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Abstract. We introduce a simplex method for general countably infinite linear programs4
(CILPs). Previous literature has focused on special cases, such as infinite network flow problems5
or Markov decision processes. A novel aspect of our approach is the placing of data and decision6
variables in a Hilbert space that elegantly encodes a “discounted” weighting to ensure the continuity7
of infinite sums. Under some assumptions, including that all basic feasible solutions are nondegen-8
erate with strictly positive support, and the set of bases is closed in an appropriate topology, we9
show convergence to the optimal value for our proposed simplex algorithm. We show that existing10
applications naturally fit this more general framework.11
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1. Introduction. Infinite-dimensional linear programming plays an important15

role in the theory of stochastic, robust, and dynamic optimization [4, 19, 23, 26],16

bearing fruit in applications to inventory management [2], revenue management [1],17

production planning [18], workforce planning [22], and equipment replacement [5],18

among others.19

The special case of countably infinite linear programs (CILPs) has received in-20

creasing attention [14, 16, 32, 36]. In a CILP, the decision-maker has countably many21

decisions and faces countably many linear constraints. Although a comprehensive22

theory of duality for CILPs has been proposed in [14], a general theory of simplex23

methods for CILPs is still missing. To date, efforts have primarily focused on devising24

algorithms for special cases, including nonstationary and countable-state Markov de-25

cision processes [19, 26], and networks with countably infinite nodes and arcs [32, 36].26

A goal of this paper is to extract analytical insight from these cases in the literature,27

discover what they have in common, and connect this to a deeper understanding of28

the topological structure of (at least partially) “tractable” countably infinite linear29

programs.30

In addition to tackling as yet intractable problems from the above applications,31

a general simplex theory could provide insights into and a foundation for future so-32

lution approaches to a larger class of problems where CILPs and their extensions33

arise. These include computing the stationary distributions, occupation measures,34

and exit distributions of Markov chains [24]; nonstationary stochastic optimization35

including multi-armed bandit problems with time-varying rewards [8]; countably infi-36

nite monotropic programs [9, 15] and convex cost flow problems on countably infinite37

networks [30]; optimization problems with infinite sums [27]; fluid approximations of38

decomposable Markov decision processes [6]; search problems in robotics [13]; infinite39
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2 A. GHATE, C. T. RYAN, AND R. L. SMITH

horizon stochastic programs [20]; and games with partial information [11]. Unfortu-40

nately, the lack of such a theory has prevented the broader optimization community41

from fully utilizing CILPs in their work. This paper attempts to partially overcome42

this hurdle.43

One reason for the focus thus far on special cases is that infinite-dimensional44

linear programming involves complex topological considerations in general. Indeed,45

selecting the topological space to embed the data is an important modeling choice [4].46

Depending on the topology, it can be more or less easy to state the dual, more or less47

easy to prove weak and strong duality, and more or less easy to build the components48

of a simplex method. By examining a special case, the choice of dual and the elements49

of a simplex algorithm often become easier to identify. To deal with greater generality,50

this paper proposes a novel topology for CILPs (inspired by earlier work in [35]) that51

frames the problem in a Hilbert space setting.52

Before discussing further implications of this modeling choice, we clarify what53

we mean by a “simplex method”. The geometric essence of the simplex method is54

the traversing of edges (called “pivoting”) between extreme points of a polyhedron in55

search of an optimal solution. In the finite case, since the objective function is linear56

(and hence both convex and concave) and the linear constraints describe a convex57

feasible region, the existence of an extreme point optimal solution is guaranteed and58

determined by “local” considerations – if there are no improving directions along edges59

from a given extreme point then it is a global optimum.60

The computational realization of this geometric view of the simplex method in-61

volves the algebraic notions of basic feasible solutions, basic directions, and reduced62

costs. These are in direct correspondence to the geometric notions of extreme points,63

edges, and improving directions, respectively. The success of the simplex method64

crucially depends on this tight connection between algebra and geometry.65

A core difficulty in designing a simplex method for CILPs, even at the abstract66

level, is that both the geometric view and the relationship between algebra and ge-67

ometry are more tenuous. Indeed, one can easily write down an innocent-looking68

infinite-dimensional linear program that is bounded and feasible but has no optimal69

solution. Consider, for example, a minimum cost flow problem with two nodes with70

supply and demand one, joined by a countably infinite number of arcs with costs71

(1/2)k, k = 1, 2, . . .. The infimum over all feasible costs is zero but is not attained.72

Even when optimal solutions are known to exist, the feasible region may have no73

extreme points (p. 61 of [4]). Without extreme points, the geometric essence of the74

simplex method has no grounding. Even when extreme points do exist, there are75

cases where there do not exist edges on which to “pivot” between them. Consider,76

for example, the feasible region of the closed unit disk centered around the origin in77

R2 and represented by the intersection of its countably many supporting half-spaces78

along the rational points of its boundary. The boundary of the disk constitutes its79

extreme points while it has no edges to pivot along. Indeed, the cone of improving80

directions from a given extreme point may lack extreme rays (p. 28 of [4]).81

Other desirable properties we take for granted in the finite simplex method —82

beyond mere clarity about the objects and steps involved — may also fail in the83

infinite-dimensional setting. Ideally, a simplex method would satisfy the following:84

(P1) The iterates have monotone non-increasing objective values.85

(P2) The objective values of the iterates converge to the optimal value of the86

problem (optimal value convergence).87

(P3) Each iteration of the algorithm can be performed in finite time and with a88

finite amount of data.89
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(P4) The iterates converge to an optimal solution of the problem.90

Property (P1) is helpful since algorithms are terminated after finitely many iterations91

in practice. Property (P1) ensures that the last iterate of the algorithm is always the92

best among the sequence of iterates (keeping track of the incumbent iterate, which93

is a common practice in non-monotonic algorithms, is difficult in infinite-dimensional94

problems, where calculating objective values already requires infinite time and space).95

It is well documented (see, for instance, [16]) that properties (P1)–(P4) need not96

hold in general. Designing algorithms that meet some or all of these properties for97

special cases have been the focus of a stream of papers in recent years [19, 26, 32, 36].98

In this paper, we provide a set of sufficient conditions (captured as assumptions99

(A1)–(A8) below) that ensure our proposed simplex-method satisfies (P1) and (P2)100

for a broad class of problems. This is the main result of the paper, captured as101

Theorem 8.3. The result is nontrivial, and the set of sufficient conditions critically102

depend on the problem’s embedding in the Hilbert space discussed above. The closest103

result in the literature is the “shadow simplex method” in [16]. There, an algorithm is104

provided that satisfies (P2) and (P3) under a set of conditions that does not guarantee105

(P1). It is a simplex method in the sense that it pivots among extreme points of finite-106

dimensional projections (or “shadows”) of the feasible region (that may not correspond107

to adjacent pivots on the original feasible region). A general approach to resolving108

(P3) is beyond the scope of this paper, however, the examples we discuss in Section 9109

does have a finite implementation. As for (P4), our main result on optimal value110

convergence (Theorem 8.3) establishes the existence of a subsequence of iterates that111

converges to an optimal solution. To establish convergence of the entire sequence of112

iterates involves careful selection arguments in the spirit of [34], which is not the focus113

of the current paper. However, we do show in Theorem 8.4 that the set of iterates of114

the simplex method become arbitrarily close to the set of optimal solutions and, by115

implication, if there is a unique optimal solution, (P4) holds.116

The reader may notice that we have not included among our desiderata (P1)–117

(P4) a statement about the rate of convergence of the simplex algorithm in question.118

Although in finite-dimensional optimization this type of analysis is commonplace, in119

the infinite-dimensional setting we know of only a few cases where convergence rates120

have been posited (for instance, [29, 33]). These papers leverage compactness and121

continuity properties of continuous linear programs that fail to hold in our setting.122

The dearth of convergence rates results in the literature is not a surprise. The123

finite-dimensional simplex algorithm itself, arguably the most impactful optimization124

algorithm ever developed, evaded complexity analysis for decades and remains an open125

area of research until the present day. Klee and Minty showed worst-case performance126

can be exponential, and recent results show that this worst-case performance holds127

under numerous pivot rules. Indeed, a celebrated result is a recent subexponential128

(although not polynomial) worst case for a particularly successful pivot rule [21].129

We organize the remainder of the paper as follows. We start in Section 2 with130

a few preliminaries and provide an overview of the Hilbert space structure leveraged131

throughout the paper. In Section 3, we state our general CILP problem. In Section 4,132

we define the concept of a basic feasible solution and show that the extreme points133

are basic feasible solutions. Section 5 describes the mechanics of pivoting between134

extreme points. In Section 6, we introduce the concept of reduced costs to provide an135

optimality condition analogous to the finite-dimensional simplex method. In Section 7,136

we construct our simplex method based on choosing pivots of “steepest descent”; i.e.,137

reduce the objective value by the greatest possible rate. This guarantees property138

(P1) but also proves crucial in establishing (P2). In Section 8, we show that this139
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4 A. GHATE, C. T. RYAN, AND R. L. SMITH

simplex method converges to optimal value. Section 9 provides a concrete example140

that satisfies our assumptions.141

2. Preliminaries. This section contains basic notation and definitions. Most142

importantly, it defines a type of topology on the space of real sequences that is used143

throughout the rest of the paper.144

Let R and N denote the set of real and natural numbers, respectively. The vector145

space of all real sequences is denoted RN. We denote an element x of RN by146

(xj)
∞
j=1 (or more simply (xj)) where xj is called the jth component of x. The147

vector space ordering on RN is denoted ≥ where x ≥ 0 if xi ≥ 0 for i = 1, 2, . . . .148

A matrix A = (aij)
∞
i,j=1 (or more simply A = (aij)) where aij is a real number for149

all i and j is called a doubly infinite matrix. The jth column of A is denoted150

a·j and the ith row is denoted ai·. The columns and rows of A can be viewed as151

sequences in RN. We let Ax denote the vector (
∑∞
j=1 aijxj : i = 1, 2, . . . ). Let u and152

v be two sequences in RN. For brevity, we sometimes let u>v denote the infinite sum153 ∑∞
j=1 ujvj .154

For any countable set B of vectors in RN, let cspan(B) denote their count-155

able span; that is, for B =
{
B1, B2, . . .

