)f(x, ã∗)dx = 0 will generate the contradiction1462

0 < 0. It further implies z∗′ ≤ 0 since
∫
h∗′v′(π − wã∗ − z∗h∗)f(x, ã∗)dx ≥ 0 by design of the1463

variation set M̃(ã∗, z). This, in turn, implies b∗ = U(wã∗ + z∗h∗, ã∗) > U(wã∗ + z∗h∗ + z∗′h∗′, ã∗)1464

since u is concave and
∫
h∗′u′(wã∗ + z∗h∗)]f(x, ã∗)dx ≥ 0 by design of the variation set M̃(ã∗, z):1465

U(wã∗ + z∗h∗ + z∗′h∗′, ã∗)− U(wã∗ + z∗h∗, ã∗)1466

=

∫
[u(wã∗(x) + z∗h∗(x) + z∗′h∗′(x))− u(wã∗(x) + z∗h∗(x))]f(x, ã∗)dx1467

<

∫
z∗′h∗′(x)u′(wã∗(x) + z∗h∗(x))]f(x, ã∗)dx1468

≤ 0.1469

But this is a contradiction, since the constraint (wã∗ + z∗h∗ + z∗′h∗′, ã∗) ∈ W(â′, b∗) implies1470

U(wã∗ + z∗h∗ + z∗′h∗′, ã∗) ≥ b∗. This completes Stage 2.1.1471
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Stage 2.2: It remains to show1472

val(Var|b) = val(SAND|b). (58)1473

Combined with (54) this shows val(P) = val(SAND|b), finishing the proof. The direction1474

val(Var|b) = max
a∈A

inf
â∈A

max
z∈[−1,1]

max
h∈M(a,z)

{V (wa + zh, a) : (wa + zh, a) ∈ W(â, b)}1475

≤ max
a∈A

inf
â∈A

max
w≥w
{V (w, a) : (w, a) ∈ W(â, b)} = val(SAND|b)1476

1477

follows immediately. It remains to the “≥ ” direction of (58).1478

Let (a#, â#, wa#) be an optimal solution to (SAND|b) that delivers utility b′ ≥ b to the agent.1479

That is, the constraint U(w, a) = b′ is binding in (SAND|b′). We have1480

val(Var|b) ≥ inf
â∈A

max
z∈[−1,1]

max
h∈M(a#,z)

{V (wa# + zh, a#) : (wa# + zh, a#) ∈ W(â, b)} (59)1481

≥ inf
â∈A

max
z∈[−1,1]

max
h∈M(a#,z)

{V (wa# + zh, a#) : (wa# + zh, a#) ∈ W(â, b′)} (60)1482

= max
z∈[−1,1]

max
h∈M(a#,z)

{V (wa# + zh, a#) : (wa# + zh, a#) ∈ W(â0, b′)} (61)1483

1484

where â0 is any action in the argmin of the right-hand side of (60). If such an action does not1485

exist we use a first-order condition following Lemma 4. The details of this case are analogous1486

and thus omitted. Let (z#, h#) be in the argmax of the right-hand side of (61). It suffices1487

to show that val(SAND|b) is equal to the value of the right-hand side of (61). Observe that1488

val(SAND|b) = val(SAND|b′) and so in the sequel we work with b′.1489

We argue this in two further substages. First, we argue that (i) val(61) = val(Min-Max|a#, b#)1490

where b# = U(wa# + z#h#, a#) ≥ b′. For this we use Proposition 6 of Stage 1. Second, we1491

argue that, in fact (ii) b′ = b#. In this case, val(Min-Max|a#, b#) = val(Min-Max|a#, b′) =1492

val(SAND|b′) since (a#, â#, w#) is an optimal solution to (SAND|b′). From (i) this implies val(61) =1493

val(SAND|b′). In light of (59)–(61) and the fact val(SAND|b) = val(SAND|b′), this implies1494

val(Var|b) ≥ val(SAND|b) and this completes the proof. It remains to establish (i) and (ii) in1495

Stages 2.2.1 and 2.2.2 respectively.1496

Stage 2.2.1: (i) val(61) = val(Min-Max|a#, b#).1497

Using similar arguments as in Stage 2.1 we can conclude that a# is implemented by wa# +z#h#,1498

using the fact U(wa# + z#h#, a#) = b# to construct a contradiction.1499

Given that wa# + z#h# implements a# and delivers utility b# to the agent, we can apply1500

