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Spending time in virtual spaces is a growing part of the human experience. We study the design

of virtual spaces in a video game context, with an emphasis on understanding how people spend

more or less time enjoying these spaces. People enjoy spending time immersed in a video game world

but also want a sense of achievement. When deciding how to chart a meaningful path through a

virtual world, game players confront a series of choices. An effective design of a virtual world must

balance two things. First, the world should be flexible to differing time budgets of players. Second,

complex designs can overwhelm players with decision fatigue. We model virtual world design as a

graph design problem. We find a polynomial-time algorithm when decision fatigue depends only on

the number of vertices and paths in the graph. The algorithm uses an elegant optimality condition:

optimal world maps have a “side-quest” tree structure that is amendable to an efficient inductive

construction.
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1. Introduction13

Virtual worlds are becoming an increasingly more significant part of the human experience. News14

outlets talk of the “metaverse” as the next stage of evolution in technology.1 Lockdowns during15

the COVID-19 pandemic only accelerated interest in virtual worlds. Technology and entertainment16

companies are investing to learn how to design this new frontier.217

But none of this is entirely new. The video game industry has explored the design of virtual18

“worlds” for decades. Game developers have designed interactive worlds that capture the sustained19

attention of players. This is one of the fundamental goals of effective video game design.320

1 https://connectedworld.com/metaverse-the-evolution-of-the-internet/

2 https://www.makeuseof.com/companies-investing-in-metaverse/

3 See, for example, Schell (2019) for a textbook treatment of video game design principles.
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Figure 1 The world map of the video game Chip n’ Dale Rescue Rangers released in 1990 by Capcom for the

Nintendo Entertainment System.
fig:chip-n-dale

Designing interactive worlds is complex. It involves computer programming, artistic design, story-21

telling, economics, sociology, and psychology (Schell 2019, Hiwiller 2015, Hodent 2020, Kremers22

2009, Totten 2017). A comprehensive treatment is beyond the scope of any one mathematical23

model. Here, we study a stylized problem that may serve as a foundation for further research. We24

state the problem now.25

A game design team has prepared a set of game elements (levels, encounters, puzzles, etc.). Our26

focal design question is how to arrange the game elements into a “map”.27

Let’s make things concrete. Consider the world map in Figure 1 from the classic game Chip28

n’ Dale’s Rescue Rangers released by Capcom in 1990 on the Nintendo Entertainment System.429

Here, the game elements are levels labeled A through G. Players can pass through the world along30

different paths: ACDFG, BDFG, ACDEFG, etc. The arrangement of levels in this map raises many31

questions. Why must players tackle level A before C but can go to level B directly? Why make32

level E optional? Why give the players so many options for paths to level G?33

Chip n’ Dale’s is an example of a nonlinear world map, in the terminology of game developers34

(see, for instance, Schell (2019)). Nonlinear maps give players choices on how to proceed through35

the game. In a graph encoding, a nonlinear world map is one with more than one path for players36

to navigate the world. Linear gameplay is when the player has no choice, corresponding to a linear37

graph. While linear gameplay is common, nonlinearity is the mainstay of video game design.538

The degree of nonlinearity varies across different types of games. While Chip n’ Dale offers39

choices to players, these choices are limited. At the far end of the spectrum of choice are sandbox40

4 We use this example to illustrate our setting vividly. There are, of course, many recent examples of video games
with similar world maps. See, for example, Bad North released in 2018 on multiple platforms, and the Plants versus
Zombies series released from 2009 until the present day on all major platforms.

5 Of the top 100 most popular video games on IGN, upwards of 90 of those games have nonlinear designs. Accessed
on 27 December 2022 at: https://www.ign.com/articles/the-best-100-video-games-of-all-time

https://www.ign.com/articles/the-best-100-video-games-of-all-time
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games like the Grand Theft Auto series. Sandbox games allow players to explore an “open” world41

with very few restrictions. This yields a nearly limitless number of paths.42

This raises a simple research question. What is the ideal “degree of nonlinearity” in a video game43

world? Should players have a lot of choice or little? How to arrange game elements to augment44

or limit choice? To answer these questions, we need to think carefully about the implications of45

nonlinearity.46

A clear benefit of nonlinearity is flexibility for players. Nonlinearity offers many ways to interact47

with the game.6 The traditional base of video game players was young people with a lot of free time.48

But games have grown to welcome a much more diverse player population. In particular, these49

players differ in the amount of time they have to play.7 Nonlinearity allows different types of players50

to engage with different intensities, offering a multitude of ways to gain a sense of accomplishment.51

Linear games may demand a significant time investment to reach a satisfying conclusion. Players52

have no choice but to pass through all game elements. By contrast, players of nonlinear games may53

only interact with a subset of elements to reach a satisfying conclusion.54

In this way, nonlinearity offers a stark contrast between games and other entertainment genres.55

A meaningful conclusion of most modern television series requires watching every episode in order.56

Watching a subset of episodes leaves the watcher confused or without closure. Video games offer57

both choice and a sense of completion.58

Presented with choice, players need to assess what parts of the game to tackle, given their59

limited budget for playing time. Managing time is central to many service design problems. See,60

for example, Tong et al. (2017), Song et al. (2020), Ruiz-Meza and Montoya-Torres (2021). But61

managing time in video games has its own subtleties. Players get utility for their time playing62

the game. But playing too long without resolution builds impatience and frustration. An easy63

solution to this trade-off is to offer all available content in every possible order. Players can select64

as few or as many game elements as they like in navigating the world. This design is uncommon65

because offering all orderings gives rise to complex worlds. Imagine the Chip n’ Dale map with66

every possible path to area G. It would be an eyesore.67

This leads to our third consideration: decision fatigue. Overwhelmed with many decisions, players68

experience disutility from mental exertion. Weighing many possibilities leaves players exhausted,69

6 We should note that nonlinearity also encourages replayability. Different playthroughs unfold the game differently.
This can increase the perceived value of a game. While these benefits are of interest in general, we do not model
them. As the reader will see, the problem we focus on is already difficult to describe and model. More enhancements
will be welcome improvements for future work.

7 For more information about the diverse base of video game players, see the 2020 industry report of the Entertainment
Software Association (ESA): https://www.theesa.com/wp-content/uploads/2021/03/Final-Edited-2020-ESA_

Essential_facts.pdf. The ESA is the largest industry association of video game developers.

https://www.theesa.com/wp-content/uploads/2021/03/Final-Edited-2020-ESA_Essential_facts.pdf
https://www.theesa.com/wp-content/uploads/2021/03/Final-Edited-2020-ESA_Essential_facts.pdf
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Figure 2 A side-quest tree.
fig:side-quest-tree-intro

especially as most players view gaming as a leisure activity. Decision fatigue is well-studied in70

psychology. See, for instance, Kahneman (2011), Vohs et al. (2018), Augenblick and Nicholson71

(2016), Ma et al. (2021)). To our knowledge, no prior research has developed a mathematical model72

for decision fatigue in the graphical context we study here.73

Let’s restate our research question in light of the above considerations:74

Research question: How to design a map of a virtual world to maximize player enjoyment?75

The design must balance the utility of play, the disutility of playing too long without resolu-76

tion, and decision fatigue. It must also consider different time budgets among players, a key77

differentiating factor among the evermore diverse gaming population.78

We cast this question as a graph design problem. Vertices encode game elements, and edges encode79

precedences among elements. The resulting graph design problem is not standard. To our knowl-80

edge, the objective function—maximizing player enjoyment—has no precedence in the graph design81

literature.82

The first nontrivial case of the world design problem one may consider is when decision fatigue83

is a function of the number of vertices and paths (and not edges). In this case, we establish a84

sufficient condition for the optimality of a world map called the side-quest tree structure illustrated85

in Figure 2.86

A side-quest tree has the distinguishing feature of having many paths to the “concluding” game87

element (labeled in the figure by r), but these paths build on one another. The name “side-quest”88

refers to the fact that there is a “main” path to the world’s conclusion (the shortest path to r),89

but there is an option connected set of “side quests” that can be done in addition to the “main”90

path. For the precise definition of a side-quest tree, see Definition 2.91

The side-quest tree optimality structure allows us to compute optimal world maps in polynomial92

time in the case where decision fatigue is a function of the number of vertices in the world map93
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and the number of paths. The polynomial-time algorithm leverages an “augmenting path”-like94

argument reminiscent of classical combinatorial optimization problems.95

We also show that if we consider a decision fatigue function that also depends on the number of96

edges, side-quest trees are no longer optimal. We show this by giving an example of a non-side-quest97

tree graph that provides better expected utility than any side-quest tree. When decision fatigue98

depends on the number of edges, a structure with “interweaving side paths” (see Figure 6(b)).99

We leave it for future research to discover the optimality structure for more general settings, but100

our initial attempts suggest this is challenging.101

The rest of the paper is organized as follows. Section 2 describes related work in video game102

design, the design of experiential services, and service network design. Section 3 introduces our103

model across three subsections. In Section 3.1, we introduce the novel graph theoretical concept104

of “world maps”, which is a building block for defining the optimization problem of players (in105

Section 3.2) given a world map, and the bilevel graph design problem of the game designer in106

Section 3.3. In Section 3.2, we describe another key novel feature of our optimization setup, the107

player utility functions, which involves utility from play, impatience, and decision fatigue.108

Section 4 contains our analysis of side-quest trees (defined in Section 4.1). We offer a polynomial-109

time algorithm to compute optimal side-quest trees in Section 4.3. Section 5 is a brief section that110

illustrates that side-quest trees are no longer optimal in more general settings.111

We should stress here that this paper raises many more questions about world design than it has112

scope to answer. We admit that the optimality of side-quest trees is not necessarily an immediately113

“actionable” practical design for a video game, but it nonetheless tells us something about the114

nature of optimality structures. If anything, we view our work as a stepping stone, rather than a115

definite conclusion, to the world design problem.116

In this spirit, we provide an extensive list of possible extensions in our concluding section. We117

believe this raises an interesting possibility for a whole genre of optimization problems inspired by118

games— “combinatorial optimization problems for fun”—that take classical discrete optimization119

problems where the objective is no longer minimizing cost but maximizing the “fun” of finding120

and implementing an optimal solution. We believe this to be a new, and potentially exciting, area121

for operations researchers to explore. As the analysis in this paper illustrates, this direction is far122

from trivial to pursue.123

2. Related Work124 sec:lit-review

This paper contributes to the growing literature in operations management, information systems,125

and marketing on video game design (Chen et al. 2021b, Han et al. 2023, Li et al. 2023, Ryan et al.126

2020, Vu et al. 2020, Huang et al. 2019, Ascarza et al. 2020, Guo et al. 2019a, Sheng et al. 2022,127
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Guo et al. 2019b, Turner et al. 2011, Jiao et al. 2020, Meng et al. 2021, Huang et al. 2020, Appel128

et al. 2020, Runge et al. 2021, Chen et al. 2021a, Mai and Hu 2023). Of that literature, the one129

most closely related to ours is Li et al. (2023). In that paper, the authors are given a set of game130

elements with different levels of rewards and difficulties and sequence them into a linear design.131