}
let cspan(B) = {

∑∞
j=1 αjB

j : α ∈156

RN where
∑∞
j=1 αjB

j converges } where
∑∞
j=1 αjB

j = limN→∞
∑N
j=1 αjB

j denotes157

component-wise convergence of partial sums.1 We abuse notation and let A denote158

both a doubly-infinite matrix as well as the set of columns in A. This notation will159

save a lot of tedious distinctions throughout the paper. Accordingly, we may write160

cspan(A) as the countable span of the set of columns of A (recall each column is a161

vector in RN).162

For any x ∈ RN, the support set S(x) of x is the set of indices j where xj is163

nonzero; that is, S(x) := {j : xj 6= 0}. Let Sc(x) denote the complement of the164

support set of x; that is, Sc(x) := {j : xj = 0}. Let F be a subset of RN. A vector165

x ∈ F is an extreme point of F if it cannot be expressed as x = λx1 + (1 − λ)x2166

where λ ∈ (0, 1) and x1, x2 ∈ F with x1 6= x2. The set of all extreme points of F167

is denoted extF .168

We define a particular class of Hilbert topologies on the space of real sequences.169

Earlier work using a similar topology can be found in [35]. Define R∞ =
∏∞
j=1Hj170

where Hj = R (as a set, but with a different topology defined below) for all j =171

1, 2, . . . . The standard inner product and norm on R are denoted 〈·, ·〉 and | · |,172

respectively. That is, for x, y ∈ R, 〈x, y〉 = xy and |x| is the absolute value of x. We173

endow each Hj with a slightly modified topology. Fix a δj ∈ (0, 1) and define the inner174

product and norm on Hj as 〈·, ·〉j = δ2
j 〈·, ·〉 and | · |j = δj | · |. That is, if x, y ∈ Hj then175

〈x, y〉j = δ2
jxy and |x|j = δj |xj |. Under these operations, it is straightforward to show176

that Hj is a Hilbert space with an appropriately defined norm topology associated177

with | · |j , which agrees with the usual Euclidean topology on R.178

The Hilbert sum H = {(xj) ∈
∏∞
j=1Hj :

∑∞
j=1 |xj |2j =

∑∞
j=1 δ

2
j |xj |2 <∞} of the179

spaces Hj is endowed with inner product (x|y) =
∑∞
j=1 |xjyj |j =

∑∞
j=1 δ

2
j 〈xj , yj〉 and180

norm181

(2.1) ||x|| =
( ∞∑
j=1

|xj |2j
)1/2

=
( ∞∑
j=1

δ2
j |xj |2

)1/2
.182

and is a Hilbert space (see Section I.6 in [10]). Using this notation, another way to183

define H is the set of sequences in
∏∞
j=1Hj with finite || · || norm. Note that every184

1When B is a finite set of vectors, the sums defining cspan(B) are finite.
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choice of the sequence (δj) may give rise to a different Hilbert space H.185

For every index j, define a compact set Vj ⊆ Hj where |vj | ≤ rj for every vj ∈ Vj .186

Let V =
∏∞
j=1 Vj . By Tychonoff’s theorem, V is compact in the product norm187

topology on H consisting of the product of the norm topologies associated with | · |j188

for every j, no matter the choice of (δj). However, we would like to describe when V189

is compact in the norm topology (of || · ||) on H. This is achieved only under certain190

conditions, as stated in the following lemma.191

Lemma 2.1. Let Vj ⊆ Hj where |vj | ≤ rj for every vj ∈ Vj for some sequence192

(rj) and V =
∏∞
j=1 Vj. If the sequence (δj) is such that

∑∞
j=1 δ

2
j r

2
j < ∞ then the193

norm topology (of || · ||) and the product norm topology on V are equivalent.194

Proof. See pages 120 and 153 of [25].195

Along with this characterization of compactness of V in the norm topology, it is196

critical to understand the notion of continuity of linear functionals in the same topol-197

ogy. By the Riesz-Fréchet Theorem, continuous linear functionals over H are precisely198

of the form ϕ(x) = (z|x) for x ∈ H, where z is another element of H. Consider the199

linear function ϕ(x) =
∑∞
j=1 ajxj where (aj) is an arbitrary real sequence (not nec-200

essarily in H). The function ϕ is well-defined and continuous in the norm topology201

if there exists a sequence (ãj) ∈ H such that
∑∞
j=1 ajxj = (ã|x) =

∑∞
j=1 δ

2
j ãjxj for202

all x ∈ H. The above equation holds if ãj = aj/δ
2
j where ||ã||2 =

∑∞
j=1 δ

2
j

∣∣aj/δ2
j

∣∣2 =203 ∑∞
j=1 |aj |2/δ2

j <∞. We summarize this in the following lemma.204

Lemma 2.2 (Continuity of linear functionals). Given a real sequence (aj), the205

linear functional ϕ(x) =
∑
j=1 ajxj over x ∈ H is continuous in the norm topology if206 ∑∞

j=1 |aj |2/δ2
j <∞.207

A sufficient condition for Lemma 2.2 is that there exists a ρ ∈ (0, 1), scalar ā <∞,208

and real sequence (αj) such that |aj | ≤ āαj and 0 < αj < δj with 0 < α2
j/δ

2
j < ρj for209

all j. Indeed, in this case210
∞∑
j=1

1
δ2j
|aj |2 ≤

∞∑
j=1

1
δ2j
ā2α2

j = ā2
∞∑
j=1

α2
j

δ2j
< ā2

∞∑
j=1

ρj = ā2 ρ
1−ρ <∞.211

212

A particular choice that achieves this is to set δj to δj for some δ ∈ (0, 1) and αj to213

αj for some α ∈ (0, 1) where α/δ < ρ for some ρ ∈ (0, 1).214

3. Countably infinite linear programs. The problem under study in this215

paper is the countably infinite linear program (CILP):216

f∗ := inf
x∈RN

∞∑
j=1

cjxj ,(P.1)217

(P) subject to

∞∑
j=1

aijxj = bi for i = 1, 2, . . .(P.2)218

x ≥ 0(P.3)219220
where cj , aij , and bi are real numbers for all i, j = 1, 2, . . . . Let c denote the sequence221

(cj), b denote the sequence (bi), and A denotes the doubly infinite matrix (aij).222

The first task is to set conditions on the data so that an optimal extreme point so-223

lution of (P) is guaranteed to exist. The literature has imposed a variety of conditions224

on (P) to ensure an extreme point optimal solution exists (see [16] for a discussion).225

Our approach is different and leverages the Hilbert topology defined in Section 2.226
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6 A. GHATE, C. T. RYAN, AND R. L. SMITH

First, we assume:227

(A1) the set F of all feasible solutions to (P) is non-empty, and228

(A2) there exists a nonnegative sequence r = (rj) ∈ RN such that |xj | ≤ rj for229

every sequence x = (xj) ∈ F . We also assume that there is a 0 < δ < 1230

such that
∑∞
j=1 δ

jrj <∞.231

(A3) there exists an α ∈ (0, δ) and an ā <∞ such that232

(i) |aij | ≤ āαj for all i, j = 1, 2, . . . and233

(ii) |aij | ≤ āαi for all i, j = 1, 2, . . . .234

Let Xj = [0, rj ] and set X =
∏∞
j=1Xj . Define the Hilbert space H with norm || · ||H235

as defined in (2.1) with δj = δj , where δ is defined in (A2). By Lemma 2.1 and236

Tychonoff’s theorem, X is compact in the norm topology on H. It remains to discuss237

the continuity properties of the linear functions defining (P). A preliminary result is238

as follows.239

Lemma 3.1. Suppose (A2) and (A3) hold. The infinite series
∑∞
j=1 aijxj is ab-240

solutely convergent for i = 1, 2, . . . and all x ∈ H if α < δ.241

Proof. For all i, j = 1, 2, . . . we have the basic property that |aijxj | ≤ |aij ||xj |.242

This means that243
∞∑
j=1

|aijxj | ≤
∞∑
j=1

|aij ||xj | =
∞∑
j=1

δ2j
(
|aij |
δ2j

)
|xj |244

= ((|aij |/δ2j) | (|xj |)) ≤ ||(|aij |/δ2j)||H ||(xj)||H245246
where the second equality follows by multiplying and dividing term j in the sum by δ2j ,247

the third equality observes that this is the inner product of the vectors (|aij |/δ2j) and248

(xj) in the Hilbert space H, and the final inequality is the Cauchy-Schwartz inequality.249

It thus remains to show that ||(|aij |/δ2j)||H ||(xj)||H < ∞. We have assumed that250

x ∈ H and so ||(xj)||H <∞, so it remains to show that ||(|aij |/δ2j)||H <∞. Observe251

that252

||(|aij |/δ2j)||H =

√√√√ ∞∑
j=1

δ2j (|aij |/δ2j)
2

=

√√√√ ∞∑
j=1

|aij |2/δ2j253

≤

√√√√ ∞∑
j=1

ā2α2j/δ2j = āα/δ√
1−(α/δ)2

<∞,254

255
where the first inequality follows from (A3) and the second (strict) inequality follows256

under the assumption that α < δ.257

The last of our basic assumptions on the data ensures that the objective function258

is continuous in the same topology:259

(A4) The sequence (cj) is such that
∑∞
j=1 |cj |2/δ2

j <∞.260

Theorem 3.2 (Existence of optimal extreme point). If (A1)–(A4) hold then (P)261

has an optimal extreme point solution.262

Proof. This follows from Bauer Maximum Principle (Theorem 7.69 in [3]) in the263

Hilbert norm topology. First, (A1) tells us the feasible region F is nonempty. As264

argued above, the set X =
∏∞
j=1Xj =

∏∞
j=1[0, rj ] is compact, using (A2). Thus, it265

suffices to show that the sets {x ∈ H :
∑∞
j=1 aijxj = bi} are closed for i = 1, 2, . . . ,266

since then F is the intersection of X and these sets. The closedness of {x ∈ H :267 ∑∞
j=1 aijxj = bi} follows if

∑∞
j=1 aijxj is a continuous function. It is straightforward268

to see (A3)(i) implies that
∑∞
j=1 |aij |2/δ2

j < ∞ holds and so, by Lemma 2.2, the269
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constraint functions in (P.2) are continuous. Hence, F is compact in the Hilbert270

norm topology. It is left to show that the objective function of (P) is well-defined,271

convex and continuous. Convexity follows from linearity, while well-definedness and272

continuity follow by (A4) and Lemma 2.2.273

Later, we will need to leverage structure on the range of the doubly infinite matrix274

A; that is, the space containing b. For now, we will assume that range space is another275

Hilbert space Y in RN defined by a norm as in Section 2 but now taking δj = βj for276

some β ∈ (0, 1). That is, for y ∈ Y we have ||y||2Y =
∑∞
i=1 β

2iy2
i . The next result277

shows that when the linear map defined by A maps feasible solutions into Y .278

Lemma 3.3. Suppose (A2) and (A3) hold. Then cspan(A) is a subspace of Y if279

0 < β < 1 and 0 < α < δ < 1.280

Proof. Let x ∈ H and set y = Ax ∈ RN by Lemma 3.1. This means yi =281 ∑∞
j=1 aijxj and |yi| ≤

∑∞
j=1 |aijxj | ≤ ā(α/δ)/

√
1− (α/δ)2||x||H from the proof of282

Lemma 3.1. This then implies283

||y||Y =

√√√√ ∞∑
i=1

β2i|yi|2 ≤

√√√√ ∞∑
i=1

β2iā2 (α/δ)2

(1−(α/δ)2)2 ||x||
2
H(3.1)284

= ā α/δ
1−(α/δ)2 ||x||H

√√√√ ∞∑
i=1

β2i = ā α/δ
1−(α/δ)2 ||x||H

β√
1−β2

<∞(3.2)285

286
for 0 < β < 1 since ||x||H <∞ for all x ∈ H. This implies y ∈ Y .287

We now show that A defines a continuous linear operator. Recall (see, for in-288

stance, Chapter IV of [37]) that the operator norm ||L|| of linear operator L is289

equal to supx:||x||H≤1 ||L(x)||Y . We say the linear map L is continuous (or equiva-290

lently bounded) if ||L|| < ∞. This result is critical for establishing optimal policy291

convergence of the simplex algorithm we define below. The proof involves establishing292

an isometric isomorphism between H and `2 and using the Schur Test for boundedness293

of operators mapping `2 into `2 (see page 260 of [12]). Due to its technical nature, we294

place the proof in the appendix.295

Lemma 3.4 (Continuity of constraint operator). Suppose (A2) and (A3) hold.296

The doubly infinite matrix A defines a continuous linear operator from H into Y if297