Proposition 6 to construct an optimal contract wa#,b# to (P|a#, b#) with alternate best response1501

â(a#, b#). We then claim the following:1502

V (wa#,b# , a
#) = val(61). (62)1503

1504

To establish this, we show that h = wa#,b#−wa# belongs toM(a#, z) for z = 1. Clearly wa# +h =1505

wa#,b# ≥ w is satisfied, and wa#,b# −wa# ≤ h̄(x) by defining K appropriately large (recall its size1506
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was previously left unspecified). Next, we use the concavity of v to see1507 ∫
[wa#,b#(x)− wa#(x)]v′(π(x)− wa#(x))f(x, a#)dx1508

≥
∫

[v(π(x)− wa#(x))− v(π(x)− wa#,b#)(x)]f(x, a#)dx1509

= val(SAND|b)− V (wa#,b# , a
#)1510

≥ val(SAND|b)− V (wa#,b′ , a
#)1511

= 01512

where V (wa#,b, a
#) is decreasing in b and using the fact that b# ≥ b′. Next, we note1513 ∫

[wa#,b#(x)− wa#(x)]u′(wa#(x))f(x, a#)dx1514

≥
∫

[u(wa#,b#(x))− u(wa#(x))]f(x, a#)dx1515

= b# − b′1516

≥ 01517

by the concavity of u. This shows h = wa#,b# − wa# ∈ M(a#, z) for z = 1. Letting zh =1518

wa#,b# −wa# it is immediate that wa# + zh = wa#,b# ∈ W(â0, b). Indeed, U(wa#,b# , a
#) = b# ≥ b′1519

and U(wa#,b# , a
#) − U(wa#,b# , â

0) ≥ 0 since a# is implemented by wa#,b# . This implies that1520

zh = wa#,b# − wa# is feasible choice in (61) and so1521

val(61) ≥ V (wa#,b# , a
#).1522

Similarly, since wa# + z#h# is a feasible solution to (P|a#, b#) (and wa#,b# is an optimal solution)1523

so we get the reverse direction of the above and conclude1524

V (wa# + z#h#, a#) = V (wa#,b# , a
#).1525

This yields (62). This completes Stage 2.2.1. This implies that â(a#, b#) can be chosen as â0.1526

Stage 2.2.2: (ii) b′ = b#.1527

It suffices to show U(wa# + z#h#, a#) = b′. To do so we leverage the Lagrangian dual in (55)1528

and argue the Lagrangian multiplier λz# for constraint U(wa# + z#h#, a#) ≥ b′ is strictly positive.1529

Then by complementary slackness this implies U(wa# + z#h#, a#) = b′, as required.1530

Note that V (wa# + z#h#, a#) < V (wa# , a
#), (otherwise this already establishes the “≥” di-1531

rection of (54)) and so we have z# > 0, again using a concavity argument as above. Then z#h# is1532

uniquely determined by the first-order condition (i) in Claim 5.1533

Suppose U(wa# + z#h#, a#) > b′, then we have λz# = 0. Then h# = wa#,b# −wa# 6= 0 implies1534 ∫
[wa#,b#(x) − wa#(x)]u′(wa#(x))f(x, a#)dx > 0 and thus γ∗2 = 0. Moreover, val(SAND|b) >1535

V (wa#,b# , a
#) implies

∫
[wa#,b#(x)−wa#(x)]v′(π(x)−wa#(x))f(x, a#)dx > 0, which yields γ∗1 = 0.1536

Therefore, the first-order condition for wa#,b# becomes1537

v′(π(x)−w
a#,b#

(x))

u′(w
a#,b#

(x)) = λz# + δz#(1− f(x,â0)
f(x,a#)

) = δz#(1− f(x,â0)
f(x,a#)

), whenever w(a#, â0, b#) > w (63)1538
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where λz# and δz# are the Lagrangian multipliers for the variation problem given z#. In the1539

case where â0 → a#, Lemma 4 applies and the same structure as (63) holds with the second1540

term equal to δz#
fa(x,a#)
f(x,a#)

. The argument for this case is equivalent and so we ignore it. However,1541

from Proposition 6, we know there is positive Lagrangian multiplier λ(a#, b#) for optimal contract1542

wa#,b# . By (63) and the fact wa#,b# is a GMH contract we have:1543

v′(π(x)−w
a#,b#

(x))

u′(w
a#,b#

(x)) = δz#(1− f(x,â0)
f(x,a#)