That is, their study does not consider the possibility of nonlinear gameplay. This is the major132

point of departure in our study: we consider nonlinear gameplay and the possibility that different133

papers proceed through the game elements in different amounts of time. This is an orthogonal134

consideration to this earlier paper.135

Our study also relates to the growing literature on the design of experiential services (see, for136

example, Das Gupta et al. (2016), Li et al. (2022), Roels (2019), Baucells and Sarin (2007)). These137

papers examine scenarios where a set of possible service interactions are arranged to maximize138

customer satisfaction. In the video game, these service interactions are our game elements. Most139

of the papers in that area examine “linear” scenarios similar to Li et al. (2023). Of these papers,140

the closest is Aouad et al. (2022), which studies the layout of museums from an optimization141

perspective. In both settings, we are interested in exploring the design of spaces for customers to142

explore, but our goals are different. In Aouad et al. (2022), their design problem is to maximize143

the expected lengths of visitor’s paths using probabilistic data derived from real visitor sojourns144

to design expectations over random player behavior. Our setting has a different objective function145

(maximizing expected player utility). This yields a fundamentally different optimization setting.146

Another area of research with many similarities to ours is trip design, initiated by (Tsiligirides147

1984) with extensions studied until the present day (see, for instance, Yu et al. (2021), Gunawan148

et al. (2016), Song et al. (2020), Ruiz-Meza and Montoya-Torres (2021)). Similar to the museum149

design question of Aouad et al. (2022), these papers examine how to arrange stops on a tour in150

order to maximize the benefit to tourists without exceeding a time budget. Our major point of151

departure is that we allow players to self-select their route through the world map to maximize152

their own utility, something not considered in previous papers in this research stream. This makes153

our problem quite different than existing work, as it allows for the possibility of multiple paths154

taken by multiple players with differing objectives.155

3. Model156 sec:model

Our model is established across three subsections. First, we construct the “world map” concept, an157

ingredient in both the player’s and game designer’s problems. These two problems are the subjects158

of the following two subsections. The final optimization problem is a bilevel graph design problem159

incorporating the decisions of both the players and the game designer.160
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3.1 World maps161 ss:world-map-setup

A game designer must arrange a given set of game elements (levels, encounters, puzzles, etc.) into162

a world map. We model a world map as a graph. Vertices correspond to game elements. Edges163

correspond to connections between game elements.164

The set V denotes all available game elements. We use v or w to denote game elements as165

needs arise. There are two special vertices: 1 and r. The vertex 1 is a game element designated as166

the “start” of the game. Examples include opening cinematics, introductory puzzles, or character167

creation tools. The vertex r denotes the final game element. Examples of r include concluding168

cinematics, final boss fights, or challenging final puzzles. For concreteness, we set V := [N ]∪ {r}169

where170

N := |V | − 1 (1)
–eq:define-N˝–eq:define-N˝

171

and the notation [N ] := {1,2, . . . ,N}. In other words, the vertices in V have the labels r,1,2, . . . ,N .172

After completing a game element v, players travel along an edge from v to another game element173

w. We may think of the edge (v,w) as a door or path. The interpretation depends on the fiction174

of the game. Edges are directed, establishing precedences between the game elements. We let E175

denote the set of all edges and use the notation e to denote a generic element of E . We also use the176

notation (v,w) for edges to specify the starting vertex v and ending vertex w. The starting vertex177

1 only has outgoing edges, while the ending vertex r only has incoming edges.178

We let U denote the universe graph that has vertex set V and edge set E . We take the universe179

graph to be the complete graph on V . A world map G = (V,E) is a subgraph of the universe180

selected by the game designer. That is, V ⊆ V and E ⊆ E .181

To be a world map, G must satisfy additional restrictions. First, G must be a directed acyclic182

graph (DAG) of U . Under the DAG property, players cannot revisit game elements once completed.183

This is a common design mechanic. If each game element spends a given “time” in the fiction of184

the game, repeating an element can disrupt the storyline. Even when revisiting makes sense to the185

story, players are often averse to backtracking through known terrain.8 Without too much loss, we186

restrict attention to acyclic world maps.187

Second, in a world map, all edge choices by players lead to the end vertex r. In other words,188

there are no dead ends. To formalize this, we introduce some terminology. A directed path p =189

(v1, v2, . . . , vℓ) (where ℓ is some arbitrary nonnegative integer) is a sequence of adjacent vertices (i.e.,190

(vi, vi+1) for i= 1, . . . , ℓ− 1) where each vertex vi is distinct (i.e., vi ̸= vj for all i, j ∈ {1,2, . . . , ℓ}191

with i ̸= j). A complete path is a directed path that has starting vertex 1 and ending vertex r (i.e.,192

8 Backtracking is avidly debated among players. See, for example, the following webpage: https://www.reddit.com/
r/Games/comments/1wqet4/why_do_people_hate_backtracking_so_much/

https://www.reddit.com/r/Games/comments/1wqet4/why_do_people_hate_backtracking_so_much/
https://www.reddit.com/r/Games/comments/1wqet4/why_do_people_hate_backtracking_so_much/
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v1 = 1 and vℓ = r). A subgraph G= (V,E) has no dead ends if every edge e in G lies on a complete193

path. That is, for all e= (v,w)∈E there exists a complete path p= (v1, v2, . . . , vℓ) in G with vi = v194

and vi+1 =w for some i∈ {1,2, . . . , ℓ− 1}.195

The “no dead ends” property ensures that the game has a single end. That is, the end vertex r196

is always the final game element of any path. Relatively few video games have multiple endings.9197

Many game designers shy away from multiple endings. These can compromise coherency and dilute198

resources across content players may never see. See Chapter 17 of Schell (2019) for more discussion.199

We can now formally state our definition of a world map:200 def:world-map

Definition 1 (World Map). A subgraph G of the universe graph U is a world map if201

(W1) G is a DAG (directed and acyclic), and202

(W2) G has no dead ends (i.e., all edges in G lie on a complete path).203

We will use the notation ≤ to denote the world map relationship: G≤ U , meaning G is a world204

map in U . ◀205

The concept of a world map is central to this paper. In the next subsection, we define a player’s206

utility as a function of a given world map. World maps are the decision variable of the designer’s207

problem described in Section 3.3.208

3.2 The player’s problem209 ss:players-problem

Given a world map G, players must decide on a path from the beginning vertex 1 to the end vertex210

r. In other words, a player must select a complete path in G. We do not allow for a player to “quit”211

a path before its completion.10 As we shall see below, long paths may exert an impatience penalty212

for delaying a player’s sense of resolution in the game.213

The player’s choice of path depends on their utility. Player utility is constructed from the fol-214

lowing three components:215

(U1) utility from play : the player earns utility proportional to the amount of time played,
item:play

216

(U2) impatience penalty : the player suffers disutility when too much time elapses before217

reaching a satisfying resolution, and
item:penalty

218

(U3) decision fatigue: the player suffers disutility associated with mental fatigue from having219

an overwhelming number of options (i.e., complete paths) to choose from.
item:decision-fatigue

220

Each component is discussed in more detail below.221

Components (U1) and (U2) both depend on the game time that a player needs to finish a path222

from 1 to r. Let us formalize this concept. First, we distinguish game time from “clock time”.223

9 Mass Effect 3 is a notorious example of an ineffective multiple-ending design. Despite offering players many choices,
only three nearly identical endings were possible. This resulted in widespread outrage among players. For details, see
https://www.inverse.com/gaming/mass-effect-3-ending-was-almost-completely-different.

10 An extension that considers the possibility of quitting is an interesting prospect for future research.

https://www.inverse.com/gaming/mass-effect-3-ending-was-almost-completely-different
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Game time is the elapsed time that a player has been playing the game. For a mobile game, for224

example, this can be measured by the amount of time the game app is “open”. This game time225

can be broken up across a much longer period of clock time. For example, consider a player who226

can only play for one hour a day. In this case, four hours of game time happens across four days227

of clock time. In our model, utility and disutility depend on game time and not clock time.228

We assume that each game element takes a single unit of game time to complete. Thus, from a229

time perspective, the game elements are interchangeable. This is among the stricter assumptions of230

our model. Indeed, it is easy to imagine that some game elements take less time while others take231

more time. One idea is that longer game elements can be broken down into smaller-sized chunks232

that each takes one time unit. The difficulty here is that it may not make sense for these “chunks”233

to be separated along a path if they are linked thematically. Our model glosses over such subtleties234

and each game element as discrete and independent, each taking a single time unit to complete.235

As we shall see, even with this simplification, the problem is difficult to analyze.236

We further assume that each game element does not have an intrinsic utility for completion. The237

derived utility is purely a function of how much additional gameplay the game element offers—238

namely, one additional time unit. Accordingly, the game elements are homogeneous from a utility239

perspective. Others have looked at how different reward and difficulty values for game elements240

give rise to much more complex forms of utility, see for instance Li et al. (2023). As discussed in the241

literature review section, papers in the tradition of Li et al. (2023) (starting with Das Gupta et al.242

(2016)) only consider linear graphs. The complexity we want to focus on here is offering branching243

paths and understanding this implication for service design. Accordingly, we have simplified the244

nuanced utility considerations of the game elements themselves as a matter of emphasis. Future245

work that brings together insights from papers like Li et al. (2023) to world design setting would246

be an exciting development.247

With clarity about our focus on game time, we can now formally define a few useful concepts.248

Let PG denote the set of complete paths in the world map G. Every element p∈ PG has a duration249

d(p) in N—the set of nonnegative integers—equal to the number of edges that form the path.250

Concretely, if p= (1, v2, v3, . . . , vℓ−1, r) then d(p) = ℓ− 1. This can also be interpreted as assigning251

a duration to each vertex a unit duration except for the starting vertex 1. This is consistent with252

the fact that, in many games, the starting element is a “dummy” activity that just indicates where253

play is initiated. Given a world map G, its set of complete paths PG determines the set DG = {t∈254

N : t= d(p) for some p∈ PG} of possible gameplay durations. It is easy to see that DG ⊆ [N ] where255

N is defined in (1). Indeed, the longest path connects 1 to r via all N other vertices in V for a256

path length of N .257

We now have all of the concepts and terminology needed to formalize the first two components258

of player utility (U1) and (U2).259
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3.2.1 Utility from play, (U1). To model utility from play, we define a function u from N260

to R+, where u(t) is the utility from playing t units of time, and R+ is the set of nonnegative real261

numbers. Given a world map G, the set of possible utility values from play is {u(t) : t∈DG}.262

We assume that263

u :N → R+ is an increasing function, (2)
–eq:play-utility-assumption˝–eq:play-utility-assumption˝

264

which is consistent with other time-based service design studies (see, for instance, Xu et al. (2015)).265