0 < β < 1 and 0 < α < δ < 1.298

4. Extreme points and basic feasible solutions. As with finite-dimensional299

versions of the simplex method, our algorithm works with the algebraic characteri-300

zation of extreme points as basic feasible solutions. Defining basic solutions is more301

delicate in the infinite-dimensional setting than in the finite setting (for an extended302

discussion see [4]). We make the following preliminary definitions.303

Definition 4.1. We call B(x) , {a·j : j ∈ S(x)} the active set of columns of304

A associated with a feasible x.305

The name ‘active set’ comes from the fact that Ax is a linear combination of the306

columns in B(x). That is, only the columns in B(x) are ‘active’ in the product Ax.307

Informally, we may think of B(x) as the ‘support of columns of A’ associated with x,308

whereas S(x) is the ‘support of indices’ of x.309

Definition 4.2. A subset B of columns of A is a basis if310

(B1) {z : Az = 0, B(z) ⊆ B} = {0}.311

(B2) cspan(B) = cspan(A).312
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8 A. GHATE, C. T. RYAN, AND R. L. SMITH

We say B is a basis of feasible solution x if, additionally,313

(B3) B(x) ⊆ B314

This condition is analogous to the familiar definition of a basis of an extreme point315

solution from finite-dimensional linear programming (see, for instance, Chapter 3 in316

[7]). Conditions (B1) and (B2) correspond to the fact that a basis forms a column317

basis of the constraint matrix, with (B1) yielding linear independence and (B2) a318

spanning condition. Condition (B3) captures the fact that nonbasic variables are set319

to zero. Strict containment in (B3) allows the possibility of basic variables taking a320

value of zero.321

If B is a basis of A, then it determines a linear operator from HB into Y where322

HB = {x ∈ H | xj = 0 for j /∈ S(B)} with S(B) denoting the set of indices of columns323

of A that are in B. We abuse notation and also let B denote this linear operator. We324

need another assumption on the structure of the constraint matrix A that yields the325

invertibility of our basis matrices.326

(A5) The doubly infinite matrix A and scalar β are such that A : H → Y is327

an onto map. That is, cspanA = Y .328

Lemma 4.3 (Continuity of bases in operator norm). Suppose (A2), (A3) and (A5)329

hold, 0 < β < 1 and 0 < α < δ < 1. Let B be a basis of A. Then, the doubly infi-330

nite matrix B defines a continuous linear operator with an inverse B−1 that is also a331

continuous linear operator.332

Proof. The proof that B defines a continuous linear operator is nearly identical333

to that of Lemma 3.4 since B is a submatrix of A. See the appendix. The fact that334

B−1 exists comes from the definition of a basis. Indeed, property (B1) implies that335

B is one-to-one. Let w1 and w2 be such that Bw1 = Bw2. Note that w1 and w2336

can be extended (by appending zeros) to vectors z1 and z2 such that Az1 = Az2337

where B(zi) ⊆ B for i = 1, 2. Thus, according to (B1), A(z1− z2) = 0, which implies338

z1 − z2 = 0 and so z1 = z2. This, in turn, implies w1 = w2 and B is a one-to-one339

mapping. The fact that B is onto follows from (B2) and (A5). Finally, by the Banach340

Inverse Theorem (see Theorem 1 on page 149 of [28]), B−1 is a continuous map from341

Y to H.342

Definition 4.4. A vector x ∈ H is a basic solution if its admits a basis B343

(as defined in (B1)–(B3)). If a basic solution is feasible it is called a basic feasible344

solution (bfs). If B(x) is a basis of x then x is called a nondegenerate bfs.345

Given a basis B, one can construct an associated basic feasible solution. Recall346

that B is a subset of columns in A. Let xB denote the elements of x that correspond347

to the columns in B, we call the elements of xB basic variables. Let N denote the348

columns in A that are not in B. The elements in xN are called nonbasic variables.349

Then, the basic solution associated with B satisfies BxB = b and xN = 0. Since B is350

invertible, we know xB = B−1b. The solution (xB , xN ) is a basic feasible solution if351

and only if B−1b ≥ 0. We summarize this in the following result.352

Lemma 4.5. If B be a basis then the solution x = (xB , xN ) with xB = B−1b and353

xN = 0 is a basic solution.354

Observe that if x is a nondegenerate bfs then B(x) is its unique basis. In general,355

there is not a one-to-one correspondence between basic feasible solutions and extreme356

points (for a thorough discussion see [4], and in the specific context of CILPs see [17]).357

The following concepts help to resolve this challenge.358
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Definition 4.6. For any non-negative x ∈ H, let σ(x) denote the infimal positive359

value of a component of x; that is, σ(x) , infj∈S(x) xj . We say that x has strictly360

positive support (SPS) if σ(x) > 0.361

The concept of SPS first appeared in [31] and was later generalized to CILPs in362

[17]. Observe that a real sequence x can have all positive entries and yet fail to have363

SPS. Indeed, consider the vector (xj) where xj = 1/j for j = 1, 2, . . . . The following364

two assumptions align the algebraic and geometric notions of extreme points, and as365

we shall see in Remark 5.7 below, also insures that pivots move from an extreme point366

to a different extreme point:367

(A6) every bfs of (P) is a nondegenerate bfs,368

(A7) σ , inf
x∈extF

σ(x) > 0. In particular, every extreme point of F has SPS.369

In Section 9, we will see an example of a problem where these conditions hold. It is370

also straightforward to see that they do not hold in general. Failure of (A6) is common371

even in finite dimensional linear programming. As for assumption (A7), the binary372

tree in Figure 1 of [16] provides an example with a bfs that fails the SPS condition.373

Theorem 4.7 (Extreme points are basic feasible solutions). Suppose (A6) and (A7)374

and the conditions of Theorem 3.2 hold. Then a feasible solution is extreme point if375

and only if it is a nondegenerate bfs. In particular, problem (P) has an optimal376

nondegenerate bfs.377

Proof. The ‘if and only if’ follows from Proposition 2.6 and Corollary 2.12 in [17].378

The ‘in particular’ is then immediate from Theorem 3.2.379

5. Pivoting. The key step in any simplex method is pivoting – moving system-380

atically from one bfs to another in a way that monotonically improves the objective381

value of the optimization problem.382

Before exploring pivoting in the infinite-dimensional setting, we refresh the me-383

chanics of a pivot in the finite-dimensional setting at a high level. This may help the384

reader visualize some of our development. We describe the finite setting only for the385

most well-behaved case where the problem is bounded and the basic feasible solutions386

involved are nondegenerate.387

Pivoting involves selecting an appropriate nonbasic variable (called an entering388

variable) to add to B and selecting an appropriate basic variable (called a leaving389

variable) to remove from B. This results in a new basis of vectors B′ that can be390

associated with a new bfs x′. In general, there is some choice over both the entering391

and leaving variables.392

Geometrically, a pivot entails a movement from one extreme point of the feasible393

region to another along an edge. When an entering variable is chosen, it determines394

which edge is traversed by defining a basic direction d that takes a value of 1 in the395

component of the entering variable, zero on all other nonbasic variables, and otherwise396

satisfies the constraint Ax = b to determine the values of d on the components of the397

basic variables. The new bfs x′ equals the sum x + λd for some λ ≥ 0. The value398

of λ is increased as the basic direction is traversed until the value of one of the basic399

variables hits zero (this is unique by nondegeneracy). The basic variable whose value400

first hits zero in x′ = x+ λd is the leaving variable.401

Finally, which nonbasic variable to choose as an entering variable depends on402

its reduced cost. The reduced cost of a nonbasic variable is the change in objective403

value associated with its basic direction d; that is,
∑
j cjdj where c is the objective404

vector of the linear program. Thus, an entering variable must be chosen among those405

nonbasic variables where
∑
j cjdj improves the value of the objective. In the case of a406
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minimization problem, this is precisely when
∑
j cjdj < 0. A key result in the finite-407

dimensional setting is that a basic feasible solution is optimal if it has no nonbasic408

variables with an improving reduced cost (Theorem 3.1 in [7]). This is the termination409

condition of the finite-dimensional simplex method.410

We turn now to detail the infinite-dimensional setting. We highlight important411

differences with the finite-dimensional case as we proceed. We assume (A1)–(A7)412

throughout this discussion. By Theorem 3.2, a feasible extreme point solution x413

exists. By Theorem 4.7, x is a nondegenerate bfs.414

Definition 5.1. Let x be a nondegenerate bfs and k ∈ Sc(x) the index of a415

nonbasic variable. The kth basic direction d(x; k) with respect to x (or simply kth416

basic direction when the context is clear) is the unique vector d ∈ H such that417

(BD1) dk = 1,418

(BD2) dj = 0 for all j ∈ Sc(x) not equal to k,419

(BD3) Ad = 0.420

It is important to note that the basic direction depends on the current basis. That is421

captured directly in the notation d(x; k).422

The above definition asserts that there is a unique vector in H that satisfies423

(BD1)–(BD3). To see this, for (BD3) to hold, we must have for every constraint424

i = 1, 2, . . . :425

(5.1)
∞∑
j=1

aijdj =
∑

j∈S(x)

aijdj +
∑

j∈Sc(x)

aijdj =
∑

j∈S(x)

aijdj + aikdk +
∑

k 6=j∈Sc(x)

aijdj = 0426

using dk = 1 by (BD1). This is equivalent to427

(5.2)
∑

j∈S(x)

aijdj = −aik, for i = 1, 2, . . .428

since dj = 0 for all j ∈ Sc(x) not equal to k by (BD2). Our attention turns to429

analyzing (5.2).430

Now, given a basic feasible solution, the set B(x) is a basis. As shown in431

Lemma 4.3, this implies that B(x) is an invertible linear operator with inverse B(x)−1.432

We may write d(x; k) into two components (dB(x), dN(x)) where N(x) consists of the433

columns of A not in B(x). Then (5.2) is equivalent to writing B(x)dB(x) = −a·k434

where a·k is the kth column of A: dB(x) = −B(x)−1a·k. Also, (BD1) implies dk = 1435

and dj = 0 for j ∈ Sc(x) \ {k}. That is, dN(x) = ek where ek is the vector with a one436

in entry k and zero otherwise on N(x). Putting this together we have437

(5.3) d(x; k) = (−B(x)−1a·k, ek)438

The existence and uniqueness of d is thus a consequence of the properties of the matrix439

B and its inverse.440

Condition (BD3) ensures that x+ λd(x; k) satisfies constraint (P.2) for all λ ∈ R441

since A(x+λd(x; k)) = Ax+λAd(x; k) = b+ 0 = b, where Ax = b since x is a feasible442

solution of (P). We next characterize the set of λ such that x+ λd(x; k) ≥ 0; that is,443

(P.3) holds. If every component dj(x; k) of d(x; k) is nonnegative then λ can be taken444

arbitrarily large and (P.3) continues to hold. The next result shows that, under our445

assumptions, this cannot happen.446

Lemma 5.2. Suppose (A2) holds. Let x be a nondegenerate bfs and k be the index447

of a nonbasic variable at x. The set {j ∈ S(x) : dj(x; k) < 0} is nonempty.448

Proof. Suppose not. Then, dj(x; k) ≥ 0 for all j ∈ S(x). Also recall that449

dk(x; k) = 1 and dj(x; k) = 0 for all j ∈ Sc(x) not equal to k. This implies that450
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x + λd(x; k) ≥ 0 and, in particular, x + λd(x; k) ∈ F for all λ ≥ 0 since both (P.2)451

and (P.3) are satisfied. This violates the boundedness assumption (A2).452

Given this lemma, we may look for the leaving variable associated with the basic453

direction k. Informally, the leaving variable is the basic variable that first reaches a454

value of zero along the basic direction. We need a few lemmas to make this precise.455

