A SIMPLEX METHOD FOR COUNTABLY INFINITE LINEAR
PROGRAMS*
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Abstract. We introduce a simplex method for general countably infinite linear programs
(CILPs). Previous literature has focused on special cases, such as infinite network flow problems
or Markov decision processes. A novel aspect of our approach is the placing of data and decision
variables in a Hilbert space that elegantly encodes a “discounted” weighting to ensure the continuity
of infinite sums. Under some assumptions, including that all basic feasible solutions are nondegen-
erate with strictly positive support, and the set of bases is closed in an appropriate topology, we
show convergence to the optimal value for our proposed simplex algorithm. We show that existing
applications naturally fit this more general framework.
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1. Introduction. Infinite-dimensional linear programming plays an important
role in the theory of stochastic, robust, and dynamic optimization [4, 19, 23, 26],
bearing fruit in applications to inventory management [2], revenue management [1],
production planning [18], workforce planning [22], and equipment replacement [5],
among others.

The special case of countably infinite linear programs (CILPs) has received in-
creasing attention [14, 16, 32, 36]. In a CILP, the decision-maker has countably many
decisions and faces countably many linear constraints. Although a comprehensive
theory of duality for CILPs has been proposed in [14], a general theory of simplex
methods for CILPs is still missing. To date, efforts have primarily focused on devising
algorithms for special cases, including nonstationary and countable-state Markov de-
cision processes [19, 26], and networks with countably infinite nodes and arcs [32, 36].
A goal of this paper is to extract analytical insight from these cases in the literature,
discover what they have in common, and connect this to a deeper understanding of
the topological structure of (at least partially) “tractable” countably infinite linear
programs.

In addition to tackling as yet intractable problems from the above applications,
a general simplex theory could provide insights into and a foundation for future so-
lution approaches to a larger class of problems where CILPs and their extensions
arise. These include computing the stationary distributions, occupation measures,
and exit distributions of Markov chains [24]; nonstationary stochastic optimization
including multi-armed bandit problems with time-varying rewards [8]; countably infi-
nite monotropic programs [9, 15] and convex cost flow problems on countably infinite
networks [30]; optimization problems with infinite sums [27]; fluid approximations of
decomposable Markov decision processes [6]; search problems in robotics [13]; infinite
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2 A. GHATE, C. T. RYAN, AND R. L. SMITH

horizon stochastic programs [20]; and games with partial information [11]. Unfortu-
nately, the lack of such a theory has prevented the broader optimization community
from fully utilizing CILPs in their work. This paper attempts to partially overcome
this hurdle.

One reason for the focus thus far on special cases is that infinite-dimensional
linear programming involves complex topological considerations in general. Indeed,
selecting the topological space to embed the data is an important modeling choice [4].
Depending on the topology, it can be more or less easy to state the dual, more or less
easy to prove weak and strong duality, and more or less easy to build the components
of a simplex method. By examining a special case, the choice of dual and the elements
of a simplex algorithm often become easier to identify. To deal with greater generality,
this paper proposes a novel topology for CILPs (inspired by earlier work in [35]) that
frames the problem in a Hilbert space setting.

Before discussing further implications of this modeling choice, we clarify what
we mean by a “simplex method”. The geometric essence of the simplex method is
the traversing of edges (called “pivoting”) between extreme points of a polyhedron in
search of an optimal solution. In the finite case, since the objective function is linear
(and hence both convex and concave) and the linear constraints describe a convex
feasible region, the existence of an extreme point optimal solution is guaranteed and
determined by “local” considerations — if there are no improving directions along edges
from a given extreme point then it is a global optimum.

The computational realization of this geometric view of the simplex method in-
volves the algebraic notions of basic feasible solutions, basic directions, and reduced
costs. These are in direct correspondence to the geometric notions of extreme points,
edges, and improving directions, respectively. The success of the simplex method
crucially depends on this tight connection between algebra and geometry.

A core difficulty in designing a simplex method for CILPs, even at the abstract
level, is that both the geometric view and the relationship between algebra and ge-
ometry are more tenuous. Indeed, one can easily write down an innocent-looking
infinite-dimensional linear program that is bounded and feasible but has no optimal
solution. Consider, for example, a minimum cost flow problem with two nodes with
supply and demand one, joined by a countably infinite number of arcs with costs
(1/2)%k = 1,2,.... The infimum over all feasible costs is zero but is not attained.
Even when optimal solutions are known to exist, the feasible region may have no
extreme points (p. 61 of [4]). Without extreme points, the geometric essence of the
simplex method has no grounding. Even when extreme points do exist, there are
cases where there do not exist edges on which to “pivot” between them. Consider,
for example, the feasible region of the closed unit disk centered around the origin in
R? and represented by the intersection of its countably many supporting half-spaces
along the rational points of its boundary. The boundary of the disk constitutes its
extreme points while it has no edges to pivot along. Indeed, the cone of improving
directions from a given extreme point may lack extreme rays (p. 28 of [4]).

Other desirable properties we take for granted in the finite simplex method —
beyond mere clarity about the objects and steps involved — may also fail in the
infinite-dimensional setting. Ideally, a simplex method would satisfy the following:

(P1) The iterates have monotone non-increasing objective values.

(P2) The objective values of the iterates converge to the optimal value of the
problem (optimal value convergence).

(P3) Each iteration of the algorithm can be performed in finite time and with a
finite amount of data.

This manuscript is for review purposes only.
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SIMPLEX METHOD FOR CILPS 3

(P4) The iterates converge to an optimal solution of the problem.
Property (P1) is helpful since algorithms are terminated after finitely many iterations
in practice. Property (P1) ensures that the last iterate of the algorithm is always the
best among the sequence of iterates (keeping track of the incumbent iterate, which
is a common practice in non-monotonic algorithms, is difficult in infinite-dimensional
problems, where calculating objective values already requires infinite time and space).

It is well documented (see, for instance, [16]) that properties (P1)—(P4) need not
hold in general. Designing algorithms that meet some or all of these properties for
special cases have been the focus of a stream of papers in recent years [19, 26, 32, 36].

In this paper, we provide a set of sufficient conditions (captured as assumptions
(A1)-(A8) below) that ensure our proposed simplex-method satisfies (P1) and (P2)
for a broad class of problems. This is the main result of the paper, captured as
Theorem 8.3. The result is nontrivial, and the set of sufficient conditions critically
depend on the problem’s embedding in the Hilbert space discussed above. The closest
result in the literature is the “shadow simplex method” in [16]. There, an algorithm is
provided that satisfies (P2) and (P3) under a set of conditions that does not guarantee
(P1). It is a simplex method in the sense that it pivots among extreme points of finite-
dimensional projections (or “shadows”) of the feasible region (that may not correspond
to adjacent pivots on the original feasible region). A general approach to resolving
(P3) is beyond the scope of this paper, however, the examples we discuss in Section 9
does have a finite implementation. As for (P4), our main result on optimal value
convergence (Theorem 8.3) establishes the existence of a subsequence of iterates that
converges to an optimal solution. To establish convergence of the entire sequence of
iterates involves careful selection arguments in the spirit of [34], which is not the focus
of the current paper. However, we do show in Theorem 8.4 that the set of iterates of
the simplex method become arbitrarily close to the set of optimal solutions and, by
implication, if there is a unique optimal solution, (P4) holds.

The reader may notice that we have not included among our desiderata (P1)-
(P4) a statement about the rate of convergence of the simplex algorithm in question.
Although in finite-dimensional optimization this type of analysis is commonplace, in
the infinite-dimensional setting we know of only a few cases where convergence rates
have been posited (for instance, [29, 33]). These papers leverage compactness and
continuity properties of continuous linear programs that fail to hold in our setting.

The dearth of convergence rates results in the literature is not a surprise. The
finite-dimensional simplex algorithm itself, arguably the most impactful optimization
algorithm ever developed, evaded complexity analysis for decades and remains an open
area of research until the present day. Klee and Minty showed worst-case performance
can be exponential, and recent results show that this worst-case performance holds
under numerous pivot rules. Indeed, a celebrated result is a recent subexponential
(although not polynomial) worst case for a particularly successful pivot rule [21].

We organize the remainder of the paper as follows. We start in Section 2 with
a few preliminaries and provide an overview of the Hilbert space structure leveraged
throughout the paper. In Section 3, we state our general CILP problem. In Section 4,
we define the concept of a basic feasible solution and show that the extreme points
are basic feasible solutions. Section 5 describes the mechanics of pivoting between
extreme points. In Section 6, we introduce the concept of reduced costs to provide an
optimality condition analogous to the finite-dimensional simplex method. In Section 7,
we construct our simplex method based on choosing pivots of “steepest descent”; i.e.,
reduce the objective value by the greatest possible rate. This guarantees property
(P1) but also proves crucial in establishing (P2). In Section 8, we show that this
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simplex method converges to optimal value. Section 9 provides a concrete example
that satisfies our assumptions.

2. Preliminaries. This section contains basic notation and definitions. Most
importantly, it defines a type of topology on the space of real sequences that is used
throughout the rest of the paper.

Let R and N denote the set of real and natural numbers, respectively. The vector
space of all real sequences is denoted RY. We denote an element x of RY by
(z;)52; (or more simply (x;)) where z; is called the jth component of z. The
vector space ordering on RY is denoted > where x > 0 if 2; > 0 for i = 1,2,....
A matrix A = (a;;){5_; (or more simply A = (a;;)) where a;; is a real number for
all ¢ and j is called a doubly infinite matrix. The jth column of A is denoted
a.; and the ith row is denoted a;.. The columns and rows of A can be viewed as
sequences in RY. We let Az denote the vector (Z;’;l a;;x;:i=1,2,...). Let u and

v be two sequences in RY. For brevity, we sometimes let u" v denote the infinite sum

Do Uujvj.
For any countable set B of vectors in RY, let cspan(B) denote their count-
able span; that is, for B = {B!, B2 ...} let cspan(B) = {Z c,a;B7 o€

RY where 377, a;B’ converges } where 377, a;BY = limy o0 ijl a;BJ denotes
component-wise convergence of partial sums.! We abuse notation and let A denote
both a doubly-infinite matrix as well as the set of columns in A. This notation will
save a lot of tedious distinctions throughout the paper. Accordingly, we may write
cspan(A) as the countable span of the set of columns of A (recall each column is a
vector in RY).