We will often assume u is a linear function of t; that is,266

u(t) = αt (3)
–eq:linear-utility˝–eq:linear-utility˝

267

where α> 0 suffices to guarantee (2). The assumption of linearity is also common in the literature268

(see, for instance, Liao and Chen (2021)). This completes our discussion of the utility component269

(U1).270

3.2.2 Impatience penalty, (U2). To define the impatience penalty, we need the notion of271

a time budget. Each player has a time budget b that represents the preferred amount of time272

investment to bring the game to a satisfying resolution. Impatience only starts to build after time273

budget b has been exhausted. Accordingly, the impatience penalty function has the form:274

q(t | b) =

{
0 if t≤ b,

ϕ(t− b) if t > b,
275

where276

ϕ :N → R+ is an increasing function. (4)
–eq:phi-nondecreasing˝–eq:phi-nondecreasing˝

277

Without loss, we assume b is a nonnegative integer expressed in the same time units as t.278

Following LaGanga and Lawrence (2012), we will often assume that ϕ is a linear function279

ϕ(t− b) = β(t− b) where β is a positive constant, guaranteeing (4). This allows us to express the280

impatience penalty function as:281

q(t | b) = β(t− b)1[t > b] (5)
–eq:overtime-penalty˝–eq:overtime-penalty˝

282

where 1[·] is the indicator function that evaluates to 1 if the statement in its argument is true.283

We assume without loss that b ≤ |V |+ 1. That is, there are sufficiently many vertices in the284

universe to satisfy the player’s time budget if all game elements are offered in a single long path.285

Indeed, otherwise, the structure of q would be such that the player never experiences any positive286

penalty, and so will always choose the path with the largest possible duration. This does not capture287

our tradeoff of interest, and so we remove this possibility from consideration.288
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ss:players-problem-decision-fatigue

3.2.3 Decision fatigue, (U3). We assume that the players observe the whole world map G289

before deciding on a path. There are games where the world map is slowly “unlocked” as the player290

progresses, but such settings are beyond the scope of our inquiry.11291

A world map G has nvG vertices, npG complete paths, and neG edges. We call the tuple (nvG, n
p
G, n

e
G)292

the complexity of the world map G. Players experience decision fatigue as a function of G’s293

complexity. Given a world map G with complexity (nvG, n
p
G, n

e
G), the player experiences disutility294

F (nvG, n
p
G, n

e
G) due to decision fatigue from pondering how to proceed through G. The function F :295

N3 → R+ is called the decision fatigue function. We abuse notation to write F (G)≜ F (nvG, n
p
G, n

e
G)296

when we want to suppress the detailed complexity notation.297

We assume the following natural restriction:298

∂F
∂nv

G
≥ 0, ∂F

∂n
p
G
≥ 0, and ∂F

∂ne
G
≥ 0 (6)

–eqn:nondecreasing-complexity˝–eqn:nondecreasing-complexity˝
299

That is, F is nondecreasing in all of the components of complexity. Condition (6) is natural.300

Past research on decision fatigue confirms this. Augenblick and Nicholson (2016), Hirshleifer et al.301

(2019), Ma et al. (2021) examine how decision fatigue grows with the number of decisions to make.302

In our setting, the number of decisions depends on the number of vertices and edges in G. Players303

need to decide on a path, which is a sequence of vertices and edges. Vohs et al. (2018), Shah and304

Wolford (2007), Long et al. (2021) argue that decision fatigue also grows in the number of options305

for each decision. In our setting, this corresponds to the number of paths in G.306

We will put another natural condition on decision fatigue that disciplines its growth with respect307

to the utility for play u. We want to argue that, all else being equal, the utility gained from308

additional play by extending a path exceeds the additional decision fatigue from extending that309

path. This is a relatively lighted-handed way to guarantee utility from play somewhat “dominates”310

decision fatigue disutility. While it is hard to make decisions about what path to take, the fatigue311

from doing so is outweighed, in a precise way, by the additional utility you get from playing.312

It turns out that we only need to make this idea precise in the following specific setting. Let Lk313

denote the world map that is a line graph of length k. This is, it consists of a single path from314

start 1 to end r of length k. Then we assume the following:315

ass:discipline-complexity-along-paths

Assumption 1. The additional fatigue from extending a line graph by one more game element316

is less than the utility of playing that additional game element; that is, F (Lk+1)−F (Lk)≤ u(k+317

1)−u(k). ◀318

11 We share a few thoughts about this scenario in the concluding section.
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3.2.4 A formal statement of the player’s problem. We have all the terminology and319

notation to state the player’s decision problem. The player chooses a path p∈ PG to maximize her320

utility. It is easier to set up the problem as a play time decision. Recall that paths map to durations321

via the set DG.322

Let the world map G and time budget b be given. If a player selects a path with duration t, then323

we assume the player receives (total) utility324

π(t|G,b) = u(t)− q(t|b)−F (G).12 (7)
–eq:player-utility˝–eq:player-utility˝

325

The setDG contains the durations of all of the complete paths inG. Since a player selects a complete326

path in G, the set DG contains all possible choices for the player’s game time t. Accordingly, the327

player’s decision problem is13328

max
t

π (t|G,b) ,

s.t. t∈DG.
(P |G,b)–eq:player-problem˝–eq:player-problem˝

329

The notation (P |G,b) underscores that the decision problem depends on the given world map G330

and budget b.331

Understanding how optimal solutions to (P |G,b) depend on changing G, and b is critical to later332

analysis. Luckily, this optimality structure is straightforward. Deriving it now will help us state a333

clean version of the game designer’s problem.334

We start by making the following innocuous assumption.335
ass:penatly-is-a-penalty

Assumption 2. The following holds:336

u(t)− q(t|b) is a decreasing function of t when t≥ b. (8)
–eq:penalty-bites˝–eq:penalty-bites˝

337

When u and ϕ satisfy (3) and (5), it suffices that β >α. ◀338

This assumption ensures that the impatience penalty has “bite”. After the time budget has been339

met, the impatience penalty q(t|b) for additional play more than makes up for the additional utility340

from play u(t).341

To state the optimality structure of t∗G,b, we use the following definitions:342

⌊b⌋G =max{t|t∈DG, t≤ b} ,

⌈b⌉G =min{t|t∈DG, t≥ b} ,

projG(b) =argmax
{
π(t|G,b) : t∈ {⌊b⌋G, ⌈b⌉G}

}
.

(9)
–eq:define-floors˝–eq:define-floors˝

343

12 It is common to assume that total utility is the sum of its utility components. Since utilities are only defined up to
an affine scaling, the form can be taken without loss assuming utility is a general affine function of its components.
See, for example, Mas-Colell et al. (1995) for more details.

13 The disutility term −F (G) in π(t|G,b) does not affect this optimization problem since it does not depend on t. We
maintain this term in π(t|G,b); it is crucial for understanding the optimal choice of G.
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The “floor” and “ceiling” are with respect to the set DG. This, of course, depends on G, and so344

the subscripts ⌊·⌋G and ⌈·⌉G are appropriate. The notation projG(b) connotes the fact that we are345

projecting b on the “closest” element of G with the largest utility. Note that it is possible for346

projG(b) to be the non-singleton set {⌊b⌋G, ⌈b⌉G} if π(⌊b⌋G|G,b) = π(⌈b⌉G|G,b).347

We can now characterize the optimal solutions of (P |G,b).348

theorem:game-duration

Theorem 1 (Optimality structure of (P |G,b)). Under Assumption 2, projG(b) is the set of349

optimal solutions of (P |G,b).350

To avoid the hassle of projG(b) not being a singleton, we assume that when ⌊b⌋G and ⌈b⌉G yields351

the same value for π, the player chooses a path with the shorter duration ⌊b⌋G. Abusing notation,352

we will always take the unique (up to this tie break) optimal solution of (P |G,b) to be:353

t∗G,b ≜

{
⌊b⌋G if π(⌊b⌋G|G,b) = π(⌈b⌉G|G,b)
projG(b) otherwise

. (10)
–eq:optimal-solution˝–eq:optimal-solution˝

354

This characterization proves very useful in our analysis of the game designer’s problem.355 rem:convert-back-to-paths

Remark 1. In practice, players decide on paths rather than durations. The gameplay duration356

is decided by the game path indirectly. A player’s utility π̄ (p|G,b) for choosing path p ∈G under357

time budget b is358

π̄(p|G,b) = π
(∑
e∈E

1[e∈ p]|G,b
)
.359

where
∑

e∈E 1[e ∈ p] is a count of the edges in p. Phrased in terms of paths, the player’s path360

decision problem over world map G and time budget b is361

max
p∈PG

π̄(p|G,b). ◀362

3.3 Game designer’s problem363 ss:game-designers-problem

The game designer chooses the world map G in order to maximize player utility. One may ask364

why the designer does not optimize for revenue.14 We are imagining a scenario where revenue is365

an increasing function of player utility. This is also not an unrealistic assumption. For premium366

games that are purchased with an upfront fee, the enjoyment that players experience drives word-367

of-mouth sales and purchases of sequels. For free-to-play mobile games, the more the players enjoy368

the game, the more likely they are to make in-app purchases that drive revenue. A more detailed369

model of the mapping between utility and revenue is beyond the scope of the current study.370

14 We do not consider any costs in this model. The game elements are given, and so we assume that the cost of their
development is sunk. We are implicitly assuming that the task of “coding” the world map is the same irrespective
of the design. This is also not an unreasonable assumption. The artifacts needed to render the “look” of the world
are designed irrespective of how the artifacts are arranged. The cost of arranging artifacts is minuscule compared to
generating the artifacts themselves. Consider, for instance, the Chip N’ Dale’s map in Figure 1. It is a straightforward
task to move the sprites around the map to arrange them as preferred. This is not a cost worthy of consideration.
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sss:single-player

3.3.1 Single player. Let’s dispatch a special case of the game design problem when there is371

a single player with utility function π defined in (P |G,b) and with a given and known time budget372

b.15 This special case serves as a building block for later analysis and motivates the setup of our373

most general model set up stated later in this subsection.374

It turns out that this single-player case is trivial to solve. This is intuitively clear. In this case, it375

is optimal for the game designer to design the least complex world map G that offers a path with376

a duration equal to b. Namely, the line graph with starting vertex 1, ending vertex r, and b− 2377

intermediate vertices. This intuition is captured in the following result and its proof.378

prop:single-player

Theorem 2. Suppose there is a single player whose utility function π satisfies Assumptions 1379

and 2, and whose time budget b is known to the game designer. Then the world map G that380

maximizes player utility is the line graph consisting of a single path from 1 to r of length b.381

We want to remark that this result shows you that it was easier to design video games in a more382

homogeneous setting where players were very similar. Linear experiences were more common and383

were satisfying to the vast majority of players. As discussed in the introduction, however, players384

with very different levels of patience have started playing games as the industry has expanded.385

This motivates an investigation into the heterogeneity in time budgets, which we take up now.386

3.3.2 Distribution of time budgets. Let’s now look at the more realistic setting with mul-387

tiple types of players who differ in time budgets. Suppose time budgets are distributed over the set388

[N ] = {1,2, . . . ,N} with N finite. Let m denote the probability mass function of the distribution of389

budgets over [N ].16 We may interpret m(b) as the proportion of players with time budget b. Let B390

denote the discrete random variable that represents the time budget of a randomly chosen player.391

The expected time budget is thus EB[B] =
∑N

b=1 bm(b).392

Let’s formally state the game designer’s problem given a distribution of time budgets. The game393

designer’s problem is to select a world map G in order to maximize the expected utility of players394

with distributed time budgets. Of course, the route chosen by the player is determined by their395

own optimization problem (P |G,b). Using the unique (up to our tie break rule) optimal solution396

t∗G,b to (P |G,b) defined in (10), we can state the game designer’s objective function as:397

Π(G) := EB[π(t
∗
G,B|G,B)] (11)

–eq:designer-objective˝–eq:designer-objective˝
398

15 We describe this problem as if there is a single player. However, the same analysis holds if there are many players,
but they all have the same utility function π and time budget b.