The object of interest here is the infimum ratio456

(5.4) λ(x; k) , inf
{

xj
−dj(x;k) : j ∈ S(x) such that dj(x; k) < 0

}
.457

Below (in Theorem 5.6) we show λ is well-defined and that there always exists a458

unique j that attains the infimum in (5.4).459

Next, we show that λ(x; k) behaves as expected, in the sense that it defines how460

far the feasible region extends in the basic direction d(x; k).461

Lemma 5.3. Let x be a nondegenerate bfs and k be the index of a nonbasic vari-462

able. Then x + λd(x; k) ≥ 0 for all λ ∈ [0, λ(x; k)]. Moreover, x + λd(x; k) � 0 for463

λ /∈ [0, λ(x; k)].464

Proof. For the first part, consider any 0 ≤ λ ≤ λ(x; k). We only need to consider465

j ∈ S(x) for which dj(x; k) < 0 (because dj(x; k) ≥ 0 for all other j and hence466

xj + λdj(x; k) ≥ 0 for those j). For any such j, we have, xj + λdj(x; k) ≥ xj +467

λ(x; k)dj(x; k) ≥ xj +
xj

−dj(x;k)dj(x; k) = 0 as claimed.468

For the second part, first consider any λ > λ(x; k). We need to show that there is469

a j ∈ S(x) such that xj + λdj(x; k) < 0. Any such j must be such that dj(x; k) < 0.470

There are two possibilities. The first one is that the infimum ratio is attained for some471

j, say j∗. Then, xj∗+λdj∗(x; k) < xj∗+λ(x; k)dj∗(x; k) = xj∗+
xj∗

−dj∗ (x;k)dj∗(x; k) = 0.472

The second one is that the infimum ratio is not attained. Suppose λ = λ(x; k) + ε for473

some ε > 0. Now, by definition of the infimum, there exists a j∗ such that
xj∗

−dj∗ (x;k) <474

λ(x; k)+ε, and for this j∗, we have, xj∗+λdj∗(x; k) = xj∗+(λ(x; k)+ε)dj∗(x; k) < 0.475

Finally, if λ < 0, then xk + λdk(x; k) = 0 + λ < 0.476

It remains to define the leaving variable. Any xj such that j achieves the infimum in477

the definition of λ(x; k) in (5.4) is a candidate (by nondegeneracy there exists at most478

one such index). However, it is not clear whether or not this infimum is attained.479

Indeed, in the CILP setting, a leaving variable may not exist in general.480

Under our assumptions, however, we show that a leaving variable always exists in481

every basic direction. Our proof of this requires geometric reasoning. We first show482

that x′ , x+λd(x; k) from the previous lemma is an extreme point (see Proposition 5.5483

below). In the process, we show that each basic direction goes along an ‘edge’ of the484

feasible region (a precise definition of ‘edge’ is given). This conforms with our intuition485

from the finite-dimensional setting that pivots occur along edge directions.486

Having established x′ is an extreme point, we will use Theorem 4.7 to conclude487

that x′ is a nondegenerate bfs. This algebraic property of x′ rules out the possibility488

that the infimum in (5.4) is not attained. Details of this argument are in Theorem 5.6.489

We start with a formal definition of extremality that captures the notion of ex-490

treme points as a special case. For (P.3) extended discussion of extremality in general491

infinite-dimensional vector spaces, see Section 7.12 in [3].492

Definition 5.4. (Extreme subset) Let S be a non-empty subset of RN. A non-493

empty subset E ⊂ S is called S-extreme if it has the following property: if x, y ∈ S494

and if there exists a t, 0 < t < 1 such that tx + (1 − t)y ∈ E, then x, y necessarily495

belong to E. A 0-dimensional extreme subset is a called an extreme point of S. A496

1-dimensional extreme subset of is called an edge of S.497
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Proposition 5.5. Suppose (A1)–(A7) hold, x is a nondegenerate bfs, and k is498

the index of a nonbasic variable. Then,499

(i) the set Z(x; k) , {z ∈ H : z = x+ λd(x; k), λ ∈ [0, λ(x; k)]} is an edge500

of F , and501

(ii) x+ λ(x; k)d(x; k) is an extreme point of F .502

Proof. See appendix.503

Theorem 5.6 (Existence and uniqueness of leaving variable). Suppose the con-504

dition of Theorem 4.7 hold and let x be a nondegenerate bfs and k be the index of a505

nonbasic variable. There exists a unique leaving basic variable; that is, there exists506

a unique j∗ ∈ S(x) with dj(x; k) < 0 that attains the infimum ratio in (5.4). Thus,507

x′ , x+λ(x; k)d(x; k) is a nondegenerate bfs with basis B(x′) = B(x)∪{a·k}\{a·j∗}.508

Proof. By Proposition 5.5, x′ is an extreme point of F and thus by Theorem 4.7,509

x′ is a nondegenerate bfs. Suppose by way of the contradiction that there is no leaving510

basic variable when pivoting in nonbasic variable xk to form x′. We will contradict511

property (B1) of the basis B(x′) of x′.512

Since there is no leaving basic variable, this means that S(x′) = S(x) ∪ {k}.513

Indeed, by the definition of d(x; k) we have x′k > 0, x′j = 0 for j ∈ Sc(x) and since514

the infimum is not attained for any j ∈ S(x), we must also have x′j > 0.515

Let z , x′ − x. Note that B(x) ⊆ B(x′) since, as we have just argued, S(x) ⊆516

S(x′). For all i = 1, 2, . . .517
∞∑
j=1

aijzj =
∑

j∈S(x′)

aijzj =
∑

j∈S(x′)

aijx
′
j −

∑
j∈S(x′)

aijxj518

=
∑

j∈S(x′)

aijx
′
j −

∑
j∈S(x)

aijxj = bi − bi = 0519

520
and thus Az = 0. Since z 6= 0 this contradicts property (B1) of the basis B(x′) of521

nondegenerate bfs x′. Clearly, B(x′) = B(x) ∪ {a·k} \ {a·j∗}.522

This result shows that, under our assumptions, every basic direction admits a523

unique leaving variable (uniqueness invokes nondegeneracy).524

Remark 5.7. By (BD1) in Definition 5.1, the value of the entering variable in the525

new basic feasible solution x′ is λ(x; k), since x′ = x + λ(x; k)d(x; k). Thus, if we526

assume (A6) and (A7), we must have λ(x; k) > σ. That is, every pivot operation527

“moves” to a different bfs.528

6. Reduced costs and optimality conditions. In this section, we explore529

the properties of entering nonbasic variables. This discussion leads to establishing an530

optimality condition for CILPs based on pivoting, which serves as the condition for531

optimal termination of our simplex method.532

Definition 6.1. Let x be a nondegenerate bfs and k the index of a nonbasic533

variable. The reduced cost r(x; k) of nonbasic variable k at basis x is the sum534 ∑∞
j=1 cjdj(x; k). Using the structure of d(x; k) detailed in (BD1)–(BD3), the reduced535

cost is typically expressed as r(x; k) , ck +
∑
j∈S(x) cjdj(x; k).536

An alternate way of writing reduced cost is using matrix notation. Recalling537

our expression for d(x; k) in (5.3), we may write the reduced cost as r(x; k) = ck −538 ∑
j∈S(x) cj(B(x)−1a·k)j or as a reduced cost vector r(x) = c − c>B(x)B(x)−1A539

with entries r(x; k) and where c>B(x)B(x)−1A denotes the sum
∑
j∈S(x) cj(B(x))−1A)j .540
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Note that here r(x; k) = 0 for any basic variable k ∈ S(x). Moreover,541

(6.1) r(x;N(x)) , (r(x; k) : k /∈ S(x)) = cN(x) − c>B(x)B(x)−1N(x).542

By our assumptions on c and d, the reduced cost vector is well-defined. Moreover,543

it is critical to note that the reduced cost of a nonbasic variable depends on the basis544

of the current bfs.2 This is reflected in our choice of notation r(x; k) and r(x).545

The reduced cost allows us to succinctly capture the change in objective value546

when pivoting from x to x′ , x+ λ(x; k)d(x; k), which is equal to547

(6.2)

∞∑
j=1

cjx
′
j −

∞∑
j=1

cjxj = λ(x; k)

∞∑
j=1

cjdj(x; k) = λ(x; k)r(x; k)548

and so pivoting in a nonbasic variable with negative reduced cost will strictly improve549

the objective value over the current feasible solution of (P) (recall that when (A6)550

and (A7) hold, λ(x; k) > 0, as discussed in Remark 5.7).551

The set T (x) , {k ∈ Sc(x) : r(x; k) < 0} of nonbasic variables at x with negative552

reduced costs are the candidate choices for entering variables in a pivot. The main553

result of this section is to show, under certain conditions, that if T (x) = ∅ then we554

can conclude that x is an optimal solution. This implies that the basic directions are555

a sufficient set of improving directions.556

Theorem 6.2 (Optimality condition). Suppose (A4) and the conditions of Lemma 3.3557

hold. If x is a bfs and r(x) ≥ 0 then x is an optimal solution.558

Proof. Suppose r(x) ≥ 0 for some bfs x. For notational simplicity let B denote559

the basis B(x) of x and let N denote N(x).560

Let y be any feasible solution and let z , y−x. Since x and y are both feasible and561

thus Ax = Ay = b, we have Az = 0 since A is a linear operator. As above, we write562

z as z = (zB , zN ) so that 0 = Az = BzB + NzD. Since B is invertible, multiplying563

both sides by B−1 yields 0 = B−1BzB + B−1NzN and so zB = −B−1NzN . Hence,564

we have565

c>z = (cN − c>BB−1N)zN (more details below)(6.3)566

= r(x;N)>zN . (using (6.1))(6.4)567568
We give some more details on (6.3). In finite dimensions, this step is trivial, here it569

requires some additional reasoning.570

Let cN = (ν1, ν2, . . . ), c
>
BB
−1N = (µ1, µ2, . . . ), and zN = (η1, η2, . . . ). The goal571

is to show that (to yield (6.3)):
∑∞
k=1 νkηk−

∑∞
k=1 µkηk =

∑∞
k=1(νk−µk)ηk, and this572

holds as long as each sum on the left-hand side is finite. We first argue that the sum573 ∑∞
k=1 νkηk is finite. Note that zN ∈ H since z ∈ H and cN satisfies the condition574 ∑∞
k=1 |νk|2/δ2

k <∞ since c satisfies (A4). By Lemma 2.2, the sum c>z is finite, which575

implies c>NzN =
∑∞
k=1 νkηk is also finite. Next, recall that

∑∞
k=1 µkηk = c>BB

−1NzN576

where the right-hand side is finite for the following reasons. We know zN ∈ H and so577