For any z € RY, the support set S(x) of z is the set of indices j where z; is
nonzero; that is, S(z) := {j : z; # 0}. Let S°(x) denote the complement of the
support set of x; that is, S¢(x) := {j : #; = 0}. Let F be a subset of RN. A vector
r € F is an extreme point of F if it cannot be expressed as z = Az! + (1 — \)a?
where A € (0,1) and 2!, 2% € F with 2! # 22, The set of all extreme points of F'
is denoted ext F'.

We define a particular class of Hilbert topologies on the space of real sequences.
Earlier work using a similar topology can be found in [35]. Define R>® = Hj’;l H;
where H; = R (as a set, but with a different topology defined below) for all j =
1,2,.... The standard inner product and norm on R are denoted {(-,-) and | - |,
respectively. That is, for 2,y € R, (z,y) = xy and |z| is the absolute value of x. We
endow each H; with a slightly modified topology. Fix a §; € (0,1) and define the inner
product and norm on Hj as (-,-); = 03(-,-) and |- |; = &;|-|. That is, if z, y € H; then
(z,y); = 63xy and |z|; = d;]x;|. Under these operations, it is straightforward to show
that H; is a Hilbert space with an appropriately defined norm topology associated
with | - |;, which agrees with the usual Euclidean topology on R.

The Hilbert sum H = {(z;) € [1;2, Hj : Y72, |;1F = 3272, 67]a4]* < oo} of the
spaces H; is endowed with inner product (z|y) = Z(;il lz;y,1; = 2]21 6?(:10], y;) and
norm

o0
1/2 1/2
(2.1) ||$H:(Z|xa Zé2| J|
j=1
and is a Hilbert space (see Section 1.6 in [10]). Usmg this notation, another way to
define H is the set of sequences in [[;2, H; with finite || - [| norm. Note that every

1When B is a finite set of vectors, the sums defining cspan(B) are finite.

This manuscript is for review purposes only.
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SIMPLEX METHOD FOR CILPS 5

choice of the sequence (4;) may give rise to a different Hilbert space H.

For every index j, define a compact set V; C H; where |v;| < r; for every v; € Vj.
Let V = H;’;l V;. By Tychonofl’s theorem, V' is compact in the product norm
topology on H consisting of the product of the norm topologies associated with | - |;
for every j, no matter the choice of (J;). However, we would like to describe when V
is compact in the norm topology (of || - ||) on H. This is achieved only under certain
conditions, as stated in the following lemma.

LEMMA 2.1. Let V; C H; where |v;| < r; for every v; € V; for some sequence
(r;) and V = [[;2, Vj. If the sequence (3;) is such that 3377, 6313 < oo then the
norm topology (of || - ||) and the product norm topology on V are equivalent.

Proof. See pages 120 and 153 of [25]. d

Along with this characterization of compactness of V' in the norm topology, it is
critical to understand the notion of continuity of linear functionals in the same topol-
ogy. By the Riesz-Fréchet Theorem, continuous linear functionals over H are precisely
of the form p(z) = (z|x) for x € H, where z is another element of H. Consider the
linear function ¢(z) = Zjoil a;x; where (a;) is an arbitrary real sequence (not nec-
essarily in H). The function ¢ is well-defined and continuous in the norm topology
if there exists a sequence (@,) € H such that 3272 ajz; = (alz) = Y272, 67a;x; for
all z € H. The above equation holds if a; = a;/67 where ||a|]* = Py 67 ‘aj/éﬂz =
2;11 |aj|?/67 < oo. We summarize this in the following lemma.

LeEMMA 2.2 (Continuity of linear functionals). Given a real sequence (a;), the

linear functional o(x) = ._, ajx; over x € H is continuous in the norm topology if
S lay /82 < ox.

A sufficient condition for Lemma 2.2 is that there exists a p € (0,1), scalar a < oo,
and real sequence (a;) such that |a;| < @y and 0 < a; < §; with 0 < o3 /87 < p? for

all 7. Indeed, in this case

oo oo oo
Ly 2 1-2 2 _ -2 o _ 2 i 2
“la.l* < L < — —J J — P .
Sl < 3 ot =at 3 <atSp it <o
J=1 Jj=1 Jj=1 Jj=1

A particular choice that achieves this is to set §; to ¢’ for some ¢ € (0,1) and «; to
o’ for some « € (0,1) where a/d < p for some p € (0,1).

j=1

3. Countably infinite linear programs. The problem under study in this
paper is the countably infinite linear program (CILP):

(P.1) f Z:xlélﬂgNZCj(Ej,
j=1
(P.2) (P) subject to Zaijxj =b, fori=1,2,...
j=1
(P.3) x>0
where c;, a;;, and b; are real numbers for all 7,5 = 1,2,.... Let ¢ denote the sequence

(¢j), b denote the sequence (b;), and A denotes the doubly infinite matrix (a;;).

The first task is to set conditions on the data so that an optimal extreme point so-
lution of (P) is guaranteed to exist. The literature has imposed a variety of conditions
on (P) to ensure an extreme point optimal solution exists (see [16] for a discussion).
Our approach is different and leverages the Hilbert topology defined in Section 2.

This manuscript is for review purposes only.
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6 A. GHATE, C. T. RYAN, AND R. L. SMITH

First, we assume:
(A1) the set F of all feasible solutions to (P) is non-empty, and
(A2) there exists a nonnegative sequence r = (r;) € RN such that |z;| < r; for
every sequence x = (z;) € F. We also assume that thereisa 0 <6 < 1
such that 3°7°, /7 < oo.
(A3) there exists an a € (0,6) and an a < oo such that
(i) |aij] < aa? for alli,j =1,2,... and
(i) |ai;| <@’ for all i,j =1,2,....
Let X; = [0,7;] and set X = H;; X,. Define the Hilbert space H with norm || - || g
as defined in (2.1) with §; = &7, where § is defined in (A2). By Lemma 2.1 and
Tychonoft’s theorem, X is compact in the norm topology on H. It remains to discuss
the continuity properties of the linear functions defining (P). A preliminary result is
as follows.

LEMMA 3.1. Suppose (A2) and (A3) hold. The infinite series Z;‘;l a;;x; is ab-
solutely convergent fori=1,2,... and all x € H if a < §.

Proof. For all i,j = 1,2,... we have the basic property that |a;;x;| < |ai;||z;].

This means that
o0

o0 (oo}
> laigal < 3 lallasl = Y 0% (5L la)
=1 j=1 j=1

J
= ((laizl/6%) | (Ja;1)) < 11(asl /6wl ()]

where the second equality follows by multiplying and dividing term j in the sum by 627,
the third equality observes that this is the inner product of the vectors (|a;;|/6%/) and
(x;) in the Hilbert space H, and the final inequality is the Cauchy-Schwartz inequality.
It thus remains to show that ||(|a;;|/6%)||u||(z;)||z < co. We have assumed that
x € H and so ||(z;)||g < oo, so it remains to show that ||(|a;;|/6%)||m < co. Observe
that

(i |/6*) 1 = | Y 6% (Jai|/62)* = | D |ai;|?/6%
j=1 j=1

—9 97 /¢ ac/d
< ;aaj/5ﬂf7\/m<oo,

where the first inequality follows from (A3) and the second (strict) inequality follows
under the assumption that o < 6. O

The last of our basic assumptions on the data ensures that the objective function
is continuous in the same topology:

(A4) The sequence (c;) is such that Z;)il \cj\z/éjz < 00.

THEOREM 3.2 (Existence of optimal extreme point). If (Al)—(A4) hold then (P)
has an optimal extreme point solution.

Proof. This follows from Bauer Maximum Principle (Theorem 7.69 in [3]) in the
Hilbert norm topology. First, (A1) tells us the feasible region F is nonempty. As
argued above, the set X = [[72, X; = [[;2,[0,7,] is compact, using (A2). Thus, it
suffices to show that the sets {z € H : Z;‘;l a;jr; = b;} are closed for i = 1,2,...,
since then F is the intersection of X and these sets. The closedness of {z € H :
Z;’;l a;;x; = b;} follows if Z;; a;;x; is a continuous function. It is straightforward
to see (A3)(i) implies that Zj‘;l |aij\2/5j2 < oo holds and so, by Lemma 2.2, the

This manuscript is for review purposes only.
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constraint functions in (P.2) are continuous. Hence, F is compact in the Hilbert
norm topology. It is left to show that the objective function of (P) is well-defined,
convex and continuous. Convexity follows from linearity, while well-definedness and
continuity follow by (A4) and Lemma 2.2. 0

Later, we will need to leverage structure on the range of the doubly infinite matrix
A; that is, the space containing b. For now, we will assume that range space is another
Hilbert space Y in RY defined by a norm as in Section 2 but now taking 6; = 7 for
some (3 € (0,1). That is, for y € Y we have ||y||3 = >, 5%y?. The next result
shows that when the linear map defined by A maps feasible solutions into Y.

LEMMA 3.3. Suppose (A2) and (A3) hold. Then cspan(A) is a subspace of Y if
0<f<landd<a<d<l.

Proof. Let x € H and set y = Az € RN by Lemma 3.1. This means y; =

Z;‘;l a;;x; and |y;| < Zj‘;l laijz;| < ala/d)/+/1— (a/6)?||z||a from the proof of

Lemma 3.1. This then implies

o0
; (/&
BD lly = | D Bl < Zﬁ%al | EI A
=1

(32) = a— L llolln, | Y B = ar=Lselalln 2= < oo
: i=1 : Vi-g

for 0 < 8 < 1 since ||z||g < oo for all x € H. This implies y € Y. 0

We now show that A defines a continuous linear operator. Recall (see, for in-
stance, Chapter IV of [37]) that the operator norm ||L|| of linear operator L is
equal to sup,. |z, <1 ||L(2)|ly. We say the linear map L is continuous (or equiva-
lently bounded) if ||L|| < co. This result is critical for establishing optimal policy
convergence of the simplex algorithm we define below. The proof involves establishing
an isometric isomorphism between H and ¢? and using the Schur Test for boundedness
of operators mapping £2 into £2 (see page 260 of [12]). Due to its technical nature, we
place the proof in the appendix.