) = λ(a#, b#) + δ(a#, b#)(1− f(x,â0)
f(x,a#)

)1544

1545

for all x such that wa#,b#(x) > w. However, if (1 − f(x,â0)
f(x,a#)

) is not a constant for almost all1546

x the above equalities cannot hold since λ(a#, b#) > 0. This contracts the supposition that1547

U(wa# + z#h#, a#) > b′ and λz# = 0.1548

It only remains to consider the case where (1− f(x,â0)
f(x,a#)

) is a constant for almost all x such that1549

wa#,b#(x) > w. In this case, by the continuity of
v′(π(x)−w

a#,b#
(x))

u′(w
a#,b#

(x)) in x (wa#,b# is continuous in1550

x because it is a GMH contract), we have that
v′(π(x)−w

a#,b#
(x))

u′(w
a#,b#

(x)) becomes a constant. Therefore,1551

v′(π(x)−w
a#,b#

(x))

u′(w
a#,b#

(x)) is constant and thus characterizes the first best contract w(a#, b#) = wfb. Then1552

wa#,b# implements a# and U(wa# + z#h#, a#) = b′. This completes Stage 2.2.2.1553

Stage 2.2, Stage 2, and Theorem 1 now follow.1554

A.7 Proof of Proposition 11555

It suffices to prove the (IR) constraint is binding in (P). Our proof that (IR) is binding is inspired1556

by the proof of Proposition 2 in Grossman and Hart (1983), but adapted to a setting where there1557

are infinitely many (rather than a finite number) of outcomes.1558

Suppose to the contrary that (w∗, a∗) is an optimal contract where (IR) is not binding; i.e.,1559

U(w∗, a∗) = U + γ (64)1560
1561

where γ > 0. We construct a feasible contract that implements a∗ but makes the principal better1562

off, revealing the contradiction.1563

Under the assumption of the theorem, there exists a δ > 0 such that w∗(x) > w + δ for almost1564

all x. Since u is continuous and increasing, for ε > 0 sufficiently small there exists a contract wε1565

such that1566

wε(x) ≥ w (65)1567
1568

and1569

u(wε(x)) = u(w∗(x))− ε. (66)1570
1571
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Observe that for all a ∈ A1572

U(wε, a) =

∫
u(wε(x))f(x, a)dx− c(a)1573

=

∫
(u(w∗(x))− ε)f(x, a)dx− c(a)1574

=

∫
u(w∗(x))f(x, a)dx− ε

∫
f(x, a)dx− c(a)1575

= U(w∗, a)− ε, (67)1576
1577

where the first equality is by the definition of U , the second equality is by definition of wε, the third1578

equality is by the linearity of the integral, and the fourth equality collects terms to form U(w∗, a)1579

and uses the fact
∫
f(x, a)dx = 1 since f is a probability density function.1580

We are now ready to show there exists an ε > 0 such that (wε, a∗) is a feasible solution to (P).1581

We already know that wε satisfies the limited liability constraint for sufficiently small ε by (65).1582

We now argue (IR) and (IC) also hold. For individual rationality observe:1583

U(wε, a∗) = U(w∗, a∗)− ε1584

= U + γ − ε1585

≥ U if ε < γ ,1586
1587

where the first equality follows from (67) and the second equality uses (64). Since (65) holds for1588

arbitrarily small ε the condition that ε < γ can easily be granted.1589

Finally, for incentive compatibility observe that for all a ∈ A:1590

U(wε, a∗)− U(wε, a) = [U(w∗, a∗)− ε]− [U(w∗, a)− ε]1591

= U(w∗, a∗)− U(w∗, a)− ε+ ε1592

≥ 0,1593
1594

where the first equality holds from (67) (noting that ε is uniform in a). Hence, we conclude that1595