16 We assume that the game designer has estimated this distribution using demographic information (e.g., young
people prefer to play longer), previous gaming habits, and player game reviews.
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Figure 3 The side-quest tree T {2,3,5}.
fig:side-quest-tree

where π is defined in (7), and the expectation is taken over the distribution m of the random time399

budget B. The game designer’s world map problem (WMP) is400

max
G≤U

Π(G), (WMP)
–eq:designer-problem˝–eq:designer-problem˝

401

where the notation ≤ (set in Definition 1) means that G is a world map selected from the universe402

U . The rest of the paper takes up the challenge of solving (WMP).403

4. Optimality of side quest trees404 s:optimality-side-quest-trees

In this section, we establish the optimality structure of the world design problem (WMP) when405

the decision fatigue function F does not depend on the number of edges neG in the chosen world406

map G. In optimality structure is the notion of a side-quest tree introduced in Section 4.1 and407

proven to be optimal in Section 4.2. Using this optimality structure, we can define an algorithm for408

computing optimal world maps when the fatigue function F is a function of the number of vertices409

and paths of a world map.410

4.1 Side-quest trees411 ss:define-side-quest-tree

We begin by defining the notion of a side-quest tree.412 def:side-quest-tree

Definition 2 (side-quest tree). Let D⊆ [N ] be a subset of durations (recall that [N ] is the413

set of all possible durations in a world map). Then, the side-quest tree TD is the graph consisting of414

the path (1,2, . . . , d̂) (where d̂=maxD is the largest duration in D) with appending the additional415

edges (v, r) for all v ∈D.416

Figure 3 illustrates the side-quest tree TD with D= {2,3,5}.17 The following lemma shows that417

side-quest trees are world maps, and thus feasible choices in (WMP).418

17 It is important to note that the phrase “tree” does not imply that TD is a tree in the underlying undirected graph,
where it may contain undirected cycles.
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lemma:side-quest-trees-are-world-maps

Lemma 1. Let D⊆ [N ] be a subset of durations and let TD be the side-quest tree as constructed419

in Definition 2. Then TD is a world map.420

The next section shows that there exists an optimal world map in the family of side-quest trees.421

In exploring the optimality of side-quest trees, it will prove useful later to have a count of the422

vertices and paths in a side-quest tree. This is captured in the following lemma.423

lemma:counts-for-side-quest-trees

Lemma 2. Let D⊆ [N ] be a subset of durations and let TD be the side-quest tree as constructed in424

Definition 2. Then, TD has exactly one complete path for each duration d∈D (implying DTD =D)425

1+ d̂ vertices and d̂− 1+ |D| edges, where d̂=maxD.426

The result is easy to verify by inspecting Figure 3, but a formal proof is found in the appendix.427

4.2 Optimality properties428 ss:optimality-of-side-quest-trees

At the outset of the section, we spoke of restricting attention to fatigue functions that depend only429

on the number of paths and vertices. The next result helps us in taking advantage of this context.430

lemma:complexity-minimum-paths-and-vertices

Lemma 3. Let D⊆ [N ] be a set of durations. If the set DG of durations of world map G contains431

D (i.e., D⊆DG), then G has a minimum of |D| complete paths and a minimum of 1+ d̂ vertices,432

where d̂ is the largest element of D.433

Observe that for any duration set D, the number of paths and vertices of the side-quest tree TD434

(coming from Lemma 2 above) match the minima in Lemma 3 and so yield the smallest possible435

fatigue among graphs that cover duration set D. Combined with the fact (Lemma 1) that all436

side-quest trees are feasible to (WMP), this can help establish the following result.437

thm:paths-and-vertices-T-N-subgraph-best

Theorem 3. Suppose the fatigue function depends only on the number of paths npG and the438

number of vertices nvG. Then, there exists an optimal solution to (WMP) that is a side-quest tree.439

From an analytical perspective, this result already says a lot. The game designer can restrict440

attention to world designs that look like the graph in Figure 3; namely, there is a single path441

of intermediate game elements (i.e., the path (1,2, . . . , k)) that the player can progress through,442

with occasional “exits” to the final game element r (i.e., along the edges (v, r) for v in a subset443

[N ] of possible durations). These are “quick exits” in the sense that they immediately lead to the444

final game element. For example, this means that the designer can be thinking about building a445

narrative for linear progress of game elements from 1 to k, with ways to abort this progression by446

uncovering a “shortcut” to the final boss. We see this in the classical “warp” mechanic in the early447

8-bit era of home consoles. All the designer needs to decide is the length of the linear path (i.e.,448
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choose k), and where to place the occasional “exits” (i.e., choose D with k the largest element of449

D).450

Of course, this insight does not offer an efficient computational approach for finding the optimal451

side-quest tree. Indeed, there are many possible choices for the length of the long path and many452

possible places to choose exits. A brute force enumeration of all “side-quest trees” is still exponential453

work.454

In the next section, we discuss an algorithmic approach to enumerating side-quest trees in poly-455

nomial time when utility from play u is linear (i.e., satisfies (3)) and the impatience penalty function456

is piecewise linear (i.e., satisfies (5)).457

But before turning to an algorithmic approach, we are interested in analytical ways of restricting458

our search among the set of all side-quest trees for an optimal side-quest tree. An immediate459

restriction that comes to mind is examining if we can restrict the set D of possible durations that460

we might consider.461

A natural candidate for D is the set of possible time budgets b held by the players. Recall that462

m(b) is the proportion of players with time budget b, where m is a probability mass function. Let463

B := {b∈ [N ] :m(b)> 0} (12)
–eq:budget-set˝–eq:budget-set˝

464

denote the set of budget set of supported time budgets.465

A natural thing to hope for is that there exists an optimal side-quest tree whose duration set466

is a subset of B (and maybe even equal to B). Unfortunately, this is too good to be true, as the467

following counter-example illustrates.468 ex:an-optimal-world-map-with-weird-durations

Example 1 (An optimal world map with duration set is not a subset of B). Let469

F (G) = 5(npG)
2 + (nvG)

2. Consider the probability mass function of time budgets to be m with470

m(1) = 1
2
and m(3) = 1

2
and 0 otherwise. That is, B= {1,3}. Also, suppose u is linear (i.e. satisfies471

(3)) with α = 13 and q(t|b) satisfies (5) with β = 14. From Theorem 3 there exists an optimal472

side-quest tree. The possible side-quest trees are T {1}, T {2}, T {3}, T {1,2}, T {1,3}, T {2,3}, and T {1,2,3}.473

Straightforward calculations yields: Π(T {1}) = 4, Π(T {2}) = 5, Π(T {3}) = 4, Π(T {1,2}) = −9.5,474

Π(T {1,3}) = −10, Π(T {2,3}) = −10.5, and Π(T {1,2,3}) = −35. Thus, T {2} is the optimal side-quest475

tree but {2} ̸⊆ B= {1,3}. ◀476

Fortunately, all is not lost on the connection between budget set B and the structure of the477

optimal side-quest tree. We recover the following result.478

prop:optimal-complexity-has-at-most-D-paths

Proposition 1. Suppose the fatigue function depends only on the number of vertices and paths.479

Then, there exists an optimal solution to (WMP) that is a side-quest tree TD with |D| ≤ |B|. That480

is, the duration set of an optimal side-quest tree has no more elements than the budget set B.481
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This result is more powerful when B is small. Indeed, consider the extreme case where B is a482

singleton. In other words, the game designer knows that all players have exactly the same time483

budget b, for some b∈ [N ]. This case was studied earlier in Theorem 2, where we showed that there484

exists an optimal line graph. Indeed, if B is a singleton, then there exists an optimal side-quest485

tree TD where D is a singleton. But, if D is the singleton set {v} then TD is nothing more than486

the line graph consisting of the single path (1,2, . . . , v − 1, v, r). Thus, Proposition 1 can be seen487

as a type of generalization of Theorem 2 to more players, under the restriction that fatigue only488

depends on the number of vertices and paths.489

Despite its power, for small Proposition 1, it does not preclude the situation we saw in Example 1490

where the duration set D is not a subset of B. To get the more expected condition (that D⊆B),491

we make one further assumption.492
prop:optimal-linear-complexity-has-at-most-D-paths

Proposition 2. Suppose the fatigue function493

(i) depends only on the number of paths npG and the number of vertices nvG, and494

(ii) is a linear function of both npG and nvG.495

u and ϕ are linear. Then, there exists an optimal solution to (WMP) that is a side-quest tree TD496

with D⊆B. That is, the duration set of an optimal side-quest tree is a subset of the budget set B.497

The result that the duration set of an optimal side-quest tree is a subset of the budget set is498

quite reassuring. However, this does not yield an immediately obvious efficient algorithm to find499

the optimal spanning tree. Indeed, B could still be large. We take up the challenge of computing500

an optimal side-quest tree in the next subsection.501

4.3 An algorithm for computing optimal side-quest trees502 ss:algorithms-for-computing-side-quest-trees

In the previous subsection, we proved that when the decision fatigue only depends on the number503

of vertices and the number of paths, there exists an optimal graph to (WMP) that is a side-quest504

tree. In this subsection, we show how to compute the optimal side-quest tree efficiently.505

The idea behind this computation is as follows. We say the length of a side-quest tree TD is the506

length of the longest complete path in TD. It is straightforward to see that the length of TD is507

maxD. We say the capacity of a side-quest tree TD is the number of complete paths in TD. It is508

straightforward to see that the capacity of TD is |D|. For every i∈ [N ], among all the side-quest trees509

with length i and capacity µ∈ [i], we find the best one that generates the highest expected utility.510

We denote it as T ∗
i,µ. Then the optimal side-quest tree must be an element of {T ∗

i,µ|i∈ [N ], µ∈ [i]}.511

Hence, if we compare the expected utilities generated by those T ∗
i,µ (i ∈ [N ], µ ∈ [i]), the one with512

the highest expected utility will be the optimal side-quest tree.513

The difficulty lies in how we could generate all those {T ∗
i,µ} (i ∈ [N ], µ ∈ [i]) in an efficient way.514