NzN ∈ Y by Lemma 3.3. Thus, B−1NzN is again in H since B−1 maps Y to H. By578

similar reasoning as for the previous sum, we can thus conclude that c>B(B−1NzN ) is579

finite. This allows us to conclude (6.3).580

Now, observe that xN = 0 by definition of a basic variable, and so zN = yN −581

xN = yN ≥ 0 since y is feasible and thus satisfies (P.3). Moreover, by hypothesis,582

r(x;N) ≥ 0. This implies that r(x;N)>zN ≥ 0 and so from (6.4), c>z ≥ 0 and thus583

c>y ≥ c>x for all feasible y. This implies that x is an optimal solution.584

2When degeneracy is allowed, different bases for the same basic feasible solution may yield
different reduced costs for nonbasic variables. Under (A6), a single basis exists and so there is a
unique reduced cost for a nonbasic variable at any bfs.
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7. An (abstract) simplex method. Given our description of pivoting in Sec-585

tion 5 and optimality condition in Theorem 6.2, we are now ready to state our sim-586

plex method. We should note that we do not claim the finite implementability of this587

method, merely that each operation is well-defined and the termination condition is588

valid. For this reason, we call our simplex method “abstract” — additional structure589

or assumptions are needed to implement it in general. Issues of finite implementability590

have been discussed for special cases in the literature [19, 26, 36].591

Since we have assumed that every basic solution is nondegenerate in (A6), any592

choice of entering variable suffices because there is no chance of cycling (that is,593

returning to a previously visited basic feasible solution). Indeed, as long as there is594

an entering variable k with negative reduced cost r(x; k) < 0, Remark 5.7 shows that595

λ(x; k) > σ and so by (6.2) the objective value strictly drops with each pivot. Hence,596

cycling is not possible. Thus, property (P1) holds for our simplex method. The next597

results structures the possible reduced costs.598

Lemma 7.1. Suppose (A4) and the conditions of Lemma 3.3 hold. For every bfs599

x, let T (x) = {k1, k2, . . . } be the set of indices on nonbasic variables, taking k1 ≤ k2 ≤600

· · · without loss. Then either T (x) is finite (possibly empty) or lim`→∞ r(x; k`) = 0.601

Proof. It suffices to show that if T (x) is not finite then lim`→∞ r(x; k`) = 0.602

From the definition of reduced cost, we have r(x; k) = ck − c>B(x)B(x)−1a·k for any603

k ∈ T (x). Note that a·k ∈ Y since a·k ∈ cspan(A) ⊆ Y by Lemma 3.3. Hence604

|r(x; k)| ≤ |ck|+ |cB(x)((B(x))−1a·k)|. Now,605

(7.1) |c>B(x)B(x)−1a·k)| ≤ ‖cB(x)‖H‖B(x)−1a·k)‖H ≤ ||cB(x)||H ||B(x)−1||L||a·k||Y606

where || · ||L is the operator norm for the space L(H,Y ) of continuous linear operators607

mapping H into Y . Hence, |r(x; k)| ≤ |ck| + ||cB(x)||H ||B(x)−1||L||a·k||Y . From the608

proof of Lemma 3.3 we can conclude ||a·k||Y → 0 as k →∞. Indeed, since a·k = Aek,609

where ek is the unit vector with ekk = 1 and ekj = 0 otherwise, we have from (3.2) that610

||a·k|| ≤ ā α/δ
1−(α/δ)2

β√
1−β2

||ek||H = ā α/δ
1−(α/δ)2

β√
1−β2

δk611

that converges to 0 as k → ∞. Also ‖cB(x)‖H < ∞ and ‖B(x)−1‖L < ∞ since they612

are bounded linear functionals and operators respectively, and |ck| → 0 as k →∞ by613

(A4). Taken together, we can use this to conclude that lim`→∞ r(x; k`) = 0.614

Lemma 7.2 (Most negative reduced cost). Let x be a bfs. If T (x) is nonempty,615

then the most negative reduced cost r∗ , infk∈T (x) r(x; k) is attained by some non-616

basic variable k∗ ∈ T (x).617

Proof. Let ε = r(x; k1) < 0. By Lemma 7.1, there exists an index ¯̀ such that618

r(x; k`) > ε for all ` > ¯̀. Thus, infk∈T (x) r(x; k) = min{r(x; k`) : ` = 0, 1, . . . , ¯̀}. The619

latter is a finite set and so the minimum is clearly attained by some k∗ ∈ {0, 1, . . . , ¯̀}.620

We now have all of the ingredients to state our simplex method.621

Simplex Method622
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1. (Initialization) Let x1 denote an initial bfs of (P). Set an iteration
counter m to 1.

2. (Compute reduced costs) Compute reduced costs r(xm; k) for all nonbasic
variables x ∈ Sc(xm).

3. (Optimality test and termination) If r(xm; k) ≥ 0 for all k ∈ Sc(xm),
return xm as an optimal solution and terminate.

4. (Determine entering variable) Otherwise, select as entering variable xkm∗ ,
a variable with the most negative reduced cost (as defined in Lemma 7.2).

5. (Pivot) Determine a new bfs x′ , xm + λ(xm; km∗ )d(xm; km∗ ).
6. (Update bfs) Set xm ← x′ and m← m+ 1. Continue at Step 2.623

We briefly justify the steps of the algorithm. The optimality test in Step 3 suffices to624

conclude optimality by Theorem 6.2. The pivoting step (Step 5) is discussed in detail625

in Section 5, where the objects λ(xm; km∗ ) and d(xm; km∗ ) are discussed. The fact that626

x′ is again a bfs was established in Theorem 5.6.627

Lemma 7.3 (Reduced costs converge to zero). Suppose (A6) and (A7) and the628

conditions of Theorem 5.6 and Lemma 7.2 hold. The most negative reduced cost rm∗629

at iteration m converges to zero as m → ∞. That is, for any ε > 0, there exists an630

iteration counter Mε such that −ε < rm∗ ≤ 0 for all iterations m ≥Mε.631

Proof. Suppose not. There exists a subsequence of iterations mn in which r∗mn ≤632

−ε (note that r∗mn exists for each mn by Lemma 7.2 and Theorem 5.6). Since the value633

of the entering basic variable at the end of iteration mn is λ(xmn ; kn), Remark 5.7634

implies that λ(xmn ; kn) ≥ σ since (A6) and (A7) hold. Therefore, the objective635

function is reduced by at least σε in each one of these iterations, since the entering636

variable in Step 4 of the simplex method has reduced cost r∗mn ≤ −ε. But this is637

impossible since the sequence of function values c>xmn is bounded below by f∗.638

We do not discuss how to determine an initial basic feasible solution. This remains639

an open challenge for many papers on CILP (see, for instance, [16, 32, 36]). In certain640

contexts (like those we discuss in Section 9), a starting basic feasible solution can be641

determined by inspection. More generally, a Big M approach seems appropriate.642

8. Convergence to optimality. We now show that our simplex algorithm sat-643

isfies property (P2). More precisely, we will say our algorithm has optimal value644

convergence if the values of the sequence of iterates xm converge to the optimal645

value f∗ of (P). More formally, let fm , c>xm. Our goal is to show that fm → f∗646

as m→∞. Of course, if the algorithm terminates, the optimal value f∗ is attained.647

The interesting case is when the algorithm never terminates.648

To show optimal convergence we need one final assumption. To state it we define649

a topology for the subsets of columns of A that allows us to talk about convergence650

of bases. Let B be a subset of columns of A. Then, the sequence jB = (jB1 , j
B
2 , . . . )651

where jBi ∈ {0, 1} for all i encodes a subset of columns in A where jBi = 1 if column652

ai ∈ B and 0 otherwise. We encode convergence of bases “column by column” via653

convergence in this space of sequences. Let I be the set of all {0, 1} sequences and654

define the product discrete topology on I where jB
m

converges to jB
∗

if for every i655

there exists an mi such that jB
m

= jB
∗

for all m ≥ mi. In other words, convergence656

corresponds to “lock in” in every element. We say a sequence {Bm} of subsets of657

columns of A converges to another subset B∗ of columns of A if and only if jB
m

658

converges to jB
∗

in the above product discrete topology on I. It is straightforward to659

see that the resulting topology on subsets of columns of A is a homeomorphism for660
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16 A. GHATE, C. T. RYAN, AND R. L. SMITH

the product discrete topology on I. We say a collection of subsets of columns of A661

is closed if the limit of every convergent sequence taken from this collection is also662

contained in the collection.663

(A8) The set B , {B(x) : x is a bfs of (P)} is closed.3664

The next section explores an example where (A8) holds. It is worth noting that665

there are very natural settings where this assumption fails. Consider the min-cost666

flow setting of [32] but now relax the condition that the graph G contains no infinite667

directed cycles. Indeed, consider the graph that consists of a single infinite directed668

cycle. Removing a single edge from this cycle yields a bfs corresponding to a spanning669

tree. Consider the sequence of bfs’s that arise by successively removing edges along670

the outward directed portion of the infinite directed cycle. This sequence of bfs’s671

converges in the product discrete topology to the entire infinite directed cycle, which672

is clearly not a bfs.673

Lemma 8.1 (Bases converge in product discrete topology). Suppose assumption674

(A8) holds. Let (Bm : m = 1, 2, . . . ) be a sequence of bases. Then there exists675

a subsequence Bmn and a basis B∗ such that Bmn converges to B∗ in the product676

discrete topology.677

Proof. To prove the lemma it suffices to show that the set B of bases is sequentially678

compact in the product discrete topology. Since closed subsets of sequentially compact679

spaces are sequentially compact, by assumption (A8), it suffices to show that the680

set of all columns of A is a sequentially compact space under the product discrete681

topology described above. Indeed, the product discrete topology on A is metrizable682

and compact by Theorems 2.61 and 3.36 in [3]. Compact subspaces of metric spaces683

are sequentially compact (Theorem 3.28 in [3]) and thus the product discrete topology684

on A is sequentially compact.685

Convergence in the product discrete topology is not a standard notion of conver-686

gence of linear operators. Accordingly, some work needs to be done to leverage this687

condition.688

First, we show that convergence in the product discrete topology implies the more689

common notion of convergence in operator norm. The difficulty here is that, as an690

operator, we think of each B defining an invertible operator on a different space.691

That is, the basis B defines the invertible operator B : HB → Y where HB is defined692

above Lemma 4.3. It is important in the arguments that follow to redefine B over a693

common domain. Let B be the basis of A that consists of columns of A indexed by jk694

for k = 1, 2, . . . . Let TB denote the mapping from `2 into HB with TB(x) = x′ where695

(8.1) x′j =

{
xk/δ

jk if j = jk for k = 1, 2, . . .