(wε, a∗) is a feasible solution to (P). Since u is an increasing function, (66) implies wε(x) < w∗(x)1596

for all x. Hence, V (w, a) is a decreasing function of w and wε(x) < w∗(x), this contradicts the1597

optimality of (w∗, a∗) to (P).1598

A.8 Proof of Lemma 71599

For part (i), since1600

inf
â∈A

inf
λ,δ≥0

max
w≥w
L(w, λ, δ|a, â, b) = inf

λ,δ≥0
inf
â∈A

max
w≥w
L(w, λ, δ|a, â, b)1601

the desired result follows from the envelope theorem. For part (ii), note that inf â L∗(a, â|b) is1602

continuous and directionally differentiable in a (see e.g., Corollary 4.4 of Dempe (2002)). Since a∗1603

is a maximum, then ∂
∂a+

(inf â L∗(a∗, â|b)) ≤ 0 and ∂
∂a− (inf â L∗(a∗, â|b)) ≥ 0.1604
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A.9 Proof of Lemma 81605

Let b∗ be as defined in (24). First, our goal is to show that b∗ is tight-at-optimality, assuming1606

that it exists (we return to existence later in the proof). We first show that b∗ ≤ U(w∗, a∗) for1607

all optimal (w∗, a∗) to the original problem (P). Let U∗ = U(w∗, a∗) for some arbitrary optimal1608

solution (w∗, a∗) and we show b∗ ≤ U∗ by arguing U∗ is in the “argmin” in (24). Our goal is thus1609

to show1610

U∗ ∈ argminb≥U {val(SAND|b)− (P |w(b))} . (68)1611
1612

First, observe that1613

val(P |w(b)) ≤ val(P|b) (69)1614
1615

where (P|b) is defined at the beginning of Section 3. This follows since (P |w(b)) considers a problem1616

with a fixed contract w(b) that delivers utility at least b to the agent, whereas (P|b) is an unrestricted1617

version of such a problem. Moreover, from Lemma 2 we know1618

val(P|b) ≤ val(SAND|b). (70)1619
1620

Putting (69) and (70) together implies1621

min
b≥U
{val(SAND|b)− val(P |w(b))} ≥ 0.1622

1623

With this inequality in hand, we argue that U∗ satisfies1624

val(SAND|U∗)− val(P|w(U∗)) = 0 (71)1625
1626

implying our target condition (68). Note this will also imply the inner “argmin” in (24) gives a1627

minimum value of1628

min
b≥U
{val(SAND|b)− val(P |w(b))} = 0. (72)1629

1630

By Theorem 1, we know (w∗, a∗) is an optimal solution to (P). Also, by Proposition 2, (w(U∗), a(U∗))1631

is an optimal solution to (P). Note, however that (w(U∗), a(U∗)) is also an optimal solution to1632

(P|w(U∗)), since feasibility of (w(U∗), a(U∗)) to (P) implies a(U∗) ∈ aBR(w(U∗)). This, in turn,1633

implies val(P|w(U∗)) = val(SAND|U∗) since, as we have just argued, both values are equal to1634

val(P). This establishes (71) and hence we can conclude (68). This shows b∗ ≤ U∗ since b∗1635

is the least element in argminb≥U{val(SAND|b) − (P |w(b))}. This implies that val(SAND|b∗) ≥1636

val(SAND|U∗) or any tight U∗ (since val(SAND|b) is a weakly decreasing function of b) and since1637

val(P) = val(SAND|U∗) for any tight U∗ then we know1638

val(SAND|b∗) ≥ val(P). (73)1639
1640

Also, by definition (assuming b∗ exists), b∗ is in the “argmin” in (24) and so from (72) we know1641

val(P|w(b∗)) = val(SAND|b∗). However, since val(P|w(b∗)) ≤ val(P) then from (73) we can conclude1642

that val(SAND|b∗) = val(P). In particular, this means that (w(b∗), a(b∗)) is an optimal solution to1643

(P). Moreover, from Proposition 6 we know U(w(b∗), a(b∗)) = b∗. Thus, b∗ is tight-at-optimality.1644
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We now show that such a b∗, in fact, exists. Let1645

b̂ = inf {b ∈ [U,∞) : val(SAND|b)− val(P |w(b)) = 0} . (74)1646
1647

For ease of notation let s(b) = val(SAND|b) and t(b) = val(P |w(b)). Let B denote the set1648

{b ∈ [U,∞) : s(b) = t(b)} and thus b̂ is the infimum of B. The goal is to show b̂ ∈ B and hence1649

b̂ = b∗ as defined in (24) and using (72). We now show B is closed and bounded below. Clearly1650

B is bounded below by U , it remains to show closedness. We consider the topological structure1651

of s(b) and t(b). By the Theorem of Maximum s(b) is a continuous function of b. Also, by the1652