LEMMA 3.4 (Continuity of constraint operator). Suppose (A2) and (A3) hold.
The doubly infinite matriz A defines a continuous linear operator from H into Y if
0<fB<landd<a<d<l.

4. Extreme points and basic feasible solutions. As with finite-dimensional
versions of the simplex method, our algorithm works with the algebraic characteri-
zation of extreme points as basic feasible solutions. Defining basic solutions is more
delicate in the infinite-dimensional setting than in the finite setting (for an extended
discussion see [4]). We make the following preliminary definitions.

DEFINITION 4.1. We call B(z) £ {a; : j € S(z)} the active set of columns of
A associated with a feasible x.

The name ‘active set’ comes from the fact that Az is a linear combination of the
columns in B(z). That is, only the columns in B(x) are ‘active’ in the product Ax.
Informally, we may think of B(z) as the ‘support of columns of A’ associated with z,
whereas S(z) is the ‘support of indices’ of z.

DEFINITION 4.2. A subset B of columns of A is a basis if
(B1) {z: Az =0,B(z) C B} = {0}.
(B2) cspan(B) = cspan(A).

This manuscript is for review purposes only.
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8 A. GHATE, C. T. RYAN, AND R. L. SMITH

We say B is a basis of feasible solution x if, additionally,
(B3) B(x) C B

This condition is analogous to the familiar definition of a basis of an extreme point
solution from finite-dimensional linear programming (see, for instance, Chapter 3 in
[7]). Conditions (B1) and (B2) correspond to the fact that a basis forms a column
basis of the constraint matrix, with (B1) yielding linear independence and (B2) a
spanning condition. Condition (B3) captures the fact that nonbasic variables are set
to zero. Strict containment in (B3) allows the possibility of basic variables taking a
value of zero.

If B is a basis of A, then it determines a linear operator from Hp into Y where
Hp ={x e H|z; =0 for j ¢ S(B)} with S(B) denoting the set of indices of columns
of A that are in B. We abuse notation and also let B denote this linear operator. We
need another assumption on the structure of the constraint matrix A that yields the
invertibility of our basis matrices.

(A5) The doubly infinite matrix A and scalar § are such that A: H — Y is

an onto map. That is, cspan A =Y.

LEMMA 4.3 (Continuity of bases in operator norm). Suppose (A2), (A3) and (A5)]}
hold, 0 < <1 and 0 < a < § < 1. Let B be a basis of A. Then, the doubly infi-
nite matriz B defines a continuous linear operator with an inverse B™' that is also a
continuous linear operator.

Proof. The proof that B defines a continuous linear operator is nearly identical
to that of Lemma 3.4 since B is a submatrix of A. See the appendix. The fact that
B~ exists comes from the definition of a basis. Indeed, property (B1) implies that
B is one-to-one. Let w' and w? be such that Bw! = Bw?. Note that w! and w?
can be extended (by appending zeros) to vectors z' and z? such that Az! = Az?
where B(z%) C B for i = 1,2. Thus, according to (B1), A(z! — 22) = 0, which implies
2! — 22 = 0 and so z! = 22. This, in turn, implies w!' = w? and B is a one-to-one
mapping. The fact that B is onto follows from (B2) and (A5). Finally, by the Banach
Inverse Theorem (see Theorem 1 on page 149 of [28]), B~! is a continuous map from

Y to H. O

DEFINITION 4.4. A wvector x € H is a basic solution if its admits a basis B
(as defined in (B1)~(B3)). If a basic solution is feasible it is called a basic feasible
solution (bfs). If B(x) is a basis of x then x is called a nondegenerate bfs.

Given a basis B, one can construct an associated basic feasible solution. Recall
that B is a subset of columns in A. Let zp denote the elements of x that correspond
to the columns in B, we call the elements of xp basic variables. Let N denote the
columns in A that are not in B. The elements in xn are called nonbasic variables.
Then, the basic solution associated with B satisfies Bxg = b and xy = 0. Since B is
invertible, we know g = B~'b. The solution (zp,xN) is a basic feasible solution if
and only if B —1p > 0. We summarize this in the following result.

LEMMA 4.5. If B be a basis then the solution x = (vp,xy) with v = B~'b and
zy = 0 is a basic solution.

Observe that if x is a nondegenerate bfs then B(x) is its unique basis. In general,
there is not a one-to-one correspondence between basic feasible solutions and extreme
points (for a thorough discussion see [4], and in the specific context of CILPs see [17]).
The following concepts help to resolve this challenge.

This manuscript is for review purposes only.
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DEFINITION 4.6. For any non-negative x € H, let o(x) denote the infimal positive
value of a component of x; that is, o(z) = infjes@)®; - We say that = has strictly
positive support (SPS) if o(x) > 0.

The concept of SPS first appeared in [31] and was later generalized to CILPs in
[17]. Observe that a real sequence = can have all positive entries and yet fail to have
SPS. Indeed, consider the vector (x;) where x; = 1/j for j =1,2,.... The following
two assumptions align the algebraic and geometric notions of extreme points, and as
we shall see in Remark 5.7 below, also insures that pivots move from an extreme point
to a different extreme point:

(A6) every bfs of (P) is a nondegenerate bfs,

(A7) 0 & zeiglftFU(x) > 0. In particular, every extreme point of F has SPS.

In Section 9, we will see an example of a problem where these conditions hold. It is
also straightforward to see that they do not hold in general. Failure of (A6) is common
even in finite dimensional linear programming. As for assumption (A7), the binary
tree in Figure 1 of [16] provides an example with a bfs that fails the SPS condition.

THEOREM 4.7 (Extreme points are basic feasible solutions). Suppose (A6) and (A7)
and the conditions of Theorem 3.2 hold. Then a feasible solution is extreme point if
and only if it is a nondegenerate bfs. In particular, problem (P) has an optimal
nondegenerate bfs.

Proof. The ‘if and only if” follows from Proposition 2.6 and Corollary 2.12 in [17].
The ‘in particular’ is then immediate from Theorem 3.2. 0

5. Pivoting. The key step in any simplex method is pivoting — moving system-
atically from one bfs to another in a way that monotonically improves the objective
value of the optimization problem.

Before exploring pivoting in the infinite-dimensional setting, we refresh the me-
chanics of a pivot in the finite-dimensional setting at a high level. This may help the
reader visualize some of our development. We describe the finite setting only for the
most well-behaved case where the problem is bounded and the basic feasible solutions
involved are nondegenerate.

Pivoting involves selecting an appropriate nonbasic variable (called an entering
variable) to add to B and selecting an appropriate basic variable (called a leaving
variable) to remove from B. This results in a new basis of vectors B’ that can be
associated with a new bfs z’. In general, there is some choice over both the entering
and leaving variables.

Geometrically, a pivot entails a movement from one extreme point of the feasible
region to another along an edge. When an entering variable is chosen, it determines
which edge is traversed by defining a basic direction d that takes a value of 1 in the
component of the entering variable, zero on all other nonbasic variables, and otherwise
satisfies the constraint Az = b to determine the values of d on the components of the
basic variables. The new bfs 2’ equals the sum z + Ad for some A > 0. The value
of X is increased as the basic direction is traversed until the value of one of the basic
variables hits zero (this is unique by nondegeneracy). The basic variable whose value
first hits zero in 2’ = x + A\d is the leaving variable.

Finally, which nonbasic variable to choose as an entering variable depends on
its reduced cost. The reduced cost of a nonbasic variable is the change in objective
value associated with its basic direction d; that is, Y j cjd; where c is the objective
vector of the linear program. Thus, an entering variable must be chosen among those
nonbasic variables where > e d; improves the value of the objective. In the case of a
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minimization problem, this is precisely when ;¢id; <0. A key result in the finite-
dimensional setting is that a basic feasible solution is optimal if it has no nonbasic
variables with an improving reduced cost (Theorem 3.1 in [7]). This is the termination
condition of the finite-dimensional simplex method.

We turn now to detail the infinite-dimensional setting. We highlight important
differences with the finite-dimensional case as we proceed. We assume (A1)—(A7)
throughout this discussion. By Theorem 3.2, a feasible extreme point solution z
exists. By Theorem 4.7, x is a nondegenerate bfs.

DEFINITION 5.1. Let z be a nondegenerate bfs and k € S°(x) the index of a
nonbasic variable. The kth basic direction d(x;k) with respect to x (or simply kth
basic direction when the context is clear) is the unique vector d € H such that

(BD1) dj =1,
(BD2) d; =0 for all j € §°(x) not equal to k,
(BD3) Ad = 0.

It is important to note that the basic direction depends on the current basis. That is
captured directly in the notation d(x; k).

The above definition asserts that there is a unique vector in H that satisfies
(BD1)—(BD3). To see this, for (BD3) to hold, we must have for every constraint
1=1,2,...:

(5.1)
Zaijdj = Z aijdj + Z aijdj = Z aijdj + a;rdy + Z aijdj =0
Jj=1 JjES(z) jES(2) JjES(z) k#jeSc(z)
using d, = 1 by (BD1). This is equivalent to
(5.2) Z aijd; = —ai, fori=1,2,...
jes(z)

since d; = 0 for all j € S°(x) not equal to k£ by (BD2). Our attention turns to
analyzing (5.2).

Now, given a basic feasible solution, the set B(x) is a basis. As shown in
Lemma 4.3, this implies that B(z) is an invertible linear operator with inverse B(x)~!.
We may write d(z; k) into two components (dp(y), dn(2)) Where N(z) consists of the
columns of A not in B(z). Then (5.2) is equivalent to writing B(z)dp) = —ax
where a.; is the kth column of A: dp(,) = —B(z) 'a.. Also, (BD1) implies dj, = 1
and d; = 0 for j € S¢(x) \ {k}. That is, dy(,) = " where €" is the vector with a one
in entry k and zero otherwise on N (z). Putting this together we have
(5.3) d(z; k) = (—B(x) ta., ex)

The existence and uniqueness of d is thus a consequence of the properties of the matrix
B and its inverse.