0 otherwise
696

Thus, we can define B̃ := BTB , which remains an invertible and continuous linear697

operator from `2 into Y since both B (by Lemma 4.3) and TB (trivially) are invertible698

and continuous linear operators.699

Suppose Lm (for m = 1, 2, . . . ) and L are bounded linear maps between `2 and700

Y . Then we say that the Lm converge to L in operator norm if ||Lm − L|| → 0701

as m → ∞ (where here, || · || denotes the operator norm). This is equivalent to the702

statement that ||Lmx− Lx||Y → 0 uniformly for all x ∈ `2 such that ||x||`2 ≤ 1.703

Consider the linear operators B̃m and B̃∗, where Bm and B∗ are defined as above.704

3The fact that B is the collection of all bases relies on the assumption that all basic feasible
solutions are nondegenerate (B2) and thus every basis is of the form B(x) for some bfs x.
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The following result shows that convergence of Bmn to B∗ in the product discrete705

topology implies that B̃mn → B̃∗ in the operator norm.706

Lemma 8.2 (Bases converge in operator norm). Suppose (A3), the conditions of707

Lemma 8.1 hold, and 0 < α < δ < 1. Then the subsequence of linear operators B̃mn708

converges to B̃∗ in the operator norm (where Bmn and B∗ are defined in Lemma 8.1).709

Proof. By Lemma 8.1, the Bmn converges to B∗ in the product discrete topology.710

To simplify notation, we let B̃n denote the linear operator B̃mn from `2 to Y defined by711

B̃mn = BmnTBmn where TBmn is defined in (8.1). To show B̃n → B̃∗ in the operator712

norm we must show ||B̃nx−B̃∗x||Y → 0 uniformly for all x with ||x||`2 ≤ 1. Let x ∈ `2713

be such that ||x||`2 ≤ 1. Using the above constructs, we have B̃x = B(TBx) = Bx′ =714

B(xk/δ
jk) = (a·j1/δ

j1 , a·j2/δ
j2 , . . . )x. Hence, we have B̃nx =

∑∞
k=1 δ

−jnk xka·jnk and715

B̃∗x =
∑∞
k=1 δ

−j∗kxka·j∗k (where we use the shorthand jmnk to denote jB
mn

k and j∗k to716

denote jB
∗

k ) so that717

B̃nx− B̃∗x =

∞∑
k=kn+1

(δ−j
n
k xka·jnk − δ

−j∗kxka·j∗k ) =

∞∑
k=kn+1

(δ−j
n
k a·jnk − δ

−j∗ka·j∗k )xk718

719
since jnk = j∗k for k ≤ kn for some kn for each n where kn → ∞ as n → ∞. This720

follows from the fact Bn converges to B∗ in the product discrete topology. Thus, we721

have722

||B̃nx− B̃∗x||Y ≤
∞∑

k=kn+1

||(δ−j
n
k a·jkn − δ

−j∗ka·j∗k )xk||Y723

=

∞∑
k=kn+1

√√√√ ∞∑
i=1

β2i|δ−jnk aijnk − δ
−j∗kaij∗k |2|xk|2(8.2)724

725

By (A3), we have aijnk ≤ āα
jnk and aij∗n ≤ āα

j∗k . The significance of this bound is that726

we can unravel much of the dependency of the square root terms in (8.2) on the index727

i, yielding:728

||B̃nx− B̃∗x||Y ≤
∞∑

k=kn+1

√√√√ ∞∑
i=1

β2iā2|δ−jnk αjnk − δ−j∗kαj∗k |2|xk|2729

= ā

∞∑
k=kn+1

|(αδ )j
k
n − (αδ )j

∗
n ||xk|

√√√√ ∞∑
i=1

β2i730

= āβ√
1−β2

∞∑
k=kn+1

|(αδ )j
k
n − (αδ )j

∗
n ||xk|731

≤ āβ√
1−β2

γkn
∞∑
k=1

|γk + γk||xk+kn |(8.3)732

733
where, in the last step, γ = α/δ and since jnk ≥ k and j∗k ≥ k. Finally we can develop734

the remaining sum in (8.3) as follows:735

∞∑
k=1

|γk − γk||xk+kn | = 2

∞∑
k=1

γk|xk+kn | ≤ 2

∞∑
k=1

γk = 2 γ
1−γ736

where the inequality follows since ||x||`2 ≤ 1. Returning to (8.3), we have737

||B̃nx− B̃∗x||Y ≤ 2āαβγ√
1−β2(1−γ)

γkn738
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Since γ < 1 and kn → ∞ as n → ∞, and the fact that right-hand side of the above739

equation does not depend on x for any x ∈ `2, we have B̃n → B̃∗ in operator norm,740

completing the proof.741

We can now state and prove the main result of the paper.742

Theorem 8.3 (Optimal value convergence). Suppose (A1)–(A8) hold with 0 <743

β < 1 and 0 < α < δ < 1 and the Simplex Method does not terminate. Let744

fm ,
∑
j=1 cjx

m
j be the sequence of values of iterates xm of the Simplex Method.745

Then fm → f∗. Moreover, there exists a subsequence of the xm that converge to an746

optimal solution x∗.747

Proof. By Lemmas 8.1 and 8.2, there exists a subsequence of bases Bmn of that748

converges to a basis B∗ in the product discrete topology and associated maps B̃mn749

that converge to B̃∗ in the operator norm. As noted below equation (8.1), each of the750

B̃mn are continuous and invertible maps from `2 to Y . Let Φ denote the mapping751

that sends invertible operators to their inverse; that is, Φ(B̃) = B̃−1. By Theorem752

IV.1.5 in [37],4 the mapping Φ is continuous. This implies that (B̃mn)−1 converges753

to (B̃∗)−1 in the operator norm.754

Let xmn = (Bmn)−1b and x∗ = (B∗)−1b. Accordingly, xmn = T−1
Bmn (B̃mn)−1b755

and x∗ = T−1
B∗ (B̃∗)−1b. It is straightforward to see that since Bmn converges to B∗756

in the product discrete topology, we have TBmn → TB∗ and thus T−1
Bmm → T−1

B∗ again757

by appealing to Theorem IV.1.5 in [37]. Hence, we have xmn = T−1
Bmn (B̃mn)−1b →758

T−1
B∗ (B̃∗)−1b = x∗ since T−1

Bmn → T−1
B∗ and (B̃mn)−1 → (B̃∗)−1, both in the operator759

norm. That is, there exists a subsequence of the xm that converge to a basic solution760

x∗ in the norm topology of H. Moreover, since (Bmn)−1b ≥ 0, because each of the761

xmn is a basic feasible solution, we can conclude that (B∗)−1b ≥ 0 by continuity. This762

implies that x∗ is a basic feasible solution.763

Finally, we claim that x∗ is an optimal solution. To do so, we use Theorem 6.2764

and show that the reduced costs r(x∗; k) ≥ 0 for all k ∈ Sc(x∗). Recall the definition765

of reduced cost has r(x∗; k) = ck +
∑
j∈S∗ cj(B

∗)−1a·k, where S∗ is the support of766

x∗ and k /∈ S∗. Similarly, let Smn denote the support of xmn .5 We will show that767

r(xmn ; k)→ r(x∗; k) as n→∞ for all k /∈ S∗. Indeed,768

|r(xmn ; k)− r(x∗; k)| = |
∑

j∈Smn
cj((B

mn)−1a·k)j −
∑
j∈S∗

cj((B
∗)−1a·k)j |769

= |
∑

j∈Smn∩S∗
cj(((B

mn)−1 − (B∗)−1)a·k)j +
∑

j∈Smn\S∗
cj((B

mn)−1a·k)j770

−
∑

j∈S∗\Smn
cj((B

∗)−1a·k)j |771

≤
∑

j∈Smn∩S∗
|cj(((Bmn)−1 − (B∗)−1)a·k)j |+

∑
j∈Smn\S∗

|cj((Bmn)−1a·k)j |772

+
∑

j∈S∗\Smn
|cj((B∗)−1a·k)j .|773

774

The first time on the right-hand side converges to zero since (B̃mn)−1 converges to775

(B̃∗)−1 in the operator norm. Moreover, the sets Smn \ S∗ and S∗ \ Smn vanish in776

4Note that Theorem IV.1.5 is stated for settings where B : X → X is a linear operator for some
given Banach space X. However, the paragraph following the proof of the theorem (see page 193 of
[37]) shows that it applies to linear operators B : X → Y , where X and Y are (potentially different)
Banach spaces under conditions satisfied in our setting. Here we take X = `2.

5We make these changes in notation in order for the displayed equation below to be less crowded.
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the limit (by Lemma 8.1) and so the second two sums also converge to 0. These777

observations involve an exchange of an infinite sum with a limit (as n → ∞). This778

exchange is legitimate under the dominated convergence theorem since for any subset779

S of {1, 2, . . . },
∑
j∈S |cj((Bmn)−1a·k)j | ≤

∑∞
j=1 |cjx

mn
j | < ∞ since xmn is a basic780

feasible solution and all feasible solutions have finite cost (and also when replacing781

Bmn and xmn with B∗ and x∗, respectively).782

It remains to argue that r(x∗; k) ≥ 0 for all k /∈ S∗. Suppose otherwise, that783

r(x∗; k) = −ε < 0 for some k /∈ S∗ and ε > 0. Since r(xmn ; k) → r(x∗; k) this784

implies that for sufficiently large n, r(xmn ; k) = −ε < 0. This contradicts Lemma 7.3.785

Hence, we can conclude that the reduced costs of all non-basic variables at x∗ are786

nonnegative. Hence, by Theorem 6.2, x∗ is an optimal solution.787

By construction, the iterates of the simplex method have nondecreasing objective788

value. Thus, since we have just argued that x∗ is optimal, we know fmn → f∗ and789

since objective values are nondecreasing, the implies fm → f∗.790

A brief comment on how the various assumptions are used in our main Theo-791

rem 8.3. Assumptions (A1)–(A4) are invoked in the call to Theorem 6.2, the call792

to Lemma 7.3 additionally uses (A6) and (A7), and finally the call to Lemma 8.2793

additionally uses (A8).794

Although Theorem 8.3 does not furnish that the optimal solution convergence795

desired in (P4), the next result shows that the iterates of the simplex method become796

“arbitrarily close” to the set of optimal solutions. The Hilbert topology has an asso-797

ciated metric d where d(x, y) = ||x− y||H . The distance from a point y to a set S is798

denoted d(y, S) := inf {d(y, s) : s ∈ S}. We say a sequence yn gets arbitrarily close to799

S if d(yn, S)→ 0 as n→∞.800

Theorem 8.4. The sequence of simplex iterates gets arbitrarily close to the set801

of optimal solutions to (P). In particular, if there is a unique optimal solution then802

the full sequence of iterates converges to an optimal solution.803

Proof. Let F ∗ denote the set of optimal solutions of (P). Suppose there exists a804

subsequence xmn of simplex iterates and an ε > 0 such that d(xmn , F ∗) > ε for all n805

sufficiently large. By the compactness argument in the proof of the previous theorem,806

there exists a convergent sub-subsequence of xmn that converges to an optimal feasible807

solution x∗ ∈ F ∗. However, this contradicts the supposition that d(xmn , F ∗) > ε for808

all n sufficiently large.809

9. Examples. In this section, we look at a class of CILPs that satisfy (A1)–(A8)810

and thus, by Theorem 8.3, our simplex method converges to optimal value. A goal of811

this paper was to extract analytical insight from this example to build the topological812

structure of “tractable” countably infinite linear programs. This was achieved in the813

previous sections. In this section, we will reflect this theory back on this special case814

to ground our contributions.815

The following set up of minimum cost flow problems on pure supply networks is816

due to [32]. We show that these flow problems satisfy (A1)–(A8), under the obser-817

vation that (A6)–(A8) can actually be weakened. Instead of applying to all basic818

feasible solutions (and extreme points), it suffices for (A6)–(A8) for all basic feasible819

solutions encountered in a run of the simplex method.820

Let G = (N ,A) be a directed graph with countably many nodes N = {1, 2, . . . }821

and arcs A ⊆ N ×N . Each arc (i, j) has cost cij , and each node has supply bi (with822

bi < 0 corresponding to a demand). The goal of the countably infinite network flow823

This manuscript is for review purposes only.