We are able to develop an induction algorithm that works in polynomial time. This algorithm is515
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built on the operations of single-path transformation mappings that map a side-quest tree to new516

side-quest tree with one additional complete path.517

Below, we begin by giving the definition of single-path transformation. Then we discuss how this518

single-path transformation influences the total expected utility. Followed by that, we examine a519

key property of the single-path transformation that is it preserves optimality. Finally, we present520

our algorithm and prove it’s in polynomial time.521
subsubsec:SPT-definition

4.3.1 Definition of single-path transformation Let S denote the set of all side-quest trees522

in the universe graph U . We can partition the set S into subsets of the same length. Let Si,µ523

denote the set of side-quest trees with length i and capacity µ. That is, the side-quest tree TD is524

in Si,µ if and only if the length of TD is i and the capacity of TD is µ. Equivalently, TD ∈ Si,µ if525

and only if i is the largest element in D and µ equals the number of elements in D. We call an526

element of Si,µ an (i, µ)-side-quest tree (or (i, µ)-SQT for short) and denote an arbitrary element527

of Si,µ by Ti,µ.528

Next, let S∗
i,µ denote the set of optimal solutions to the following problem:529

max
T∈Si,µ

Π(T ), (WMPi,µ)
–eq:designer-problem-restricted-general-v-p˝–eq:designer-problem-restricted-general-v-p˝

530

This is our main problem (WMP) where the designer is restricted to selecting from side-quest trees531

of length i and capacity µ. We call an element of S∗
i,µ an optimal (i, µ)-SQT and denote an arbitrary532

element of S∗
i,µ by T ∗

i,µ. Observe that if (WMPi,µ) has a unique solution, S∗
i,µ will be a singleton.533

Otherwise, S∗
i,µ contains multiple elements that share the same expected utility.534

When the fatigue function depends only on the number of vertices and paths, the optimal side-535

quest tree is an optimal solution to (WMP) and can be found in the sets of S∗
i,µ for i ∈ [N ] and536

µ∈ [i]. We state the result in the lemma below.537
lemma:opt-tree-Sj-general-v-p

Lemma 4. Optimal side-quest trees are contained in the union of sets of S∗
i,µ over all i ∈ [N ]538

and µ∈ [min{|B|, i}].539

Lemma 4 suggests that to find the optimal side-quest tree, it suffices to construct the sets S∗
i,µ for540

every i∈ [N ] and µ∈ [min{|B|, i}] and then find the one that results in the largest expected utility.541

We will show later in Section 4.3.3 that the construction will be done through a graph operation542

named “single-path transformation” (defined below) that appends additional vertices and edges to543

a side-quest tree to form a new side-quest tree.544 definition:SPT-general-v-p

Definition 3 (Single-path transformation). For i, j,µ ∈ [N ], i < j and 1 < µ ≤ j, define545

the function ψij : Si,µ−1 → Sj,µ where (i, µ − 1)-SQT Ti,µ−1 maps to the (j,µ)-SQT Tj,µ (i.e.,546

ψij(Ti,µ−1) = Tj,µ) where Tj,µ is the side-quest tree that results from extending the path (1,2, . . . , i)547

in Ti,µ−1 to path (1,2, . . . , i, i+1, . . . , j) (by adding j − i more vertices and edges) and appending548

the edge (j, r). ◀549
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(a) an element T3,2 of S3,2
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(b) The element ψ3,5(T3,2) of S5,3

Figure 4 An illustration of the single-path transformation ψ3,5. Appended vertices and edges are dotted.
fig:single-path-transformation

The transformation ψ3,5 is illustrated in Figure 4. Observe that if TD is in Si,µ−1 then ψij(T
D)550

has duration set D∪{j}. Observe also that ψij(T
D) has j− i more vertices than TD but only one551

more complete path. It is straightforward to verify that ψij(T
D) is a side-quest tree Sj,µ, and so552

the mappings ψij are well-defined.553

subsubsec:SPT-utility

4.3.2 Impact of single-path transformation on expected utilities As defined, the single-554

path transformation ψij generates a (j,µ)-SQT from an (i, µ− 1)-SQT for i, j,µ ∈ [N ], i < j and555

1 < µ ≤ j. In this subsection, we are interested in tracking the designer’s objective value as we556

undertake single-path transformation. Suppose we start with an (i, µ − 1)-SQT Ti,µ−1 with an557

expected utility Π(Ti,µ−1). We want to characterize the difference Π(ψij(Ti,µ−1))−Π(Ti,µ−1).558

The following result provides insights into the difference Π(ψij(Ti,µ−1))−Π(Ti,µ−1).559

lemma:learn-the-delta-general-v-p

Lemma 5. Suppose u satisfies (3), q satisfies (5), and the fatigue function depends on the number560

of vertices nv and complete paths np. Let Ti,µ be the element of Si,µ. Then, for i, j,µ ∈ [N ], i < j561

and 1<µ≤ j, we have:562

Π(ψij(Ti,µ−1))−Π(Ti,µ−1) =∆Uij −∆Fij(µ− 1) (13)
–eq:change-in-objective˝–eq:change-in-objective˝

563

where564

∆Uij :=
N∑
b=j

α(j− i)m(b)+

j−1∑
b=b̄

((α−β)j+βb−αi)m(b) (14)
–eq:change-in-utility-part˝–eq:change-in-utility-part˝

565

with566

b̄=max{⌈αi− (α−β)j

β
⌉, i+1}, (15)

–eq:cut-off˝–eq:cut-off˝
567

and568

∆Fij(µ− 1) := F (j+1, µ)−F (i+1, µ− 1) (16)
–eq:change-in-complexity-part˝–eq:change-in-complexity-part˝

569

where ⌈αi−(α−β)j
β

⌉ indicates the smallest integer that is not smaller than αi−(α−β)j
β

.570
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Recall (from (11)), that Π(G) =EB[π(t
∗
G,B|G,B)], and (from (7)) π(t∗G,b|Gb) = u(t∗G,b)−q(t∗G,b|b)−571

F (G) and t∗G,b is the optimal duration of a time budget b player (specified in (10)). Notice that572

the −F (G) term in π(t∗G,b|Gb) does not depend on the random variable B, and so we can express573

Π(G) in two terms:574

Π(G) =U(G)−F (G) (17)
–fun:profit-restructure˝–fun:profit-restructure˝

575

where576

U(G) := EB[u(t
∗
G,B)− q(t∗G,B|B)]. (18)577

The designer’s objective consists of two terms: U(G) is the expected utility from play minus the578

impatience penalty, and F (G) indicates the disutility from decision fatigue. As a result, the differ-579

ence in designer objective under an single-path transformation (expressed in (13)) also comes in580

two terms, ∆Uij and ∆Fij(µ− 1).581

The second term ∆Fij is easy to interpret. Decision fatigue depends only on the number of582

vertices and paths. The original side-quest tree Ti,µ−1 has i+1 vertices and µ− 1 complete paths583

while the new side-quest tree ψij(Ti,µ−1) has j +1 vertices and µ complete paths. Thus, we have584

∆Fij(µ− 1) := F (j+1, µ)−F (i+1, µ− 1).585

More interesting is the expression for the first term ∆Uij in (14). The two components in the586

expression587

N∑
b=j

α(j− i)m(b)︸ ︷︷ ︸
(i) players with time budget ≥ j

+

j−1∑
b=b̄

((α−β)j+βb−αi)m(b)︸ ︷︷ ︸
(ii) players with time budget in (i, j)

(19)
–eq:change-in-utility-two-terms˝–eq:change-in-utility-two-terms˝

588

arise from two groups of players: (i) players with time budgets of at least j and (ii) players with time589

budgets strictly between i and j. To interpret (19), let’s consider the change of players’ decisions590

after adding a new j-length path to the original side-quest tree Ti,µ−1 with i < j.591

(i) For players with time budgets of at least j, they selected the longest path with length i under592

the original side-quest tree Ti,µ−1. Now given the new j-length path, those players will all switch593

to this new path, because it gives them higher utility from play and does not incur any impatience594

penalty. Thus, the change of the expected utility is equal to
∑N

b=j α(j− i)m(b).595

(ii) For players with time budgets strictly between i and j, they selected the longest path with596

length i under the original side-quest tree Ti,µ−1. Given the new side-quest tree, they must decide597

between choosing the i-length path that ψij(Ti,µ−1) inherits from Ti,µ−1 or the new path j-length598

path added by the single-path transformation. If a player with budget b chooses the original i-599

length path, his utility from play is αi and the impatience penalty is 0. If a player with budget b600

chooses the new j-length path, he earns the utility from play αj but pays the impatience penalty601

β(j − b), resulting in a difference of αj − β(j − b). Thus, the player compares the two utilities602
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αi and αj − β(j − b) and will select the path which gives him the higher utility. Clearly, there603

exists a break-even point b̄ expressed in (15). Only those players with time budget b ∈ [b̄, j − 1]604

will switch to the new j-length path. The rest of the players with time budget b ∈ [i+ 1, b̄) will605

stay in the original i-length path. Therefore, the change of the expected utility is computed by606 ∑j−1

b=b̄(αj−β(j− b)−αi)m(b) =
∑j−1

b=b̄((α−β)j+βb−αi)m(b).607

Observe that there is no term for players with time budgets at most i. This is because these608

players will not change their decision of optimal path. Note that the single-path transformation609

ψij only adds one single path, which is the j-length path. Suppose those players with time budgets610

at most i switch to this new path, their utility from play increases, and so does the impatience611

penalty. However, we assume the growth in impatience penalty is greater than the growth in utility612

from play (Assumption 2). Then switching to the new longer path will make those players worse613

off. Therefore, in both side-quest trees, Ti,µ−1 and ψij(Ti,µ−1), players with time budgets at most i614

will choose the same optimal path, therefore there is no change in players’ utility.615

Finally, we remark that ∆Uij and ∆Fij(µ− 1) do not depend on the structure of Ti,µ−1. This616

invariant streamlines the inductive algorithm presented in Section 4.3.4.617

subsubsec:SPT-preserve-optimality

4.3.3 Key property of single-path transformation The following lemma illustrates a key618

property of single-path transformations that is they preserve optimality in a precise sense.619

lemma:nested-optimalty-general-v-p

Lemma 6. Suppose u satisfies (3), q satisfies (5), and the fatigue function depends on the number620

of vertices and paths. For j,µ∈ [N ],1<µ≤ j, the following properties hold:621

(i) For every element T ∗
j,µ of S∗

j,µ there exists i ∈ [j − 1] such that Tj,µ = ψij(Ti,µ−1) for some622

T ∗
i,µ−1 ∈ S∗

i,µ−1. In other words, every optimal (j,µ)-SQT arises from a single-path transformation623

of some optimal (i, µ− 1)-SQT for i∈ [j− 1].624

(ii) Suppose ψij(T
∗
i,µ−1) ∈ S∗

j,µ for some T ∗
i,µ−1 ∈ S∗

i,µ−1 (i ∈ [j − 1]), then ψij(T̂
∗
i,µ−1) ∈ S∗

j,µ and625

Π(ψij(Ti,µ−1)) = Π(ψij(T̂
∗
i,µ−1)) for any T̂ ∗

i,µ−1 ∈ S∗
i,µ−1. In other words, suppose an optimal (j,µ)-626

SQT arises from some optimal (i, µ−1)-SQT, then the (j,µ)-SQT arises from any optimal (i, µ−627