Condition (BD3) ensures that « 4+ Ad(x; k) satisfies constraint (P.2) for all A € R
since A(z+Ad(z; k) = Az + AAd(x; k) = b+0 = b, where Az = b since x is a feasible
solution of (P). We next characterize the set of A such that « + Ad(z; k) > 0; that is,
(P.3) holds. If every component d,;(x; k) of d(z; k) is nonnegative then A can be taken
arbitrarily large and (P.3) continues to hold. The next result shows that, under our
assumptions, this cannot happen.

LEMMA 5.2. Suppose (A2) holds. Let x be a nondegenerate bfs and k be the index
of a nonbasic variable at x. The set {j € S(z) : d;(x; k) < 0} is nonempty.

Proof. Suppose not. Then, d;(x;k) > 0 for all j € S(z). Also recall that
di(z;k) = 1 and d;(z;k) = 0 for all j € S°(z) not equal to k. This implies that
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x + Ad(x; k) > 0 and, in particular, x + Ad(x; k) € F for all A > 0 since both (P.2)
and (P.3) are satisfied. This violates the boundedness assumption (A2). d

Given this lemma, we may look for the leaving variable associated with the basic
direction k. Informally, the leaving variable is the basic variable that first reaches a
value of zero along the basic direction. We need a few lemmas to make this precise.

The object of interest here is the infimum ratio

(5.4) Az; k) = inf {% :j € S(x) such that d;(z; k) < 0}

Below (in Theorem 5.6) we show A is well-defined and that there always exists a

unique j that attains the infimum in (5.4).
Next, we show that A(x; k) behaves as expected, in the sense that it defines how
far the feasible region extends in the basic direction d(z; k).

LEMMA 5.3. Let x be a nondegenerate bfs and k be the index of a nonbasic vari-
able. Then x + Md(z; k) > 0 for all X € [0, \(z; k)]. Moreover, x + \d(x; k) # 0 for
A ¢ [0, A(x; k)]

Proof. For the first part, consider any 0 < A < A(x; k). We only need to consider
j € S(z) for which d;(z;k) < 0 (because d;(xz;k) > 0 for all other j and hence
xj + Adj(x; k) > 0 for those j). For any such j, we have, z; + Ad;(z; k) > z; +
Mz k)dj (3 k) > x5 + %dj(m; k) =0 as claimed.

For the second part, first consider any A > A(x; k). We need to show that there is
a j € S8(x) such that z; + Ad;(z; k) < 0. Any such j must be such that d;(z; k) < 0.
There are two possibilities. The first one is that the infimum ratio is attained for some
J,say j*. Then, - +Ad;«(x; k) < x;+A(x; k)d;- (23 k) = :cj*Jr%dj* (x;k) = 0.
The second one is that the infimum ratio is not attained. Suppose A = A(x; k) + € for
some € > 0. Now, by definition of the infimum, there exists a j* such that % <
A(z; k) +¢, and for this j*, we have, zj + A« (z; k) =z« + (A(a; k) +€)d;- (z; k) < 0.
Finally, if A < 0, then x, + Adg(z;k) =0+ A < 0. |

It remains to define the leaving variable. Any x; such that j achieves the infimum in
the definition of A(x; k) in (5.4) is a candidate (by nondegeneracy there exists at most
one such index). However, it is not clear whether or not this infimum is attained.
Indeed, in the CILP setting, a leaving variable may not exist in general.

Under our assumptions, however, we show that a leaving variable always exists in
every basic direction. Our proof of this requires geometric reasoning. We first show
that 2’ = x+Ad(z; k) from the previous lemma is an extreme point (see Proposition 5.5
below). In the process, we show that each basic direction goes along an ‘edge’ of the
feasible region (a precise definition of ‘edge’ is given). This conforms with our intuition
from the finite-dimensional setting that pivots occur along edge directions.

Having established z’ is an extreme point, we will use Theorem 4.7 to conclude
that x’ is a nondegenerate bfs. This algebraic property of z’ rules out the possibility
that the infimum in (5.4) is not attained. Details of this argument are in Theorem 5.6.

We start with a formal definition of extremality that captures the notion of ex-
treme points as a special case. For (P.3) extended discussion of extremality in general
infinite-dimensional vector spaces, see Section 7.12 in [3].

DEFINITION 5.4. (Extreme subset) Let S be a non-empty subset of RN. A non-
empty subset E C S is called S-extreme if it has the following property: if x,y € S
and if there exists a t, 0 < t < 1 such that tx + (1 —t)y € E, then x,y necessarily
belong to E. A 0-dimensional extreme subset is a called an extreme point of S. A
1-dimensional extreme subset of is called an edge of S.

This manuscript is for review purposes only.



v Ot Ot Ot
NN NN
o 3 o Ot

12 A. GHATE, C. T. RYAN, AND R. L. SMITH

PROPOSITION 5.5. Suppose (A1)—(AT) hold, x is a nondegenerate bfs, and k is
the index of a nonbasic variable. Then,
(i) the set Z(z;k) £ {2 € H: z = x + Md(z; k), X € [0,\(z;k)]} is an edge
of F, and
(ii) x + A(z; k)d(x; k) is an extreme point of F.

Proof. See appendix. 0

THEOREM 5.6 (Existence and uniqueness of leaving variable). Suppose the con-
dition of Theorem 4.7 hold and let = be a nondegenerate bfs and k be the index of a
nonbasic variable. There exists a unique leaving basic variable; that is, there exists
a unique j* € S(z) with dj(z; k) < 0 that attains the infimum ratio in (5.4). Thus,
o' & 24+ Nx;k)d(z; k) is a nondegenerate bfs with basis B(z') = B(x)U{a.x}\{aj-}.

Proof. By Proposition 5.5, 2’ is an extreme point of F and thus by Theorem 4.7,
7' is a nondegenerate bfs. Suppose by way of the contradiction that there is no leaving
basic variable when pivoting in nonbasic variable zj to form z’. We will contradict
property (B1) of the basis B(z') of «'.

Since there is no leaving basic variable, this means that S(z') = S(x) U {k}.
Indeed, by the definition of d(x; k) we have x} > 0, 2% = 0 for j € S°(x) and since
the infimum is not attained for any j € S(z), we must also have z; > 0.

Let z = 2’ — x. Note that B(z) C B(2') since, as we have just argued, S(z) C
S(z'). Foralli=1,2,...

[e9)

Zaijzj = Z 525 = Z aijx; — Z Qi 5

Jj=1 JES(z') JES(z") JES(z")

= Z G,ijJ?;»— Z aijxj:bi—bi:O
jeES(a) jeS(x)
and thus Az = 0. Since z # 0 this contradicts property (B1) of the basis B(z') of
nondegenerate bfs 2. Clearly, B(z') = B(z) U {a.x} \ {a;-}. O
This result shows that, under our assumptions, every basic direction admits a

unique leaving variable (uniqueness invokes nondegeneracy).

Remark 5.7. By (BD1) in Definition 5.1, the value of the entering variable in the
new basic feasible solution &’ is A(x; k), since 2’ = x + A(z;k)d(x; k). Thus, if we
assume (AG) and (A7), we must have A(x;k) > o. That is, every pivot operation
“moves” to a different bfs.

6. Reduced costs and optimality conditions. In this section, we explore
the properties of entering nonbasic variables. This discussion leads to establishing an
optimality condition for CILPs based on pivoting, which serves as the condition for
optimal termination of our simplex method.

DEFINITION 6.1. Let = be a nondegenerate bfs and k the index of a nonbasic
variable. The reduced cost r(z;k) of nonbasic variable k at basis x is the sum
Z;il cjd;(z; k). Using the structure of d(x; k) detailed in (BD1)~(BD3), the reduced
cost is typically expressed as r(x;k) = ¢, + Zjes(z) c;dj(x; k).

An alternate way of writing reduced cost is using matrix notation. Recalling
our expression for d(z;k) in (5.3), we may write the reduced cost as r(z;k) = ¢ —
2 jes(z) cj(B(x) tay); or as a reduced cost vector r(z) = ¢ — cg(x)B(:c)*lA
with entries r(z; k) and where cg(x)B(a:)’lA denotes the sum g, cj(B(z))"tA);.
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Note that here r(x; k) = 0 for any basic variable k € S(z). Moreover,
(6.1) r(z; N(z)) £ (r(zk)  k ¢ S(x)) = ene) — CpayB(@) " N(2).

By our assumptions on ¢ and d, the reduced cost vector is well-defined. Moreover,
it is critical to note that the reduced cost of a nonbasic variable depends on the basis
of the current bfs.? This is reflected in our choice of notation 7(x; k) and r(x).

The reduced cost allows us to succinctly capture the change in objective value
when pivoting from z to 2/ £ z + A(x; k)d(z; k), which is equal to

(6.2) chx; - chacj = \(x; k) chdj(x; k) = Na; k)r(z; k)
j=1 j=1 j=1

and so pivoting in a nonbasic variable with negative reduced cost will strictly improve
the objective value over the current feasible solution of (P) (recall that when (A6)
and (A7) hold, A(z; k) > 0, as discussed in Remark 5.7).

The set T(x) £ {k € S¢(z) : 7(z; k) < 0} of nonbasic variables at x with negative
reduced costs are the candidate choices for entering variables in a pivot. The main
result of this section is to show, under certain conditions, that if 7(z) = ) then we
can conclude that x is an optimal solution. This implies that the basic directions are
a sufficient set of improving directions.

THEOREM 6.2 (Optimality condition). Suppose (A4) and the conditions of Lemma 3.3}

hold. If x is a bfs and r(x) > 0 then x is an optimal solution.

Proof. Suppose r(z) > 0 for some bfs z. For notational simplicity let B denote
the basis B(z) of  and let N denote N(x).

Let y be any feasible solution and let 2 £ y—x. Since 2 and y are both feasible and
thus Az = Ay = b, we have Az = 0 since A is a linear operator. As above, we write
z as z = (2B, 2zn) so that 0 = Az = Bz + Nzp. Since B is invertible, multiplying
both sides by B~! yields 0 = B~'Bzg + B"'Nzy and so zg = —B~!Nzy. Hence,
we have
(6.3) c'z=(cy —cgpB'N)zn (more details below)

(6.4) =r(z;N)  zn. (using (6.1))
We give some more details on (6.3). In finite dimensions, this step is trivial, here it
requires some additional reasoning.