20 A. GHATE, C. T. RYAN, AND R. L. SMITH

(CINF) problem is to solve:824

inf
x

∑
(i,j)∈A

cijxij(9.1a)825

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi for i ∈ N(9.1b)826

xij ≥ 0 for (i, j) ∈ A.(9.1c)827828
A graph is locally finite if every node has finite in- and out-degree. Two nodes i and829

j are finitely connected in G if there exists a finite path Pij between i and j. The830

graph G is finitely connected if all pairs of nodes in G are finitely connected. A path to831

infinity is a sequence of distinct nodes i1, i2, . . . where (ik, ik+1) ∈ A or (ik+1, ik) ∈ A832

for k = 1, 2, . . . . An infinite cycle consists of two paths to infinity from some node833

i, (i, i1, i2 . . . ) and (i, j1, j2, . . . ), where all intermediate nodes ik and j` are distinct.834

A spanning tree is a subgraph of G that contains no finite or infinite cycles and is835

incident to all nodes. A basic feasible flow in G is a feasible solution of (9.1) such836

that the subgraph induced by the arcs with positive flow is contained in a spanning837

tree of the graph. When the set of arcs of a flow x with positive flow themselves838

form a spanning tree, we call x a nondegenerate basic feasible flow. Of particular839

importance to the analysis in [32] is the following special class of spanning trees. A840

spanning in-tree S rooted at infinity is a spanning tree where for each node i ∈ N841

there is a unique path from i to infinity in S that contains only forward arcs directed842

to “infinity”. [32] also make the following additional assumptions:843

(NF1) G is locally finite,844

(NF2) G is finitely connected,845

(NF3) G contains no finite or infinite directed cycles,846

(NF4) bi is integer for all i ∈ N ,847

(NF5) b ∈ `∞(N ), i.e., there exists a uniform upper bound b̄ on absolute values848

of all node supplies.849

(NF6) G has finitely many nodes with in-degree 0,850

(NF7) bi ≥ 0 for all i ∈ N (all nodes are either transshipment nodes or supply851

nodes).852

Assumptions (NF6) and (NF7) ensure that graph G permits stages, defined as follows.853

Stage 0 is the finite set of all nodes with in-degree 0. Stage 1 consists of all nodes854

with in-degree 0 in the modified graph that results from removing all stage 0 nodes855

and their adjacent arcs. Thus, all stage 1 nodes are adjacent to stage 0 nodes in the856

graph. We construct the subsequent stages by repeating this procedure.857

In [32], the following additional assumption is made on the structure of stages:858

(NF8) There exist β ∈ (0, 1) and γ ∈ (0,+∞) such that for every (i, j) ∈ A,859

|cij | ≤ γβs(i), where β can be interpreted as a discount factor (discounted860

arc costs) and s(i) is the stage of node i,861

(NF9) There exists a sub-exponential function g(k) where |Sk| ≤ g(k) for all k.862

We refer to problems satisfying (NF1)–(NF9) as pure supply problems. Clearly, (9.1)863

is in the form (P), so it remains to check that (A1)–(A8) hold when (NF1)–(NF9) are864

taken.865

Before checking these, it will be convenient to reformulate (9.1) by augmenting866

supply on certain nodes (for reasons that will become apparent once we check (A6)).867

Let N ′ = (N ,A, b′, c) denote the network with the same graph and arc costs, but868

with supply b′i = bi if bi > 0 and b′i = 1 if bi = 0. Observe that if N is a pure supply869

network, then so is N ′.870
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The key property of network N ′ is given in Lemma 4.8 of [32], which we recall871

as follows. Let T denote a spanning tree in N . Any arc (i, j) not in T has a reduced872

cost that corresponds to the cost of the cycle that it is formed in T when arc (i, j) is873

added to T (where the costs of arcs are weighted with 1 or −1 according to whether874

they are in the same direction as (i, j) in the cycle or not; for a formal definition875

see the discussion preceding Lemma 3.3 in [32]). The key property of Lemma 4.8 is876

that the reduced cost of arc (i, j) with respect to spanning tree T in the augmented877

network N ′ is the same as the reduced cost of arc (i, j) with respect to T in the878

original network N . Moreover, flows in N ′ can easily be converted to flows in N .879

Indeed, an optimal solution for the augmented problem yields an optimal solution880

for the original problem if we remove all flows originating from augmented supplies.881

Hence, it suffices to run a simplex algorithm on N ′ to recover a simplex method on882

N . It only remains to verify (A1)–(A8) hold for N ′.883

Not every instance of (9.1) is feasible, but we will only discuss feasible instances884

and so we may assume that (A1) holds. If an instance of (9.1) is feasible, then taking a885

single outgoing arc from every node forms an initial spanning tree T0 and corresponds886

to a basic feasible flow (Lemma 4.4 in [32]). Lemma 4.2 in [32] shows that trees887

constructed in this way are always spanning in-trees rooted at infinity.888

Although there are no explicit bounding constraints in (9.1), Lemma 2.6 in [32]889

shows that there is an implied bound on the flow on every arc. This is implicit from890

the uniform boundedness of supplies (NF5) and finiteness of the stages. Condition891

(A4) is a direct implication of (NF8) when δ is taken sufficiently large. The argument892

here is similar in spirit to the proof of Lemma 2.4, details are omitted. For (A3),893

we can rescale the constraints (9.1b) to satisfy the necessary conditions. The finite894

support of both rows and columns of the constraint matrix makes such a rescaling895

possible. This finiteness of rows and columns in a consequence of the fact that graph896

G is finitely-connected (NF2). Condition (A4) follows easily from (NF8) and (NF9).897

Establishing (A5) requires more effort. In fact, we will show that every basis898

defines an onto map into Y , thus establishing the result for A since we have cspan(A) =899

cspan(B) for every basis B. In [32], a basis B corresponds to the arcs of a spanning900

in-tree rooted at infinity. It suffices to argue that B : HB → Y is an onto map for901

β > δ, where HB is defined before Lemma 4.3. We already know that B : HB → Y902

by Lemma 3.3. Let y ∈ Y and we will show that there exists an x ∈ HB such that903

Bx = y. We have ||y||2Y =
∑∞
i=1 β

2i|yi|2 < ∞ since y ∈ Y . Let ỹi = max{1, |yi|}904

for i = 1, 2, . . . and note that
∑∞
i=1 β

2i|ỹi|2 < ∞. Let the nodes in the tree T (B)905

be numbered so that arc (i, j) ∈ T (B) only if i < j. We have that there is a unique906

directed path to infinity out of each node i in T (B). Let P (i) be the finite set907

of all nodes k such that the unique path to infinity out of node k passes through908

node i. This set is finite by Lemma 4.1 in [32]. The flow constraints Bx = b then909

gives xij =
∑
k∈P (i) yk where (i, j) is the unique arc leaving node i in T (B) (the910

uniqueness of this arc is also guaranteed by Lemma 4.1 in [32]). It remains to show911

that ||x||H <∞ for such an x. We have |xij | ≤
∑
k∈P (i) |yk| ≤

∑i
k=1 |yk| ≤

∑i
k=1 |ỹk|912

so that |xij |2 ≤ (
∑i
k=1 |ỹk|)2 since

∑i
k=1 |ỹk| ≥ 1. Hence,913

(9.2) ||x||2H =
∑

(i,j)∈T (B)

δ2i|xij |2 ≤
∞∑
i=1

δ2i(

i∑
k=1

|ỹk|)2
914

since xij = 0 for (i, j) /∈ T (B). It thus remains to argue that
∑∞
i=1 δ

2i(
∑i
k=1 |ỹk|)2 <915

∞, which will complete the proof. First, observe that there exists an I and a ȳ > 1916

such that |ỹi| < ȳ/βi for all i ≥ I. Indeed, suppose otherwise that |ỹi| ≥ ȳ/βi for917
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some subsequence i = i1, i2, . . . , in which case918

∞∑
i=1

β2i|ỹi|2 ≥
∞∑
k=1

|ỹik |2 ≥
∞∑
k=1

β2ik(ȳ/βik)2 =

∞∑
k=1

ȳ =∞,919

which contradicts the fact that y ∈ Y and thus
∑∞
i=1 β

2i|ỹi|2 < ∞. Thus, we may920

develop the second sum in the right-hand side of (9.2) as
∑i
k=1 |ỹk| ≤

∑i
k=1(ȳ(I) +921

ȳ/βi) where ȳ(I) = maxk≤I |ỹk|. Hence,
∑i
k=1 |ỹk| ≤ iȳ(I) + iȳ/βi. Thus, returning922

to (9.2), we have:923

||x||2H ≤
∞∑
i=1

δ2i(

i∑
k=1

|ỹk|)2 ≤
∞∑
i=1

δ2i(iȳ(I) + iȳ/βi)2
924

= ỹ(I)

∞∑
i=1

δ2ii2 + 2ȳ(I)ȳ

∞∑
i=1

(δ2/β)ii2 + ȳ2
∞∑
i=1

(δ/β)2ii2 <∞925

926
whenever 0 < δ < β < 1. Hence, x ∈ HB and we conclude that A is an onto map,927

establishing (A5).928

In general, problem (9.1) need not be nondegenerate and so (A6) may not hold.929

However, under the transformation to N ′, all basic feasible solutions are nondegen-930

erate. It is easy to see that every spanning tree in N ′ is a spanning in-tree rooted931

at infinity. Moreover, in the augmented N ′, a spanning in-tree rooted at infinity S932

corresponds to a nondegenerate basic feasible flow xS , since every node has positive933

supply and a single outgoing arc. Accordingly, every arc carries positive flow and thus934

xS is nondegenerate. In other words, there is a way to pivot from a nondegenerate935

basic feasible flow to a nondegenerate basic feasible flow for every choice of entering936

variable back in the original problem using the augmented network N ′. Undertak-937

ing only such pivots in the simplex method defined in Section 7, we see that only938

nondegenerate basic feasible flows can be encountered by the simplex method.939

Condition (A7) on the supports of extreme points follows from Theorem 3.2 in940

[32]. That result shows that every basic feasible flow is integer valued when the data941

is integer and, consequently, σ ≥ 1.942

When we showed (A6) above, we remarked on how the simplex method can be943

made to pivot from spanning in-trees rooted at infinity to spanning in-trees rooted944

at infinity. Corollary 4.15 in [32] shows that any convergent subsequence of such a945

sequence of iterate trees converges to yet another spanning in-tree rooted as infinity946

in the product discrete topology. The verifies (A8) and completes our verification the947

pure supply CINFs fit the setting of current paper and can be solved via the simplex948

method proposed in Section 7.949

10. Conclusion. In this conclusion, we will provide a high-level summary of950

some of the insights our framework provides – particularly, in its novel topological951

underpinning – for solving CILPs via a simplex method. First, (A6) is critical. This952

assumption guarantees that we are able to “move”, at least a little bit, at every pivot.953

The SPS assumption (A7) means that there is a lower bound on this “little bit” that is954

moved. Taken together, these properties guarantee that progress towards optimality955

is achieved as the simplex method runs.956

However, “positive progress” towards optimality does not guarantee convergence.957

A key ingredient is (A8). The SPS condition (A7) guarantees that extreme points958

have an algebraic characterization as basic feasible solutions, which gives rise to the959

mechanics of tracking how the simplex method iterates from bfs to bfs through ex-960

ploring successive bases. The closure of the set of bases implies a convergence of a961
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subsequence of these bfs iterates, and hence in their objective values. The property962

that reduced costs converge to zero (Lemma 7.1), along with the optimality condition963

in Theorem 6.2, ensure convergence to optimality (Lemma 7.2).964

In future work, it would be interesting to find settings where some of our as-965

sumptions fail, and yet a simplex method can be constructed that converges in value966

to optimality. Of course, this paper has only examined general conditions to ensure967

properties (P1) and (P2) discussed in the introduction. Exploration of what general968

conditions ensure (P3) and (P4) is a promising future direction. Some of the examples969

in the previous section have these properties, giving the interested reader a foothold970

on that journey.971
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1044

Appendix A. Proofs of Lemmas 3.3 and 4.3.1045

The first step is to establish an isometric isomorphism between H and `2, the1046

space of square-summable sequences. Consider the transformation Tδ from H into RN1047

defined by Tδ(x) = (δjxj). Let x(δ) denote the image of x under Tδ for notational1048

convenience.1049

Claim A.1. The spaces H and `2 are isometrically isomorphic under mapping Tδ.1050