1)-SQT is an optimal (j,µ)-SQT sharing the same optimal value for i∈ [j− 1].628

(iii) The graph in {ψi,j(T ∗
i,µ−1)|i∈ [j− 1]} with largest Π value is an element of S∗

j,µ.629

Lemma 6 has important implications. First, (i) indicates that every optimal (j,µ)-SQT (j,µ ∈630

[N ],1<µ≤ j) can be generated from a smaller optimal (i, µ−1)-SQT (i∈ [j−1]) by a single-path631

transformation. Consequently, if all the optimal (i, µ−1)-SQT (i∈ [j−1]) are given, we can derive632

the set of all optimal (j,µ)-SQT. This sheds light on our inductive algorithm in Section 4.3.4.633

Roughly speaking, we will inductively construct the set S∗
i,µ−1 for all j,µ ∈ [N ],1< µ≤ j and the634

one with the largest expected utility will be an optimal solution to (WMP) (from Lemma 4).635
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(ii) further suggests that it is not necessary to construct the whole set S∗
i,µ−1 in every induction636

step. When the set S∗
i,µ−1 is not a singleton, it suffices to only select one optimal (i, µ− 1)-SQT in637

the set S∗
i,µ−1 as a representative. Because (ii) ensures that if an optimal (j,µ)-SQT can be derived638

from an optimal (i, µ− 1)-SQT for some i ∈ [j − 1], then the resulting graph from a single-path639

transformation of any optimal (i, µ− 1)-SQT in the set S∗
i,µ−1 must also be an optimal (j,µ)-SQT.640

As a result, when constructing an optimal (j,µ)-SQT through induction, we only need one optimal641

(i, µ− 1)-SQT for each i∈ [j− 1].642

What is more, (iii) points out how we find an optimal (j,µ)-SQT. Specifically, for each i∈ [j−1],643

we will apply a single-path transformation on the representative optimal (i, µ− 1)-SQT, resulting644

in a set of (j,µ)-SQT (i.e., the set {ψi,j(T ∗
i,µ−1)|i∈ [j− 1]}). Among this set of (j,µ)-SQT, the one645

with largest expected utility will be an optimal (j,µ)-SQT.646

To conclude, Lemma 6 serves as the foundation of our inductive algorithm. It is straightforward647

to see that the optimal (i,1)-SQT is uniquely defined with i + 1 vertices and a single length i648

complete path from vertex 1 to r. Starting from the optimal (i,1)-SQT T ∗
i,1, we can inductively649

construct an optimal (j,µ)-SQT T ∗
j,µ by conducting a series of single-path transformations on an650

optimal (i, µ− 1)-SQT T ∗
i,µ−1 for each i∈ [j− 1] and µ∈ [i]. Finally, after we derive all the optimal651

(j,µ)-SQT and obtain the set {T ∗
j,µ|j ∈ [N ], µ ∈ [j]}, we compare the expected utilities associated652

with those T ∗
j,µ. The optimal side-quest tree will be the one with largest expected utility.653

subsubsec:induction-algorithm

4.3.4 Induction algorithm Lemma 5 gave us closed-form formulas for how a single-path654

transformation changes the value of the designer’s objective function. By Lemma 6 and the para-655

graphs that followed it, we learned that we can compute the optimal side quest tree by conducting656

a series of single-path transformations. These two ingredients come together in Algorithm 1. We657

illustrate idea of Algorithm 1 in Figure 5.658

In the following, we present the framework of Algorithm 1 and explain how our algorithm works.659

We start the induction that is what happens inside the for loop from line 1 to line 17. By660

Lemma 4, we only cares about the case where j ∈ {1,2, . . . ,N} and µ∈ [min{|B|, i}].661

For every j ∈ {1,2, . . . ,N}, we construct the optimal (j,1)-SQTs from line 4 to 6, and the optimal662

(j,µ)-SQTs where µ> 1 from line 8 to 14.663

For the optimal (j,1)-SQTs, the algorithm constructs the optimal side quest tree T ∗
j,1 with vertex664

and edge sets Vj,1 and Ej,1 from line 4 to 5, because it can be uniquely defined by Definition 2 and665

Lemma 2. The objective value is computed in line 6.666

For the optimal (j,µ)-SQTs, the algorithm constructs the possible objective values of ψij(Ti,µ−1)667

arising from optimal (i, µ−1)-SQTs where i∈ [j−1] using single-path transformations as illustrated668

in line 9. For sake of demonstration, we denote Π∗
i,µ−1 = Π(T ∗

i,µ−1) and Πi,j,µ = Π(ψij(Ti,µ−1)).669



24 Li, Ryan, Sheng, and Wong: Optimal world design

Figure 5 The framework of Figure 5
fig:algorithm-induction-general-v-p

Following Lemma 5, we have Πi,j,µ =Π(ψij(T
∗
i,µ−1)) = Π∗

i,µ−1 +∆Uij −∆Fij(µ− 1). In line 11, we670

find the largest expected utility among those Πi,j,µ for all i∈ [j−1]. According to Lemma 6 (iii), the671

(j,µ)-SQT ψij(Ti,µ−1) that arises from the optimal (i∗, µ−1)-SQT must be an optimal (j,µ)-SQT.672

Then from line 12 to 13, we apply the single-path transformation to the optimal (i∗, µ−1)-SQT and673

construct this optimal (j,µ)-SQT with vertex and edge sets Vj,µ and Ej,µ. The algorithm constructs674

the optimal (j,µ)-SQT in line 14 for j ∈ [N ], and µ∈ [min{|B|, j}].675

Combining the cases where µ = 1 and µ > 1, the loop starting from line 1 terminates with a676

single optimal (j,µ)-SQT for each j ∈ [N ] and µ ∈ [min{|B|, j}] of the largest possible objective677

value. Lastly, in line 18, the algorithm selects the optimal (j,µ)-LSQT with the largest possible678

objective value and returns it as the optimal side-quest tree T ∗ = T ∗
j∗,µ∗ .679

The following theorem describes the optimally of the algorithm and its run-time complexity.680

theorem:dp-general-v-p
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Algorithm 1 An inductive algorithm to compute an optimal side-quest tree
algorithm-induction-general-v-p

Input: Universe graph U = (V ,E ), start and end vertices 1 and r, time budget set B, proba-

bility mass function m of time budget random variable B, utility from play function u that

satisfies (3), impatience penalty function q that satisfies (5), and fatigue function F (nvG, n
p
G)

that depends only on the vertex and path count of a world map G≤U ;

Output: A side-quest tree that is an optimal solution to (WMP).

1: for j ∈ [N ] do algorithm:for-loop

2: for µ∈ [min{|B|, j}] do

3: if µ= 1 then

4: Let Vj,1 = {1,2, . . . , j− 1, j, r}; algorithm:start-construct-n=1

5: Set Ej,1 = {(1,2), (2,3), . . . , (j− 2, j− 1), (j− 1, j), (j, r)}; algorithm:middle-construct-n=1

6: Let T ∗
j,1 = (Vj,1,Ej,1), and set Πj,1 =Π(T ∗

j,1);
algorithm:IA-recursion-n=1

7: else

8: for i∈ [j− 1] do algorithm:for-loop-1

9: Let Πi,j,µ =Πi,µ−1 +∆Uij −∆Fij(µ− 1);
algorithm:IA-recursion

10: end for

11: Let i∗ = argmax{Πi,j,µ|i∈ [j− 1]}, and set Πj,µ =Πi∗,j,µ;
algorithm:IA-select-j-1

12: Let Vj,µ = Vi∗,µ−1 ∪{i∗ +1, i∗ +2, . . . , j− 1, j}; algorithm:start-construct

13: Set Ej,µ =Ei∗,µ−1 ∪{(i∗, i∗ +1), (i∗ +1, i∗ +2) . . . , (j− 2, j− 1), (j− 1, j), (j, r)}; algorithm:middle-construct

14: Let T ∗
j,µ = (Vj,µ,Ej,µ);

algorithm:end-construct

15: end if

16: end for

17: end for
algorithm:end-for-loop

18: Let (j∗, µ∗) = argmax{Πj,µ|j ∈ [N ], µ∈ [min{|B|, j}]}, and set Π∗ =Πj∗,µ∗ and T ∗ = T ∗
j∗,µ∗ ;

algorithm:IA-select-optimal

19: return T ∗.

Theorem 4. Suppose u satisfies (3), q satisfies (5), and the fatigue function depends on the681

vertex and path count of a world map G. Then Algorithm 1 produces an optimal solution to (WMP)682

has run-time complexity O (N 2|B|).683

Algorithm 1 has O(N |B|) stages. At each stage j ∈ [N ] and µ∈ {2, . . . ,min{|B|, j}}, the algorithm684

calculates the possible objective values Πi,j,µ based on the optimal (i, µ− 1)-SQT where i∈ [j− 1]685

and µ∈ [min{|B|, j}] recursively in line 9. It finds the maximum objective value Π∗
j,µ of the optimal686

(j,µ)-SQT in line 11 by choosing the maximum Πi,j,µ for i∈ [j−1]. Thus, it takes O(N) iterations687

to compute the possible objective value of the optimal (j,µ)-SQT.688
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The algorithm then constructs the optimal (j,µ)-SQT from the (i∗, µ−1)-SQT in line 14 for any689

optimal (j,µ)-SQT where j ∈ [N ] and µ∈ [min{|B|, j}]. Lastly, Algorithm 1 computes the optimal690

side quest tree T ∗ in line 18 by choosing the maximum Π∗
j,µ of the optimal (j,µ)-SQT for j ∈ [N ]691

and µ∈ [min{|B|, j}]. Hence, the total computational complexity of Algorithm 1 is O (N 2|B|), which692

is in polynomial time.693

5. More general fatigue functions694 s:more-general

While the analysis of the case where the fatigue function only depends on the vertices and paths is695

quite complete, it raises the question of whether side-quest trees remain optimal when the fatigue696

function depends on the number of edges. The following counter-example reveals that this need697

not be the case.698

Example 2 (Side-quest tree is not optimal). Consider the setting with N = 5 and the699

fatigue function F is increasing in number of vertices, paths, and edges. This implies that when two700

world maps G and G′ have the same number of vertices and paths—and the same duration set—701

but G has fewer edges than G′, then Π(G)>Π(G′). Consider now the two world maps illustrated702

in Figure 6.