Let ey = (v1,v9,...), cgB™IN = (u1,pt2,...), and zy = (71,72,...). The goal
is to show that (to yield (6.3)): D pey Vklk — Y opey MMk = 9 peey (Vi — f) Tk, and this
holds as long as each sum on the left-hand side is finite. We first argue that the sum
21?;1 VM is finite. Note that zy € H since z € H and cy satisfies the condition
Sy |vk|?/0% < oo since c satisfies (A4). By Lemma 2.2, the sum ¢! z is finite, which
implies c;zN = Zzil VMg is also finite. Next, recall that EZOZI LMk = ch_lNzN
where the right-hand side is finite for the following reasons. We know zy € H and so
Nzy €Y by Lemma 3.3. Thus, B~'Nzy is again in H since B~! maps Y to H. By
similar reasoning as for the previous sum, we can thus conclude that c;(B~!Nzy) is
finite. This allows us to conclude (6.3).

Now, observe that xn = 0 by definition of a basic variable, and so zy = yy —
xn = yn > 0 since y is feasible and thus satisfies (P.3). Moreover, by hypothesis,
r(x; N) > 0. This implies that 7(z; N)Tzy > 0 and so from (6.4), ¢" 2 > 0 and thus
¢y > ¢"x for all feasible y. This implies that z is an optimal solution. ]

2When degeneracy is allowed, different bases for the same basic feasible solution may yield
different reduced costs for nonbasic variables. Under (A6), a single basis exists and so there is a
unique reduced cost for a nonbasic variable at any bfs.
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7. An (abstract) simplex method. Given our description of pivoting in Sec-
tion 5 and optimality condition in Theorem 6.2, we are now ready to state our sim-
plex method. We should note that we do not claim the finite implementability of this
method, merely that each operation is well-defined and the termination condition is
valid. For this reason, we call our simplex method “abstract” — additional structure
or assumptions are needed to implement it in general. Issues of finite implementability
have been discussed for special cases in the literature [19, 26, 36].

Since we have assumed that every basic solution is nondegenerate in (AG), any
choice of entering variable suffices because there is no chance of cycling (that is,
returning to a previously visited basic feasible solution). Indeed, as long as there is
an entering variable k with negative reduced cost r(z; k) < 0, Remark 5.7 shows that
A(z; k) > o and so by (6.2) the objective value strictly drops with each pivot. Hence,
cycling is not possible. Thus, property (P1) holds for our simplex method. The next
results structures the possible reduced costs.

LEMMA 7.1. Suppose (A4) and the conditions of Lemma 3.3 hold. For every bfs
x, let T(x) = {k1, ko, ...} be the set of indices on nonbasic variables, taking k1 < ko <
- without loss. Then either T (x) is finite (possibly empty) or limy_ o0 r(z;ke) = 0.
Proof. Tt suffices to show that if 7 (z) is not finite then limy,o r(x;k¢) = 0.
From the definition of reduced cost, we have r(x; k) = ¢ — c;(w)B(x)’la.k for any
k € T(zx). Note that a., € Y since a., € cspan(A) C Y by Lemma 3.3. Hence
(5 k)| < lex| + [ep) ((B(z))'a.x)|. Now,
(7.1)  lepyB@) ar)l < lep@llullB@)  ar)lla < lles@llallB@) " |Lllarlly
where || ||, is the operator norm for the space L(H,Y) of continuous linear operators
mapping H into Y. Hence, |r(z;k)| < |ex| + |[cp@||a]|B(z)~||L|lax|ly. From the
proof of Lemma 3.3 we can conclude ||a.x||y — 0 as k — oco. Indeed, since a.,, = Ae,
where e is the unit vector with ef =1 and e? = 0 otherwise, we have from (3.2) that

lla.x]| < a%ﬁneknf[ - a%ﬁgk
that converges to 0 as k — 0o. Also ||cp(y)|lm < oo and [|B(z) || < oo since they
are bounded linear functionals and operators respectively, and |c;| — 0 as k — oo by
(A4). Taken together, we can use this to conclude that limg_, o 7(z; k¢) = 0. a

LEMMA 7.2 (Most negative reduced cost). Let x be a bfs. If T(x) is nonempty,
then the most negative reduced cost r, £ infper(z) r(x; k) ds attained by some non-
basic variable k, € T (z).

Proof. Let € = r(z;k1) < 0. By Lemma 7.1, there exists an index £ such that
r(x;ke) > € for all £ > £. Thus, infrer ) r(v; k) = min{r(z; k) : £=0,1,...,¢}. The
latter is a finite set and so the minimum is clearly attained by some k* € {0,1,...,¢}.0

We now have all of the ingredients to state our simplex method.

SIMPLEX METHOD
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1. (Initialization) Let ' denote an initial bfs of (P). Set an iteration
counter m to 1.

2. (Compute reduced costs) Compute reduced costs r(z™; k) for all nonbasic
variables z € S¢(2™).

3. (Optimality test and termination) If r(x™;k) > 0 for all &k € S¢(x™),
return ™ as an optimal solution and terminate.

4. (Determine entering variable) Otherwise, select as entering variable xgm
a variable with the most negative reduced cost (as defined in Lemma 7.2).

5. (Pivot) Determine a new bfs o/ = x™ + \(z™; k™)d(z™; k™).

6. (Update bfs) Set ™ < a2’ and m < m + 1. Continue at Step 2.

We briefly justify the steps of the algorithm. The optimality test in Step 3 suffices to
conclude optimality by Theorem 6.2. The pivoting step (Step 5) is discussed in detail
in Section 5, where the objects A(z™; kI*) and d(a™; k") are discussed. The fact that
7' is again a bfs was established in Theorem 5.6.

LEMMA 7.3 (Reduced costs converge to zero). Suppose (A6) and (A7) and the
conditions of Theorem 5.6 and Lemma 7.2 hold. The most negative reduced cost rI*
at iteration m converges to zero as m — co. That is, for any € > 0, there exists an
iteration counter M, such that —e < r* <0 for all iterations m > M.

Proof. Suppose not. There exists a subsequence of iterations m,, in which r}, <
—e (note that 7}, exists for each m,, by Lemma 7.2 and Theorem 5.6). Since the Value
of the entering bas1c variable at the end of iteration m,, is A(z™";k,), Remark 5.7
implies that A(z™~;k,) > o since (A6) and (A7) hold. Therefore, the objective
function is reduced by at least oe in each one of these iterations, since the entering
variable in Step 4 of the simplex method has reduced cost r};, < —e. But this is
impossible since the sequence of function values ¢’ 2™ is bounded below by f*. O

We do not discuss how to determine an initial basic feasible solution. This remains
an open challenge for many papers on CILP (see, for instance, [16, 32, 36]). In certain
contexts (like those we discuss in Section 9), a starting basic feasible solution can be
determined by inspection. More generally, a Big M approach seems appropriate.

8. Convergence to optimality. We now show that our simplex algorithm sat-
isfies property (P2). More precisely, we will say our algorithm has optimal value
convergence if the values of the sequence of iterates x™ converge to the optimal
value f* of (P). More formally, let f™ £ c¢T2™. Our goal is to show that f™ — f*
as m — oo. Of course, if the algorithm termlna‘ces7 the optimal value f* is attained.
The interesting case is when the algorithm never terminates.

To show optimal convergence we need one final assumption. To state it we define
a topology for the subsets of columns of A that allows us to talk about convergence
of bases. Let B be a subset of columns of A. Then, the sequence jZ = (58,58 ...)
where jZ € {0, 1} for all i encodes a subset of columns in A where jZ = 1 if column
a; € B and 0 otherwise. We encode convergence of bases “column by column” via
convergence in this space of sequences. Let I be the set of all {0, 1} sequences and
define the product discrete topology on I where j2" converges to jZ if for every i
there exists an m; such that j8" = jB" for all m > m;. In other words, convergence
corresponds to “lock in” in every element. We say a sequence {B™} of subsets of
columns of A converges to another subset B* of columns of A if and only if j5™
converges to 72" in the above product discrete topology on I. It is straightforward to
see that the resulting topology on subsets of columns of A is a homeomorphism for
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the product discrete topology on I. We say a collection of subsets of columns of A
is closed if the limit of every convergent sequence taken from this collection is also
contained in the collection.
(A8) The set B2 {B(z) : x is a bfs of (P)} is closed.?

The next section explores an example where (A8) holds. It is worth noting that
there are very natural settings where this assumption fails. Consider the min-cost
flow setting of [32] but now relax the condition that the graph G contains no infinite
directed cycles. Indeed, consider the graph that consists of a single infinite directed
cycle. Removing a single edge from this cycle yields a bfs corresponding to a spanning
tree. Consider the sequence of bfs’s that arise by successively removing edges along
the outward directed portion of the infinite directed cycle. This sequence of bfs’s
converges in the product discrete topology to the entire infinite directed cycle, which
is clearly not a bfs.

LEMMA 8.1 (Bases converge in product discrete topology). Suppose assumption
(A8) holds. Let (B™ : m = 1,2,...) be a sequence of bases. Then there exists
a subsequence B™™ and a basis B* such that B™" converges to B* in the product
discrete topology.

Proof. To prove the lemma it suffices to show that the set B of bases is sequentially
compact in the product discrete topology. Since closed subsets of sequentially compact
spaces are sequentially compact, by assumption (AS), it suffices to show that the
set of all columns of A is a sequentially compact space under the product discrete
topology described above. Indeed, the product discrete topology on A is metrizable
and compact by Theorems 2.61 and 3.36 in [3]. Compact subspaces of metric spaces
are sequentially compact (Theorem 3.28 in [3]) and thus the product discrete topology
on A is sequentially compact. ]

Convergence in the product discrete topology is not a standard notion of conver-
gence of linear operators. Accordingly, some work needs to be done to leverage this
condition.