Proof. First, we claim that Tδ is an isometry. Indeed, ||x||H =
√∑∞

j=1 δ
2j |xj |2 =1051 √∑∞

j=1 |δjxj |2 = ||Tδ(x)||`2 . Next, observe that Tδ : H → `2. Indeed, for x ∈ H1052

note that ||x(δ)||22 = ||x||2H <∞ and so x(δ) ∈ `2. Second, we claim that Tδ : H → `21053

is onto. Let y ∈ `2 and set xj = (yj/δ
j) for j = 1, 2, . . . . Observe that Tδ(x) =1054

(δj(yj/δ
j)) = (yj) = y. Thus, it suffices to argue that x ∈ H. This follows since1055

||x||H =
∑∞
j=1 δ

2j |xj |2 =
∑∞
j=1 δ

2j |yj/δj |2 =
∑∞
j=1 δ

2j |yj |2/δ2j =
∑∞
j=1 |yj | < ∞,1056

since y ∈ `2. Third, we claim that Tδ : H → `2 is one-to-one. Indeed, if x 6= x′1057

in H then since Tδ is a linear map, ||Tδ(x) − Tδ(x′)||`2 = ||x − x′||H 6= 0. Hence,1058

Tδ(x) 6= Tδ(x
′) and Tδ is one-to-one.1059

Consider now the transformation Tβ,A : cspan(A) → `2 where cspan(A) is the1060

column span of the infinite matrix A over H and Tβ,A(y) = (βiyi). By an identical1061

argument as above, Tβ,A is an isometric isomorphism between cspan(A) and `2. Using1062

Tδ and Tβ,A we construct a “pullback” linear operator A′ := Tβ,AAT
−1
δ from `2 to `21063

from the operator from H to Y defined by A.1064

Claim A.2. The linear operator A is continuous if and only if A′ is continuous.1065

Proof. It is straightforward to see that T−1
δ and Tβ,A are bounded linear operators1066

with an operator norm equal 1 since both are isometries and so (for instance)1067

||Tβ,A|| = sup
y∈cspan(A)

||Tβ,A(y)||`2
||y||Y = sup

y∈cspan(A)

||y||Y
||y||Y = 1 <∞1068
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Now, since A′ = Tβ,AAT
−1
δ we have ||A′|| ≤ ||Tβ,A||||A||||T−1

δ || = ||A|| so A′ is a1069

bounded linear operator whenever A is. Multiplying the equation defining A′ the1070

above equation on the left by T−1
β,A and on the right by Tδ we get A = T−1

β,AA
′Tδ and1071

so A is bounded whenever A′ is. In fact, ||A|| = ||A′||.1072

Thus, we have reduced showing the continuity of A to establishing the continuity1073

of A′. Since A′ is a linear operator from `2 to `2, we can leverage from the following1074

lemma.1075

Lemma A.3 (Schur test, page 260 in [12]). If a doubly infinite matrix M = (mij)1076

satisfies (i)
∑∞
j=1 |mij | ≤ B1 for every i, and (ii)

∑∞
i=1 |mij | ≤ B2 for every j, then1077

the operator M is bounded and ||M || ≤
√
B1B2.1078

We now apply the Schur test to A′. It a straightforward exercise to show that1079

A′ = (mij) has mij = βi/δjaij . To check (i) in the Schur test holds, observe that1080
∞∑
j=1

βi

δj |aij | = βi
∞∑
j=1

1
δj |aij | ≤ β

i
∞∑
j=1

1
δj āα

j = βiā

∞∑
j=1

(
α
δ

)j ≤ ā α/δ
1−α/δ = B1,1081

1082
where the first inequality holds by (A3) and the fact 0 < β < 1 and 0 < α < δ < 1.1083

Similarly,1084
∞∑
i=1

βi

δj |aij | =
1
δj

∞∑
i=1

βi|aij | ≤ 1
δj

∞∑
i=1

βiāαj = 1
δj ā

∞∑
i=1

(αβ)i ≤ ā αβ
1−αβ = B2.1085

10861087

Proof of Lemma 3.4. Under the assumptions, A′ is a continuous map from `2 to1088

`2 by the Schur Test (Lemma A.3). Then by Claim A.2, we have A is a continuous1089

mapping from H to Y . This completes the proof.1090

Proof of Lemma 4.3. It remains to prove the B is a continuous operator. Recall1091

that the basis B defines an operator B : HB → Y . Under the assumptions, B is1092

a bounded linear operator. Indeed, ||B|| = supx∈HB
||Bx||Y
||x||H = supx∈HB

||Ax||Y
||xH || ≤1093

supx∈H
||Ax||Y
||x||H = ||A|| <∞, where the second equality follows since B(x) = A(x) for1094

x ∈ HB and the last (strict) inequality follows from Lemma 3.4.1095

Appendix B. Proof of Proposition 5.5.1096

Lemma B.1. Let E be an extreme subset of S, a non-empty subset of RN. Given1097

another non-empty subset T of RN: (i) if E ⊆ T ⊆ S then E is an extreme subset of1098

T and (ii) E ∩ T is an extreme subset of S ∩ T .1099

Definition B.2. Let x be a nondegenerate bfs. The cone of feasible directions1100

(from x) is C(x) , {z ∈ H : x+ λz ∈ F for some λ > 0}. Define also the translation1101

C̄(x) of C(x) by x. That is, C̄(x) , x+ C(x) = {y ∈ H : y = x+ z, z ∈ C(x)} .1102

Observe that F itself is a subset of C̄(x) since y − x ∈ C(x) for every y ∈ F (simply1103

take λ = 1). In light of Lemma B.1(ii), we may focus attention on understanding1104

extreme subsets E of C̄(x) (which turns out to be an easier task) since E ∩ F is an1105

extreme subset of F = C̄(x) ∩ F .1106

Following the above logic, we will examine an extreme subset of the translated1107

cone C(x). First, consider the set E(x; k) , {ξ ∈ H : ξ = µd(x; k), µ ≥ 0}. We show1108

this is an extreme subset (in fact, an edge) of the cone of feasible directions.1109

Claim B.3. E(x; k) is C(x)-extreme.1110

Proof of Claim B.3: First notice that E(x; k) ⊆ C(x). To see this, consider a ξ =1111

µd(x; k) for some µ > 0 (we omit the trivial case of µ = 0). Thus, ξ ∈ E(x; k). In order1112
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to show that E(x; k) ⊆ C(x), we must show that ξ ∈ C(x), that is, that there exists a1113

λ > 0 such that x + λµd(x; k) ∈ F . Note that setting λ = λ(x; k)/µ works. Now to1114

prove our claim, let η, χ ∈ C(x) and 0 < t < 1 be such that tη + (1 − t)χ ∈ E(x; k).1115

We need to prove that η, χ ∈ E(x; k). Since η, χ ∈ C(x), there exists λη > 0 and1116

λχ > 0 such that x+ ληη ∈ F and x+ λχχ ∈ F . That is, x+ ληη ≥ 0,
∑∞
j=1 aijηj =1117

0, i = 1, 2, . . . and x + λχξ ≥ 0,
∑∞
j=1 aijξj = 0, i = 1, 2, . . . . Moreover, since1118

tη + (1 − t)χ ∈ E(x; k), there exists a µ ≥ 0 such that µd(x; k) = tη + (1 − t)χ.1119

To establish that η, χ ∈ E(x; k), we need to construct µ1 ≥ 0 and µ2 ≥ 0 such1120

that η = µ1d(x; k) and χ = µ2d(x; k). To achieve this, we consider three types of1121

components of η and χ. The first type is components j ∈ Sc(x) such that j 6= k.1122

For these components, xj = 0 and hence we know that ηj ≥ 0, χj ≥ 0. In addition,1123

dj(x; k) = 0. Thus, µdj(x; k) = tηj + (1 − t)χj implies that ηj = 0 and χj = 0. Our1124

second type of components in fact only includes component k. For this component,1125

dk(x; k) = 1. In addition, xk = 0 implies that ηk ≥ 0 and χk ≥ 0. As a result,1126

µ = tηk + (1− t)χk implies χk = µ−tηk
1−t .1127

The third type of components is j ∈ S(x). For these components, we have,1128 ∑
j∈S(x)

aijηj = −ηkaik, i = 1, 2, . . . , and(B.1)1129

∑
j∈S(x)

aijχj = −χkaik = −µ−tηk1−t aik, i = 1, 2, . . . .(B.2)1130

1131
But since the basic direction d(x; k) is unique, the system of equations (B.1) implies1132

that ηj = ηkdj(x; k) for all j ∈ S(x). It is clear that this is a solution to (B.1). To see1133

that this is the only solution, we proceed by contradiction. So, suppose there is an1134

alternate solution ζj , for j ∈ S(x), to (B.1). This implies that
∑
j∈S(x) aij(ηj−ζj) = 01135

for i = 1, 2, . . . with ηj 6= ζj for at least one j ∈ S(x). But this contradicts the fact1136

that x is a basic solution. Similarly, the system of equations (B.2) implies that1137

χj = µ−tηk
1−t dj(x; k) for all j ∈ S(x). In summary, we have shown that, by choosing1138

µ1 = ηk and µ2 = µ−tηk
1−t , we ensure η = µ1d(x; k) and χ = µ2d(x; k) as required.1139

This completes our proof of Claim B.3. This result is a precursor to showing that the1140

translated set Ē(x; k) , {z ∈ H : z = x+ ξ, ξ ∈ E(x; k)} is an edge C̄(x).1141

Claim B.4. Ē(x; k) is C̄(x)-extreme.1142

Proof of Claim B.4: Consider any z1, z2 ∈ C̄(x). That is, there are ξ1, ξ2 ∈ C(x) such1143

that z1 = x+ ξ1 and z2 = x+ ξ2. Consider any 0 < t < 1 such that tz1 + (1− t)z2 ∈1144

Ē(x; k). That is, there is some ξ0 ∈ E(x; k) such that tz1 + (1 − t)z2 = x + ξ0. We1145

need to establish that z1, z2 ∈ Ē(x; k). In other words, we need to establish that1146

ξ1, ξ2 ∈ E(x; k). To see that this holds, note that tz1 + (1 − t)z2 = t(x + ξ1) +1147

(1 − t)(x + ξ2) = x + tξ1 + (1 − t)ξ2. But since this must equal x + ξ0, we have,1148

tξ1 +(1− t)ξ2 = ξ0. Since E(x; k) is C(x)-extreme, this implies that ξ1, ξ2 ∈ E(x; k) as1149

required. This completes the proof of Claim B.4. Claim B.4 implies that Ē(x; k)∩F is1150

(C̄(x)∩F)-extreme. Observe that the set Z(x; k) = Ē(x; k)∩F in view of Lemma 5.3.1151

Thus, since F ⊆ C̄(x) (as was observed before the statement of the result) Z(x; k) is1152

F-extreme, using Lemma B.1(ii). It is straightforward to see that x + λ(x; k)d(x; k)1153

is an extreme point of the set Z(x; k). Thus, by Lemma B.1(i), x + λ(x; k)d(x; k) is1154

an extreme point of F .1155
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