Theorem of Maximum w(b) is continuous and aBR(b) is upper hemicontinuous and so t(b) is up-1653

per semicontinuous. To show B is closed, consider a sequence bn in B converging to b̄. Since s1654

is continuous function of b, limn→∞ s(bn) = s(b̄). Also, since t is upper semicontinuous we have1655

limn→∞ t(b
n) ≥ t(b̄). However, since t(b) ≤ s(b) for all b (by (69)) we know t(b̄) ≤ s(b̄). Conversely,1656

since s(bn) = t(bn) we have limn→∞ t(b
n) = limn→∞ s(bn) = s(b̄) and so s(b̄) ≤ t(b̄). This implies1657

s(b̄) = t(b̄), which establishes that B is closed. This completes the proof.1658

A.10 Proof of Proposition 31659

Suppose that for all alternate best responses â we have â ≥ a. Observe that when w is a constant1660

function (the same wage for all outputs x), we know that all no-jump constraints1661

U(w, a∗)− U(w, â) ≥ 01662
1663

are redundant. Indeed,1664

U(w, a)− U(w, â) = c(â)− c(a) ≥ 01665
1666

since â ≥ a and c is an increasing function. Next, observe that when the principal is risk neutral that1667

the first-best contract is a constant contract. This implies that this constant first-best contract is1668

feasible to (P) and thus optimal. However, when this is the case, the FOA is valid, a contradiction.1669

A.11 Proof of Proposition 41670

We now claim that val(SAND|U) = val(FOA). First we argue that1671

val(SAND|U) ≥ val(FOA). (75)1672
1673

When the first approach is valid we have val(FOA) = val(P). Moreover, by Lemma 2 we also know1674

val(SAND|U) ≥ val(P). Putting these together implies (75).1675

We now turn to showing the reverse inequality of (75); that is,1676

val(SAND|U) ≤ val(FOA). (76)1677
1678

By similar reasoning to the proof of Lemma 3, the Lagrangian approach also applies to (FOA) and1679

strong duality holds for (FOA) and its Lagrangian dual (see also Jewitt et al. (2008) for a proof1680

of a setting with certain boundedness assumptions). Let µ∗ be the corresponding multiplier for1681

constraint (FOC(a)) in problem (FOA). Let (a#, â#, w#) be an optimal solution to (SAND|U).1682

If µ∗ = 0, then (SAND|U) has a smaller value than (FOA) by strong duality. This yields (76).1683
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We are left to consider the case where µ∗ 6= 0. Suppose a# is not a corner solution (similar1684

arguments to apply to the corner solution case). If µ∗ > 0 we choose some â to approach a# from1685

below. If µ∗ < 0, we choose â to approach a# from above. Note that the solution â# is a global1686

minimum (given the choices of the other variables) and so for very small ε = a#− â for â sufficiently1687

close to a# we have:1688

val(SAND|U) = inf
â

inf
(λ,δ)

max
w≥w
L(w, λ, δ|a#, â, U) = inf

(λ,δ)
inf
â

max
w≥w
L(w, λ, δ|a#, â, U)1689

≤ inf
(λ,δ)

max
w≥w
{V (w, a#) + λ[U(w, a#)− U ] + δεUa(w, a

#) + o(ε)}. (77)1690

1691

The first equality follows by strong duality of (SAND|a#, â, U) with its dual (via Lemma 3). The1692

inequality follows from the mean value theorem. Since â approaches a# in the direction we chose,1693

we have1694

inf
(λ,δ)

max
w≥w

V (w, a#) + λ[U(w, a#)− U ] + δεUa(w, a
#)1695

= inf
λ

inf
µ∈R

max
w≥w

V (w, a#) + λ[U(w, a#)− U ] + µUa(w, a
#)1696

≤ max
a∈A

inf
λ

inf
µ∈R

max
w≥w

V (w, a) + λ[U(w, a)− U ] + µUa(w, a) = val(FOA)1697

1698

where we simply redefine δε = µ, without loss of generality. Note that the right-hand side is the1699

statement of the Lagrangian dual of (FOA), and so by strong duality of FOA and (77) this implies1700

(76). Combined with (75) this implies val(SAND|U) = val(FOA), as required.1701

B Proof of Proposition 51702

This is the same as the proof of Lemma 10 in Appendix A.6 above. We pull this result out here1703

for emphasis.1704
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