First, we show that convergence in the product discrete topology implies the more
common notion of convergence in operator norm. The difficulty here is that, as an
operator, we think of each B defining an invertible operator on a different space.
That is, the basis B defines the invertible operator B : Hg — Y where Hp is defined
above Lemma 4.3. It is important in the arguments that follow to redefine B over a
common domain. Let B be the basis of A that consists of columns of A indexed by ji

for k =1,2,.... Let T denote the mapping from ¢? into Hp with T(z) = 2’ where
8k ifj=gpfork=1,2,...
(81) J?; _ $k/ 7 ]-k or P
0 otherwise
Thus, we can define B = BTpg, which remains an invertible and continuous linear

operator from ¢2 into Y since both B (by Lemma 4.3) and T (trivially) are invertible
and continuous linear operators.
Suppose L,, (for m = 1,2,...) and L are bounded linear maps between ¢? and
Y. Then we say that the L,, converge to L in operator norm if ||L,, — L|| — 0
as m — oo (where here, || - || denotes the operator norm). This is equivalent to the
statement that ||L,,x — Lz||y — 0 uniformly for all z € £ such that ||z||; < 1.
Consider the linear operators B™ and B*, where B™ and B* are defined as above.

3The fact that B is the collection of all bases relies on the assumption that all basic feasible

solutions are nondegenerate (B2) and thus every basis is of the form B(z) for some bfs z.
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The following result shows that convergence of B™" to B* in the product discrete
topology implies that B™» — B* in the operator norm.

LEMMA 8.2 (Bases converge in operator norm). Suppose (A3), the conditions of
Lemma 8.1 hold, and 0 < o < 6 < 1. Then the subsequence of linear operators B™»
converges to B* in the operator norm (where B™ and B* are defined in Lemnma 8.1).

Proof. By Lemma 8.1, the B™» converges to B* in the product discrete topology.
To simplify notation, we let B denote the linear operator B™» from ¢2 to Y defined by
B™n = B"™nTgm, where Tgm, is defined in (8.1). To show B"™ — B* in the operator
norm we must show || B,z —B*z||y — 0 uniformly for all z with ||z||,2 < 1. Let z € £2
be such that |||,z < 1. Using the above constructs, we have Bz = B(Tpz) = Ba' =
B(zy,/6%) = (a.j, /0, a.;,/67,...)x. Hence, we have B"z = > 50 5*jgfckaij;€z and
Bz = SR 6k rra.jx (where we use the shorthand j;" to denote JB" and ji to
denote j£) so that

oo o0
By — B*p — —Ji 5Tk L) = IR — § kg
B"r — B*x = E (07 xpagn — 0k apa ) = E (677 ajp — 07k a jx )z
k=k,+1 k=kn,+1

since jp = j; for k < k,, for some k,, for each n where k, — oo as n — oco. This
follows from the fact B™ converges to B* in the product discrete topology. Thus, we

have
oo

||an - B*LL'HY < Z ||(§_j’75a.j5 - (S_j’:a.j;)l'kHy
k=kn,+1

[e.°]

oo
Do DB Ay — 5Tk 2w

k=kn+1 \ i=1

(8.2)

By (A3), we have a;;n < o’k and a;;» < aa/*. The significance of this bound is that
we can unravel much of the dependency of the square root terms in (8.2) on the index
1, yielding;:

o0 o0
1B"z = B'ally < ) | D p¥a2|5 Ik alk — 6 Ikad a2
k=kn,+1 \ i=1

o0
as kn k k
(8.3) < kz_fl RAR U,
where, in the last step, v = a/d and since j;} > k and j; > k. Finally we can develop
the remaining sum in (8.3) as follows:

oo (oo} [ee]
Do = ok =2 Aok, <2 40 =275
k=1 k=1 k=1

where the inequality follows since ||x||;2 < 1. Returning to (8.3), we have

||Bn$—é*$”y S 2aafy kn

V1-6%2(1—7) 7
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Since v < 1 and k;, — o0 as n — o0, and the fact that right-hand side of the above
equation does not depend on z for any x € ¢?, we have B” — B* in operator norm,
completing the proof. ]

We can now state and prove the main result of the paper.

THEOREM 8.3 (Optimal value convergence). Suppose (A1)—(A8) hold with 0 <
B <1land 0 < a < § < 1 and the SIMPLEX METHOD does not terminate. Let
mea ZFl cjzi be the sequence of values of iterates x™ of the SIMPLEX METHOD.
Then f™ — f*. Moreover, there exists a subsequence of the x™ that converge to an
optimal solution x*.

Proof. By Lemmas 8.1 and 8.2, there exists a subsequence of bases B of that
converges to a basis B* in the product discrete topology and associated maps B
that converge to B* in the operator norm. As noted below equation (8.1), each of the
B™n are continuous and invertible maps from ¢2 to Y. Let ® denote the mapping
that sends invertible operators to their inverse; that is, @(B) = B~!. By Theorem
IV.1.5 in [37],* the mapping @ is continuous. This implies that (Bm")*1 converges
to (B*)_1 in the operator norm.

Let 2™ = (B™)~1p and 2* = (B*)~'b. Accordingly, ™ = Tgr, (B™)~1b
and x* = Tg}(B*)*lb. It is straightforward to see that since B™" converges to B*
in the product discrete topology, we have Tgm. — T~ and thus Tl;ﬂm — Tg} again
by appealing to Theorem IV.1.5 in [37]. Hence, we have ™" = Tgﬁln (Em”)_lb —
Tzt (B*)~'b = a* since Tgr, — Tgt and (B"™)~! — (B*)~', both in the operator
norm. That is, there exists a subsequence of the ™ that converge to a basic solution
x* in the norm topology of H. Moreover, since (B™»)~'b > 0, because each of the
™ is a basic feasible solution, we can conclude that (B*)~1b > 0 by continuity. This
implies that z* is a basic feasible solution.

Finally, we claim that z* is an optimal solution. To do so, we use Theorem 6.2
and show that the reduced costs r(z*; k) > 0 for all k& € S°(z*). Recall the definition
of reduced cost has r(z*;k) = ¢k + > cq- ¢j(B*)"'a.k, where S* is the support of
x* and k ¢ S*. Similarly, let S™ denote the support of ™. We will show that
r(z™ k) — r(z*; k) as n — oo for all k ¢ S*. Indeed,

[r(@™ k) —r(@ k) =1 Y ¢ ((B™) law); — ) ¢(BY) "aw);]

jeES™MN jeS*

=1 > GB™) ' =(B)Y Dar)i+ D>, ((B™) law);
jeSmnNg* jESmn\S*

- > G((BY) ak)l

JES*\S™Mn
< D BT =B Naw)l+ Y e ((B™) ak);]
JjES™MNNS* JjES™MN\S*

+ > e((BY) ta);]

jES*\Smn

The first time on the right-hand side converges to zero since (Bm")*1 converges to
(B*)~! in the operator norm. Moreover, the sets S™» \ S* and S* \ S™» vanish in

4Note that Theorem IV.1.5 is stated for settings where B : X — X is a linear operator for some
given Banach space X. However, the paragraph following the proof of the theorem (see page 193 of
[37]) shows that it applies to linear operators B : X — Y, where X and Y are (potentially different)
Banach spaces under conditions satisfied in our setting. Here we take X = ¢2.

5We make these changes in notation in order for the displayed equation below to be less crowded.
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the limit (by Lemma 8.1) and so the second two sums also converge to 0. These
observations involve an exchange of an infinite sum with a limit (as n — o0). This
exchange is legitimate under the dominated convergence theorem since for any subset
Sof {1,2,...}, Yjes lc;j(B™) ag);| < doiey lejxm| < oo since ™ is a basic
feasible solution and all feasible solutions have finite cost (and also when replacing
B™» and 2™ with B* and x*, respectively).

It remains to argue that r(z*;k) > 0 for all £ ¢ S*. Suppose otherwise, that
r(z*;k) = —e < 0 for some k ¢ S* and € > 0. Since r(z™";k) — r(z*;k) this
implies that for sufficiently large n, r(z™; k) = —e < 0. This contradicts Lemma 7.3.
Hence, we can conclude that the reduced costs of all non-basic variables at z* are
nonnegative. Hence, by Theorem 6.2, * is an optimal solution.

By construction, the iterates of the simplex method have nondecreasing objective
value. Thus, since we have just argued that x* is optimal, we know f™~ — f* and
since objective values are nondecreasing, the implies f™ — f*. ]

A brief comment on how the various assumptions are used in our main Theo-
rem 8.3. Assumptions (Al)—(A4) are invoked in the call to Theorem 6.2, the call
to Lemma 7.3 additionally uses (A6) and (A7), and finally the call to Lemma 8.2
additionally uses (AS8).

Although Theorem 8.3 does not furnish that the optimal solution convergence
desired in (P4), the next result shows that the iterates of the simplex method become
“arbitrarily close” to the set of optimal solutions. The Hilbert topology has an asso-
ciated metric d where d(x,y) = ||z — y||z. The distance from a point y to a set S is
denoted d(y, S) :=inf {d(y, s) : s € S}. We say a sequence y™ gets arbitrarily close to
S if d(y™,S) — 0 as n — oco.

THEOREM 8.4. The sequence of simplex iterates gets arbitrarily close to the set
of optimal solutions to (P). In particular, if there is a unique optimal solution then
the full sequence of iterates converges to an optimal solution.

Proof. Let F* denote the set of optimal solutions of (P). Suppose there exists a
subsequence ™~ of simplex iterates and an € > 0 such that d(z™~, F*) > € for all n
sufficiently large. By the compactness argument in the proof of the previous theorem,
there exists a convergent sub-subsequence of ™ that converges to an optimal feasible
solution x* € F*. However, this contradicts the supposition that d(z™~, F*) > € for
all n sufficiently large. ]

9. Examples. In this section, we look at a class of CILPs that satisfy (A1)—(AR)
and thus, by Theorem 8.3, our simplex method converges to optimal value. A goal of
this paper was to extract analytical insight from this example to build the topological
structure of “tractable” countably infinite linear programs. This was achieved in the
previous sections. In this section, we will reflect this theory back on this special case
to ground our contributions.

The following set up of minimum cost flow problems on pure supply networks is
due to [32]. We show that these flow problems satisfy (A1)-(A8), under the obser-
vation that (AG)—(A8) can actually be weakened. Instead of applying to all basic
feasible solutions (and extreme points), it suffices for (A6)—(A8) for all basic feasible
solutions encountered in a run of the simplex method.