1

2

3

5

r

4

(a) T {2,3,4,5}

1

2

3

5

r

4

(b) a non-side-quest tree

Figure 6 Non-optimality of side-quest trees.
fig:non-optimality-side-quest-tree

703

Both Figure 6(a) and Figure 6(b) have six vertices, four paths, and the same duration set704

{2,3,4,5}, but the world map has one fewer edge (eight versus seven). Accordingly, the side-quest705

tree will never be an optimal solution to (WMP) for any choice of u, q, and m. ◀706

This example demonstrates that, in a sense, side-quest trees have too many edges in general.707

The world map in Figure 6(b) generates its duration set by two diversionary paths from the “main708

path” (1,3, r), one taking a detour to vertex 2 and the second diverting to vertices 4 and 5. The709
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path of duration 3 in Figure 6(b) taking vertices {3,4,5} arises by electing not to go vertex 2,710

while in Figure 6(a), every journey to vertex 5 must take vertex 2. This lack of flexibility requires711

the additional edge (3, r) to give Figure 6(a) a path of duration three.712

In attempting to construct a class of optimal world maps for general fatigue functions, it was713

the possibility of adding more and more “flexibility” of this type that made it hard to find a714

more general optimality structure. Without a handle on additional optimality structure, it proved715

challenging to find optimal world maps for more general fatigue functions. Accordingly, we leave716

the investigation of additional structures for future work.717

6. Conclusion718 s:conclusion

In this paper, we introduced a novel graph design problem motivated by a problem of growing719

interest in practice—design virtual worlds. Our setting looked at the problem of designing a video720

game world map based on considerations of how players earn utility from play but incur disutility721

from impatience and decision fatigue.722

There are numerous ways to extend the setting we studied to add even more realism. Each of723

these extensions, in our opinion, is nontrivial to pursue:724

• What if the different game elements offer differing utilities and durations? In the current725

setting, all game elements offer unit durations and utilities to all players. This extension726

would abrogate a lot of the symmetry we use in our result, making analysis much more727

complex.728

• What if there is “hard-coded” precedence between certain levels? For example, in the729

“Metroidvania” genre18 players must backtrack to find new paths in previously explored730

areas as the player’s avatar gains new abilities. In our setting, the underlying universe731

graph U was always complete, which was particularly useful when showing that side-732

quest trees were optimal. Indeed, at a minimum, we knew every side-quest tree was a733

feasible world map and was connected via the single path transformation property. A734

more restrictive universe graph would require a more careful accounting of feasibility.735

• In a similar vein, we have assumed throughout that players have complete information736

about the nature of the world map and make decisions on how to traverse it in a static737

way. In many games, the world map is only revealed slowly as your progress through738

the various game elements. But a dynamic, “learn the map on the fly” analysis would739

add considerable complexity to the underlying path selection problem. The theory740

of stochastic or online combinatorial optimization would need to develop in order to741

18 https://en.wikipedia.org/wiki/Metroidvania
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tackle this setting, and the analysis would itself become more approximate or in search742

of competitive ratios. Even if this is the ultimate goal, studying the full-information743

version of the problem is a pre-requisite, something we have started to explore in this744

paper.745

• Extensions could add more player heterogeneity in terms of their utilities and speed746

of traversing the game elements. Our analysis only addresses heterogeneity in the time747

budget of players, which we have argued is a salient consideration given the changing748

nature of player demographics.749

• Finally, our analysis assumed that the game designer has complete information about750

the player’s payoff functions. This is not entirely realistic, and these utilities proba-751

bly needed to be learned as players interact with designers. This “learning phase” is752

something that could be studied with models analogous to “demand learning” in our753

setting, but is much beyond the scope of what we study here.754

Finally, beyond the world design problem, this research direction raises the possibility of a755

whole genre of research papers that have traditional combinatorial optimization problems with756

new objective functions related to player utility. Usually, combinatorial optimization problems have757

simple objective functions: minimize cost, minimize time, maximize flow, etc. What if our goal is758

to design optimization problems that maximize how “fun” they are to solve, in a sense related to759

notions explored in this paper and other video game papers.760

References761

Aouad A, Deshmane A, Martinez-de Albeniz V (2022) Designing layouts for sequential experiences: Appli-762

cation to cultural institutions .763

Appel G, Libai B, Muller E, Shachar R (2020) On the monetization of mobile apps. International Journal764

of Research in Marketing 37(1):93–107.765

Ascarza E, Netzer O, Runge J (2020) The twofold effect of customer retention in freemium settings. Harvard766

Business School Working Paper 21-062 .767

Augenblick N, Nicholson S (2016) Ballot position, choice fatigue, and voter behaviour. The Review of Eco-768

nomic Studies 83(2):460–480.769

Baucells M, Sarin RK (2007) Satiation in discounted utility. Operations Research 55(1):170–181.770

Chen M, Elmachtoub AN, Lei X (2021a) Matchmaking strategies for maximizing player engagement in video771

games. Available at SSRN 3928966 .772

Chen N, Elmachtoub AN, Hamilton ML, Lei X (2021b) Loot box pricing and design. Management Science773

67(8):4809–4825.774

Das Gupta A, Karmarkar US, Roels G (2016) The design of experiential services with acclimation and775

memory decay: Optimal sequence and duration. Management Science 62(5):1278–1296.776



Li, Ryan, Sheng, and Wong: Optimal world design 29

Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem: A survey of recent variants, solution777

approaches and applications. European Journal of Operational Research 255(2):315–332.778

Guo H, Hao L, Mukhopadhyay T, Sun D (2019a) Selling virtual currency in digital games: Implications for779

gameplay and social welfare. Information Systems Research 30(2):430–446.780

Guo H, Zhao X, Hao L, Liu D (2019b) Economic analysis of reward advertising. Production and Operations781

Management 28(10):2413–2430.782

Han J, Ryan C, Tong XT (2023) Algorithms for loot box design. Available at SSRN 4326724 .783

Hirshleifer D, Levi Y, Lourie B, Teoh SH (2019) Decision fatigue and heuristic analyst forecasts. Journal of784

Financial Economics 133(1):83–98.785

Hiwiller Z (2015) Players Making Decisions: Game Design Essentials and the Art of Understanding Your786

Players (New Riders).787

Hodent C (2020) The Psychology of Video Games (Routledge).788

Huang Y, Jasin S, Manchanda P (2019) “Level Up”: Leveraging skill and engagement to maximize player789

game-play in online video games. Information Systems Research 30(3):927–947.790

Huang Y, Lim KH, Lin Z (2020) Leveraging the numerosity effect to influence perceived expensiveness of791

virtual items. Information Systems Research 32(1):93–114.792

Jiao Y, Tang CS, Wang J (2020) Opaque selling in player-vs-player games. Available at SSRN 3558774 .793

Kahneman D (2011) Thinking, fast and slow (Macmillan).794

Kremers R (2009) Level design: concept, theory, and practice (CRC Press).795

LaGanga LR, Lawrence SR (2012) Appointment overbooking in health care clinics to improve patient service796

and clinic performance. Production and Operations Management 21(5):874–888.797

Li Y, Dai T, Qi X (2022) A theory of interior peaks: Activity sequencing and selection for service design.798

Manufacturing & Service Operations Management 24(2):993–1001.799

Li Y, Ryan CT, Sheng L (2023) Optimal sequencing in single-player games. Management Science (to appear)800

.801

Liao CN, Chen YJ (2021) Design of long-term conditional cash transfer program to encourage healthy habits.802

Production and Operations Management 30(11):3987–4003.803

Long X, Sun J, Dai H, Zhang D, Zhang J, Chen Y, Hu H, Zhao B (2021) Choice overload with search cost804

and anticipated regret: Theoretical framework and field evidence. Available at SSRN 3890056 .805

Ma X, He J, Liao J (2021) Does decision fatigue affect institutional bidding behavior? evidence from chinese806

ipo market. Economic Modelling 98:1–12.807

Mai Y, Hu B (2023) Optimizing free-to-play multiplayer games with premium subscription. Management808

Science 69(6):3437–3456.809

Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic Theory (Oxford University Press, New York).810

Meng Z, Hao L, Tan Y (2021) Freemium pricing in digital games with virtual currency. Information Systems811

Research 32(2):481–496.812

Roels G (2019) Optimal structure of experiential services: Review and extensions. Handbook of Service813

Science, Volume II, 105–146 (Springer).814



30 Li, Ryan, Sheng, and Wong: Optimal world design

Ruiz-Meza J, Montoya-Torres JR (2021) Tourist trip design with heterogeneous preferences, transport mode815

selection and environmental considerations. Annals of Operations Research 305(1):227–249.816

Runge J, Nair H, Levav J (2021) Price promotions for “freemium” app monetization. Available at SSRN817

3357275 .818

Ryan CT, Sheng L, Zhao X (2020) Strategic timing and pricing for selling bonus actions in video games.819

Available at SSRN 3751523 .820

Schell J (2019) The Art of Game Design: A Book of Lenses (CRC press).821

Shah AM, Wolford G (2007) Buying behavior as a function of parametric variation of number of choices.822

PSYCHOLOGICAL SCIENCE-CAMBRIDGE- 18(5):369.823

Sheng L, Ryan CT, Nagarajan M, Cheng Y, Tong C (2022) Incentivized actions in freemium games. Manu-824

facturing & Service Operations Management 24(1):275–284.825

Song Y, Ulmer MW, Thomas BW, Wallace SW (2020) Building trust in home services—stochastic team-826

orienteering with consistency constraints. Transportation Science 54(3):823–838.827

Tong LC, Zhou L, Liu J, Zhou X (2017) Customized bus service design for jointly optimizing passenger-828

to-vehicle assignment and vehicle routing. Transportation Research Part C: Emerging Technologies829

85:451–475.830

Totten CW (2017) Level design: Processes and experiences (CRC Press).831

Tsiligirides T (1984) Heuristic methods applied to orienteering. Journal of the Operational Research Society832

35(9):797–809.833

Turner J, Scheller-Wolf A, Tayur S (2011) Scheduling of dynamic in-game advertising. Operations Research834

59(1):1–16.835

Vohs KD, Baumeister RF, Schmeichel BJ, Twenge JM, Nelson NM, Tice DM (2018) Making choices impairs836

subsequent self-control: A limited-resource account of decision making, self-regulation, and active ini-837

tiative. Self-regulation and self-control, 45–77 (Routledge).838

Vu D, Zhao X, Stecke K (2020) Pay-to-win in video games: Microtransactions and fairness concerns. Available839

at SSRN 3658537 .840

Xu Y, Scheller-Wolf A, Sycara K (2015) The benefit of introducing variability in single-server queues with841

application to quality-based service domains. Operations Research 63(1):233–246.842

Yu Q, Adulyasak Y, Rousseau LM, Zhu N, Ma S (2021) Team orienteering with time-varying profit.843