Let G = (N, A) be a directed graph with countably many nodes ' = {1,2,...}
and arcs A C N x N. Each arc (4, j) has cost ¢;;, and each node has supply b; (with
b; < 0 corresponding to a demand). The goal of the countably infinite network flow
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(CINF) problem is to solve:
(9.13) H;f Z CijTsj

(i,)eA

(91b> s.t. Z Tij — Z Tji = b; for i € N
j:(4,5)€A j:(4,5) €A

(9.1c) x;; > 0 for (4,5) € A

A graph is locally finite if every node has finite in- and out-degree. Two nodes 7 and
j are finitely connected in G if there exists a finite path P;; between ¢ and j. The
graph G is finitely connected if all pairs of nodes in G are finitely connected. A path to
infinity is a sequence of distinct nodes 41,2, ... where (ig,ig+1) € A or (igt1,ir) € A
for k = 1,2,.... An infinite cycle consists of two paths to infinity from some node
i, (i,41,42...) and (4, j1, j2, ... ), where all intermediate nodes 45 and j, are distinct.
A spanning tree is a subgraph of G that contains no finite or infinite cycles and is
incident to all nodes. A basic feasible flow in G is a feasible solution of (9.1) such
that the subgraph induced by the arcs with positive flow is contained in a spanning
tree of the graph. When the set of arcs of a flow x with positive flow themselves
form a spanning tree, we call x a nondegenerate basic feasible flow. Of particular
importance to the analysis in [32] is the following special class of spanning trees. A
spanning in-tree S rooted at infinity is a spanning tree where for each node i € N
there is a unique path from 4 to infinity in S that contains only forward arcs directed
to “infinity”. [32] also make the following additional assumptions:

(NF1) G is locally finite,

(NF2) G is finitely connected,

(NF3) G contains no finite or infinite directed cycles,

(NF4) b; is integer for all ¢ € NV,

(NF5) b € loo(N), i.e., there exists a uniform upper bound b on absolute values
of all node supplies.

(NF6) G has finitely many nodes with in-degree 0,

(NF7) b; > 0 for all i € N (all nodes are either transshipment nodes or supply

nodes).
Assumptions (NF6) and (NF7) ensure that graph G permits stages, defined as follows.
Stage 0 is the finite set of all nodes with in-degree 0. Stage 1 consists of all nodes
with in-degree 0 in the modified graph that results from removing all stage 0 nodes
and their adjacent arcs. Thus, all stage 1 nodes are adjacent to stage 0 nodes in the
graph. We construct the subsequent stages by repeating this procedure.

In [32], the following additional assumption is made on the structure of stages:

(NF8) There exist § € (0,1) and v € (0,400) such that for every (i,5) € A,

eij] < 76*@) where § can be interpreted as a discount factor (discounted
arc costs) and s(7) is the stage of node ¢,

(NF9) There exists a sub-exponential function g(k) where |Si| < g(k) for all k.
We refer to problems satisfying (NF1)—(NF9) as pure supply problems. Clearly, (9.1)
is in the form (P), so it remains to check that (A1)—(A8) hold when (NF1)—(NF9) are
taken.

Before checking these, it will be convenient to reformulate (9.1) by augmenting
supply on certain nodes (for reasons that will become apparent once we check (AG)).
Let N’ = (N, A,¥,c) denote the network with the same graph and arc costs, but
with supply b; = b; if b; > 0 and b, = 1 if b; = 0. Observe that if N is a pure supply
network, then so is N’.

O —
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The key property of network N’ is given in Lemma 4.8 of [32], which we recall
as follows. Let T denote a spanning tree in N. Any arc (i,j) not in 7" has a reduced
cost that corresponds to the cost of the cycle that it is formed in T when arc (4, j) is
added to T' (where the costs of arcs are weighted with 1 or —1 according to whether
they are in the same direction as (4,j) in the cycle or not; for a formal definition
see the discussion preceding Lemma 3.3 in [32]). The key property of Lemma 4.8 is
that the reduced cost of arc (7, ) with respect to spanning tree T" in the augmented
network N’ is the same as the reduced cost of arc (i,j) with respect to T in the
original network N. Moreover, flows in N’ can easily be converted to flows in N.
Indeed, an optimal solution for the augmented problem yields an optimal solution
for the original problem if we remove all flows originating from augmented supplies.
Hence, it suffices to run a simplex algorithm on N’ to recover a simplex method on
N. It only remains to verify (A1)—(A8) hold for N'.

Not every instance of (9.1) is feasible, but we will only discuss feasible instances
and so we may assume that (A1) holds. If an instance of (9.1) is feasible, then taking a
single outgoing arc from every node forms an initial spanning tree Tj and corresponds
to a basic feasible flow (Lemma 4.4 in [32]). Lemma 4.2 in [32] shows that trees
constructed in this way are always spanning in-trees rooted at infinity.

Although there are no explicit bounding constraints in (9.1), Lemma 2.6 in [32]
shows that there is an implied bound on the flow on every arc. This is implicit from
the uniform boundedness of supplies (NF5) and finiteness of the stages. Condition
(A4) is a direct implication of (NF8) when ¢ is taken sufficiently large. The argument
here is similar in spirit to the proof of Lemma 2.4, details are omitted. For (A3),
we can rescale the constraints (9.1b) to satisfy the necessary conditions. The finite
support of both rows and columns of the constraint matrix makes such a rescaling
possible. This finiteness of rows and columns in a consequence of the fact that graph
G is finitely-connected (NF2). Condition (A4) follows easily from (NF8) and (NF9).

Establishing (A5) requires more effort. In fact, we will show that every basis
defines an onto map into Y, thus establishing the result for A since we have cspan(A4) =
cspan(B) for every basis B. In [32], a basis B corresponds to the arcs of a spanning
in-tree rooted at infinity. It suffices to argue that B : Hg — Y is an onto map for
B > §, where Hp is defined before Lemma 4.3. We already know that B : Hg — Y
by Lemma 3.3. Let y € Y and we will show that there exists an © € Hp such that
Bz = y. We have ||y|[} = D2, %|y;|?> < oo since y € Y. Let §; = max{1, |y;|}
for i = 1,2,... and note that Y -, 8%/|7;|> < oo. Let the nodes in the tree T'(B)
be numbered so that arc (i,j) € T(B) only if ¢ < j. We have that there is a unique
directed path to infinity out of each node ¢ in T(B). Let P(i) be the finite set
of all nodes k£ such that the unique path to infinity out of node k passes through
node 4. This set is finite by Lemma 4.1 in [32]. The flow constraints Bx = b then
gives T = Y pcp(;) Yk where (i, j) is the unique arc leaving node i in T'(B) (the
uniqueness of this arc is also guaranteed by Lemma 4.1 in [32]). It remains to show
that |[2|[z < oo for such an z. We have [z;;| < 374 pey [yl < 3052y vkl < 2051 [0l

so that |a;;|2 < (3i_, [Gx])? since S%_, |G| > 1. Hence,
(92) lellf = > 0% aP <D 6% O o)’
(i,5)ET(B) i=1 k=1
since xz;; = 0 for (7,7 T(B). Tt thus remains to argue that $°°°., §2¢(3¢ )2 <
j ) J g i=1 k=119

00, which will complete the proof. First, observe that there exists an [ and a g > 1
such that |§;| < 3/B°¢ for all 4 > I. Indeed, suppose otherwise that |j;| > /3¢ for
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some subsequence i = i1, 19,..., in which case
oo o0 o0 oo
STBMGE =Y g P =D BT (/A7) =Y G =,
i=1 k=1 k=1 k=1

which contradicts the fact that y € Y and thus Y -, %|y;|> < co. Thus, we may
develop the second sum in the right-hand side of (9.2) as >, _; |9k < >, (¥(I) +

§/B%) where §(I) = maxg<y |§x|. Hence, 22:1 |gk| < 4g(I) +4y/B;. Thus, returning
to (9.2), we have:

ol < D8O lih)® <) 6%(ig(l) + ig/B)?
k=1 =1

i=1
= ()Y 6% + 25Dy Y _(6°/B)'F* +5° Y _(6/8)** < o0
=1 1=1 =1

whenever 0 < § < 8 < 1. Hence, x € Hpg and we conclude that A is an onto map,
establishing (A5).

In general, problem (9.1) need not be nondegenerate and so (A6) may not hold.
However, under the transformation to N’, all basic feasible solutions are nondegen-
erate. It is easy to see that every spanning tree in N’ is a spanning in-tree rooted
at infinity. Moreover, in the augmented N’, a spanning in-tree rooted at infinity S
corresponds to a nondegenerate basic feasible flow 2°, since every node has positive
supply and a single outgoing arc. Accordingly, every arc carries positive flow and thus
2 is nondegenerate. In other words, there is a way to pivot from a nondegenerate
basic feasible flow to a nondegenerate basic feasible flow for every choice of entering
variable back in the original problem using the augmented network N’. Undertak-
ing only such pivots in the simplex method defined in Section 7, we see that only
nondegenerate basic feasible flows can be encountered by the simplex method.

Condition (A7) on the supports of extreme points follows from Theorem 3.2 in
[32]. That result shows that every basic feasible flow is integer valued when the data
is integer and, consequently, o > 1.

When we showed (A6) above, we remarked on how the simplex method can be
made to pivot from spanning in-trees rooted at infinity to spanning in-trees rooted
at infinity. Corollary 4.15 in [32] shows that any convergent subsequence of such a
sequence of iterate trees converges to yet another spanning in-tree rooted as infinity
in the product discrete topology. The verifies (A8) and completes our verification the
pure supply CINFs fit the setting of current paper and can be solved via the simplex
method proposed in Section 7.

10. Conclusion. In this conclusion, we will provide a high-level summary of
some of the insights our framework provides — particularly, in its novel topological
underpinning — for solving CILPs via a simplex method. First, (AG) is critical. This
assumption guarantees that we are able to “move”, at least a little bit, at every pivot.
The SPS assumption (A7) means that there is a lower bound on this “little bit” that is
moved. Taken together, these properties guarantee that progress towards optimality
is achieved as the simplex method runs.

However, “positive progress” towards optimality does not guarantee convergence.
A key ingredient is (A8). The SPS condition (A7) guarantees that extreme points
have an algebraic characterization as basic feasible solutions, which gives rise to the
mechanics of tracking how the simplex method iterates from bfs to bfs through ex-
ploring successive bases. The closure of the set of bases implies a convergence of a
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subsequence of these bfs iterates, and hence in their objective values. The property
that reduced costs converge to zero (Lemma 7.1), along with the optimality condition
in Theorem 6.2, ensure convergence to optimality (Lemma 7.2).

In future work, it would be interesting to find settings where some of our as-
sumptions fail, and yet a simplex method can be constructed that converges in value
to optimality. Of course, this paper has only examined general conditions to ensure
properties (P1) and (P2) discussed in the introduction. Exploration of what general
conditions ensure (P3) and (P4) is a promising future direction. Some of the examples
in the previous section have these properties, giving the interested reader a foothold
on that journey.
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Appendix A. Proofs of Lemmas 3.3 and 4.3.

The first step is to establish an isometric isomorphism between H and ¢2, the
space of square-summable sequences. Consider the transformation Tj from H into RY
defined by Ts(z) = (67z;). Let z(d) denote the image of z under Ty for notational
convenience.

Claim A.1. The spaces H and ¢2 are isometrically isomorphic under mapping T.

Proof. First, we claim that Ty is an isometry. Indeed, ||z||g = | /Z;il 0% |z,|? =
Z;il |67z;]2 = ||T5(z)|[¢2. Next, observe that Ts : H — (2. Indeed, for z € H

note that ||z(0)||3 = ||z||% < oo and so z(8) € 2. Second, we claim that Ts : H — (2
is onto. Let y € ¢? and set z; = (y;/¢7) for j = 1,2,.... Observe that Ts(z) =
(67(y;/87)) = (yj) = y. Thus, it suffices to argue that © € H. This follows since
Nollm = 2252, 0% [y ? = 3252, 0% |y /0717 = 3052, 0% |y;12 /0% = 3052, Iyl < o0,
since y € ¢2. Third, we claim that T5 : H — ¢? is one-to-one. Indeed, if z # 2’
in H then since Ty is a linear map, ||Ts(z) — Ts5(2)||;z = ||z — 2'||g # 0. Hence,
Ts(x) # Ts(x') and Ty is one-to-one. O

Consider now the transformation Tj 4 : cspan(A) — 2 where cspan(A) is the
column span of the infinite matrix A over H and Ts a(y) = (B%y;). By an identical
argument as above, T 4 is an isometric isomorphism between cspan(A) and ¢2. Using
Ts and Tp 4 we construct a “pullback” linear operator A’ := T 4 AT * from £2 to ¢?
from the operator from H to Y defined by A.

Claim A.2. The linear operator A is continuous if and only if A’ is continuous.

Proof. 1t is straightforward to see that T5_1 and T3 4 are bounded linear operators
with an operator norm equal 1 since both are isometries and so (for instance)

_ Ts, a2 _ Hylly _
175,41 = sup oty —_ SWP = 1<
y€Ecspan(A) yEcspan(A)
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Now, since A" = T 4 AT; " we have ||A'|| < ||Tpalll|AI|T5 ]| = ||A]| so A’ is a
bounded linear operator Whenever A is. Multiplying the equation defining A’ the
above equation on the left by T} A and on the right by Ts we get A = Ty, 114A’ Ts and
so A is bounded whenever A’ 1s Tn fact, ||A|| = ||A/]|. 0

Thus, we have reduced showing the continuity of A to establishing the continuity
of A’. Since A’ is a linear operator from ¢? to ¢?, we can leverage from the following
lemma.

LEMMA A.3 (Schur test, page 260 in [12]). If a doubly infinite matriz M = (m;;)
satisfies (i) 352, [mij| < By for every i, and (ii) 3.2, |mi;| < Bo for every j, then
the operator M is bounded and ||M|| < /By Bs.

We now apply the Schur test to A’. It a straightforward exercise to show that
A = (mij) has m;; = ﬂi/éjaij. To check (i) in the Schur test holds, observe that

Z&“W Zéa|‘lw|<5125“a] 51“2 ' <artls =By,
j=1 Jj=1
where the first inequality holds by (A3) and the fact O <f<landO<a<d <l
Similarly,
> Flal = £ Blayl < £ plac’ = Fay (ap) <a; = B,
i=1 i=1 i=1 i=1

Proof of Lemma 3.4. Under the assumptions, A’ is a continuous map from ¢2 to
¢2 by the Schur Test (Lemma A.3). Then by Claim A.2, we have A is a continuous
mapping from H to Y. This completes the proof. 0

Proof of Lemma 4.3. It remains to prove the B is a continuous operator. Recall

that the basis B defines an operator B : Hg — Y. Under the assumptions, B is
[|Bz||y [ Az||y

a bounded linear operator. Indeed, ||B|| = sup,cy, Tl = SWacHp Tapll <
SUDP,cy ll\ﬁfl‘LY = ||A|| < o0, where the second equality follows since B(x) = A(z) for
x € Hp and the last (strict) inequality follows from Lemma 3.4. |

Appendix B. Proof of Proposition 5.5.

LEMMA B.1. Let E be an extreme subset of S, a non-empty subset of RN. Given
another non-empty subset T of RN: (i) if E CT C S then E is an extreme subset of
T and (ii) ENT is an extreme subset of SNT.

DEFINITION B.2. Let x be a nondegenerate bfs. The cone of feasible directions
(fromz)isC(z) £{z € H:xz+ Xz € F for some X > 0}. Define also the translation
C(x) of C(x) by x. Thatis, C(z) 2 2+ C(z)={ye H:y=a+2z2¢€C(z)}.
Observe that F itself is a subset of C(z) since y — x € C(z) for every y € F (simply
take A = 1). In light of Lemma B.1(ii), we may focus attention on understanding
extreme subsets E of C(z) (which turns out to be an easier task) since £ N F is an
extreme subset of F = C(z) N F.
Following the above logic, we will examine an extreme subset of the translated
cone C(z). First, consider the set €(z;k) £ {€ € H : € = pd(z; k), p > 0}. We show
this is an extreme subset (in fact, an edge) of the cone of feasible directions.

Claim B.3. £(z; k) is C(x)-extreme.

Proof of Claim B.3: First notice that £(z;k) C C(z). To see this, consider a £ =
pd(x; k) for some p > 0 (we omit the trivial case of yp = 0). Thus, £ € E(x; k). In order
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to show that £(x; k) C C(z), we must show that £ € C(x), that is, that there exists a
A > 0 such that x + Aud(x; k) € F. Note that setting A = A(z; k)/p works. Now to
prove our claim, let i, x € C(x) and 0 < t < 1 be such that tn+ (1 —t)x € E(x; k).
We need to prove that n,x € £(z;k). Since n,x € C(x), there exists A\, > 0 and
Ay > 0 such that x +\;n € F and x + A\, x € F. That is, z + A,n > 0, Z;i1 ai;n; =
0, i =12,...and z + \\& > 0, 372 a6 = 0, i = 1,2,.... Moreover, since
tn+ (1 —t)x € E(x;k), there exists a p > 0 such that pd(x;k) = tn+ (1 —t)x.
To establish that n,x € &(z;k), we need to construct pq > 0 and ps > 0 such
that n = pid(z; k) and x = paed(x; k). To achieve this, we consider three types of
components of  and x. The first type is components j € S¢(z) such that j # k.
For these components, z; = 0 and hence we know that n; > 0, x; > 0. In addition,
d;(z; k) = 0. Thus, pud;(z; k) = tn; + (1 —t)x; implies that n; = 0 and x; = 0. Our
second type of components in fact only includes component k. For this component,
dp(z;k) = 1. In addition, 2, = 0 implies that 7y > 0 and x; > 0. As a result,
=ty + (1 — t)xx implies xj = 420
The third type of components is j € S(x). For these components, we have,

(B.1) Z aijN; = —NkGik, 1 =1,2,..., and
jeS(x)
(B.2) Z ;i X; = —XkQik = —'ul%t?kaih 1=1,2,....
jeS(x)

But since the basic direction d(z; k) is unique, the system of equations (B.1) implies
that n; = nid;(z; k) for all j € S(x). It is clear that this is a solution to (B.1). To see
that this is the only solution, we proceed by contradiction. So, suppose there is an
alternate solution ¢j, for j € S(), to (B.1). This implies that 3,5, aij(n;—¢;) =0
for i = 1,2,... with n; # (; for at least one j € S(x). But this contradicts the fact
that x is a basic solution. Similarly, the system of equations (B.2) implies that
X; = “;_”t’k d;(x; k) for all j € S(z). In summary, we have shown that, by choosing
1 = n and pg = “:T’, we ensure 1 = uid(z; k) and x = pod(z; k) as required.
This completes our proof of Claim B.3. This result is a precursor to showing that the
translated set E(x;k) = {z € H:z=a+¢, €€ E(x;k)} is an edge C(x).

Claim B.4. E(x;k) is C(z)-extreme.

Proof of Claim B.4: Consider any 2!, 22 € C(x). That is, there are ¢!,¢2 € C(z) such
that 2! =z + ¢! and 22 = o + £2. Consider any 0 < t < 1 such that tz! + (1 — )22 €
E(x;k). That is, there is some &0 € £(z; k) such that tz1 + (1 — )22 = 2 + ¢ We
need to establish that 2!,22 € &£(z;k). In other words, we need to establish that
€162 € E(z;k). To see that this holds, note that tz! + (1 — ¢)22 = t(z + &) +
(1 —t)(x +€%) = o+t + (1 — t)€2. But since this must equal x + £°, we have,
t& 4+ (1—1)€%2 = €Y. Since E(x; k) is C(z)-extreme, this implies that ¢!, €2 € E(z; k) as
required. This completes the proof of Claim B.4. Claim B.4 implies that &(x; k)N F is

(C(x)NF)-extreme. Observe that the set Z(x; k) = £(z; k)NF in view of Lemma 5.3.
Thus, since F C C(z) (as was observed before the statement of the result) Z(x; k) is
F-extreme, using Lemma B.1(ii). It is straightforward to see that x + A\(x; k)d(z; k)
is an extreme point of the set Z(z;k). Thus, by Lemma B.1(i), x + A(z; k)d(z; k) is
an extreme point of F.
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