INFORMS Journal on Computing .844



e-companion to Li, Ryan, Sheng, and Wong: Optimal world design ec1

845

E-companion for “Optimal world design in video games”846

Appendix A: Technical Proofs847
sec:appendix-proof

A.1 Proof of Theorem 1848 ss:proof-of-theorem-game-duration

Given G and b, the player chooses t ∈DG to maximize his utility π(t|G,b) = u(t)− q(t|b)−F (G).849

Note that the term F (G) is unrelated to the player’s decision. We claim that π(t|G,b) is an unimodal850

function of t that achieves its unique maximum at t= b. Indeed, by (2), u is strictly increasing and851

q(t|b) = 0 on 0≤ t < b. Thus, π is strictly increasing on 0≤ t < b. By Assumption 2, u(t)− q(t|b)852

is strictly decreasing on t > b, and thus so is π. This implies that π is unimodal and achieves its853

unique maximum at t= b.854

Thus, if b∈DG then b is clearly the unique minimizer of maxt∈DG
π(t|G,b). If b /∈DG then one of855

either ⌊b⌋G or ⌈b⌉G is optimal. This follows since π is strictly increasing when 0≤ t < b and strictly856

decreasing on t > b. Whichever of ⌊b⌋G or ⌈b⌉G achieves the highest value in π is thus the optimal857

solution to (P |G,b). In other words, proj(b) is the set of optimal solutions of (P |G,b). □858

A.2 Proof of Theorem 2859 ss:proof-of-prop-single-player

In this setting, the game designer’s problem is:860

max
G≤U

max
t∈DG

π(t|G,b).861

Observe that the term F (G) is a constant with respect to the choice of t ∈ DG and so we can862

rewrite this problem as:863

max
G≤U

[
max
t∈DG

(u(t)− q(t|b))−F (G)

]
.864

Using the optimality structure established in (10) the problem amounts to solving:865

max
G≤U

[
u(t∗G,b)− q(t∗G,b|b)−F (G)

]
.866

Now, by the optimality structure of t∗G,b we know that the player will select the path with duration867

either ⌊b⌋G or ⌈b⌉G, where these values are defined in (9).868

Notice that there is no utility gained by offering more than one path in a world map since a869

player will only select one of these paths anyway, and the game designer will know which one that870

is by the optimality structure of t∗G,b. Thus, the choice of G is restricted to a line graph; that is,871

G=Lk for some k. We only need to consider what length of path to choose.872

When restricting our attention to a line graph G=Lk for some k, we observe that DG = {k} is873

a singleton. Therefore, the player’s game time must be t∗G,b = k and the resulting player utility is874

u(k)− q(k|b)−F (Lk). Assumption 1 implies that the growth in fatigue as k increases is less than875
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the growth in utility. Thus, when k < b, q(k|b) = 0 and u(k)− q(k|b)− F (Lk) increases in k < b.876

When k > b, u(k)− q(k|b) decreases in k ≥ b (by Assumption 2) and F (Lk) is nondecreasing in k877

(by (6)). Thus, u(k)− q(k|b)−F (Lk) decreases in k > b.878

In conclusion, the function u(k) − q(k|b) − F (Lk) increases in k < b but decreases in k > b,879

implying that k= b is optimal. □880

A.3 Proof of Lemma 1881 ss:property-of-side-quest-tree

We need to show TD: (i) is acyclic, (ii) has no dead ends, and (iii) is unilaterally connected.882

For (i) observe that all maximal directed paths reach vertex r, but r has no outgoing edges. This883

means the path cannot return to any of its earlier edges, and so there are no directed cycles.884

For (ii), there are two types of edges: (a) edges on the path (1,2, . . . , d̂) and (b) edges from885

that path to r. As d̂=maxD ∈D, the side-quest tree TD must include the edge (d̂, r) following886

its definition. Then the path (1,2, . . . , d̂, r) is a complete path, and those edges in case (a) are887

contained in this complete path. Similarly, edges in case (b) are those additional edges (v, r) for888

all v ∈D. The path (1,2, . . . , v, r) is a complete path and contains the edge (v, r). □889

A.4 Proof of Lemma 2890 ss:counts-for-side-quest-trees

The vertex count is straightforward, by construction, the graph contains the vertices {1,2, . . . , d̂}891

along with the end vertex r. That is exactly 1+ d̂ vertices. The set of all complete paths of TD is892

{pd : d ∈D} where pd := (1, . . . , d, r) for all d ∈D. Clearly, pd has duration d. This implies TD has893

exactly one path for each duration d∈D. □894

A.5 Proof of Lemma 3895 proof-lemma:complexity-minimum-paths-and-vertices

Each complete path in a graph has a duration. Thus, each duration must be associated with at least896

one complete path. As D ⊆DG, the graph G has at least |D| different durations in the duration897

set, implying at least |D| number of complete paths.898

Moreover, let d̂=maxD be the maximal duration in D. The complete path that provides this899

duration d̂ must contain 1 + d̂ vertices, which offers a minimal value on the number of vertices.900

□901

A.6 Proof of Theorem 3902 proof-thm:paths-and-vertices-T-N-subgraph-best

We prove the result by contradiction. Suppose the optimal solution to (WMP) is not a side-quest903

tree. We denote this optimal world map as G∗ and its resulting duration set as D∗.904

Now we consider a side-quest tree TD
∗
. By construction, TD

∗
has the same duration set of G∗.905

Therefore, for all players, their play time, utility from play, and impatience penalty are identical906

in the two graphs TD
∗
and G∗. Furthermore, Lemma 2 and Lemma 3 imply that the number of907

paths and vertices of the side-quest tree TD
∗
match the minima and thereby field the smallest908
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possible fatigues among graphs that cover duration set D∗. Thus, F (TD
∗
)≤ F (G∗). We conclude909

Π(TD
∗
) ≥ Π(G∗), that is the expected utility of players under the side-quest tree TD

∗
is weakly910

higher than that under G∗.911

If Π(TD
∗
)>Π(G∗), it contradicts the fact that G∗ is the optimal world map. If Π(TD

∗
) =Π(G∗),912

meaning that TD
∗
performs equally well as G∗, then D∗ should also be an optimal world map. But913

this contradicts the initial assumption that the optimal solution to (WMP) is not a side-quest tree.914

From above, we have proven that there must exist an optimal solution to (WMP) that is a915

side-quest tree. □916

A.7 Proof of Proposition 1917
proof-prop:optimal-linear-complexity-has-at-most-D-paths

Following Theorem 3, there exists an optimal solution to (WMP) that is a side-quest tree TD.918

If |D| ≤ |B|, we are done. If |D| > |B|, it implies that there exists at least one complete path919

in the graph TD that is not selected by players. We construct a new side-quest tree TD
′
, where920

D′ = {t∗
TD,b

|b ∈ B} and t∗
TD,b

is the optimal play time of a player with time budget b under the921

graph TD. We have |D′| ≤ |B|.922

Compared to the original side-quest tree TD, we observe that the new side-quest tree TD
′
has923

all the durations that were in use. Therefore, utility from play and impatience penalty remain the924

same. Since |D′|< |D|, the side-quest tree TD
′
contains fewer paths and vertices than TD, leading925

to a strictly smaller decision fatigues disutility. That is, F (TD
′
)<F (TD). As a result, we conclude926

Π(TD
′
)>Π(TD). However, this contradicts the fact that TD is the optimal world map. As a result,927

we cannot have |D|> |B|. We have proven Proposition 1. □928

A.8 Proof of Proposition 2929
proof-lemma:complexity-minimum-paths-and-vertices

Proposition 1 indicates that there exists an optimal solution to (WMP) that is a side-quest tree TD930

with |D| ≤ |B|. If D⊆B, we are done. Otherwise, we claim that we can construct a new duration931

set D′ with the following properties:932

1. (D′ \B)⊂ (D \B). The new set D′ has fewer elements that are not contained in B.933

2. Π(TD)≤Π(TD
′
). The new side-quest tree TD

′
does not lower the expected utility.934

The construction works as below: We let U =D ∪ B be the union of D and B. Let t ∈ U \ B be935

any element of U not contained in B, which exists because we assume U \B=D \B is not empty.936

The new duration set D′ is constructed by replacing t with a different value d∈U . In other words,937

D′ =D∪{d} \ {t} for some d∈U .938

By the above construction, the element t ∈D \ B is removed in the new duration set D′. That939

is, we remove an element that is contained in D but not in B. In addition, the replacing element d940

is either an element of B or an element of D, so we are not introducing any new element outside941
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of D or B. As a result, we conclude that (D′ \B) is a proper subset of (D \B). The first property942

holds.943

To prove the second property, we split the discussions into three cases.944

Case 1: t is the greatest element in U .945

Let b̂=maxB. Since we assume t is the greatest element in U and t /∈B, we have t > b̂. Assump-946

tion 2 implies that, for players who chose the path with duration t, a path with duration b̂ will947

give them higher utility for play and lower impatience penalty. Therefore, we let D′ =D∪{b̂}\{t}.948

The resulting side-quest tree TD
′
increases the game entertainment (defined as utility from play949

minus impatience penalty) of those players who previously selected the path with duration t, while950

it does not affect the game entertainment of other players. Furthermore, the decision fatigue will951

decrease, because the number of vertices decreases and the number of paths is either the same or952

lower, depending on whether b̂ was originally in D. In conclusion, the overall expected utility will953

not decrease, i.e., Π(TD)≤Π(TD
′
).954

Case 2: t is not the greatest element in U , neither is it the greatest element in D.955

It suffices to restrict our attention to those players who choose the path with duration t under956

the original side-quest tree TD. Let Λ be the proportion of players choosing the path with duration957

t, i.e., Λ =
∑

b prefers tm(b) =
∑

{b:t∗
TD,b

=t}m(b). We define GE(d) as the total game entertainment958

(utility from play minus impatience penalty) when all players who preferred the path with duration959

t are instead changed to use a path with duration d19. That is,960

GE(d) = Λαd−
∑

{b:b<d,t∗
TD,b

=t}

m(b)β(d− b).961

962

Thus, we obtain963

GE(d+1)−GE(d) = Λα−
∑

{b:b<d+1,t∗
TD,b

=t}

m(b)β(d+1− b)+
∑

{b:b<d,t∗
TD,b

=t}

m(b)β(d− b)964

=Λα−
∑

{b:b≤d,t∗
TD,b

=t}

m(b)β.965

966

In particular, we consider the case when d= t. Since t /∈B, m(t) = 0. Thus,967

GE(t+1)−GE(t) =Λα−
∑

{b:b≤t,t∗
TD,b

=t}

m(b)β968

=Λα−
∑

{b:b≤t−1,t∗
TD,b

=t}

m(b)β969

19 Here we force all players to choose the new duration d when the duration t were removed. If players are allowed to
choose their optimal paths in the new side-quest tree, the total game entertainment will be even higher than GE(d).
So our proof will still hold.



e-companion to Li, Ryan, Sheng, and Wong: Optimal world design ec5

=GE(t)−GE(t− 1).970
971

IfGE(t+1)−GE(t)> 0, then the path with duration t+1 results in a larger game entertainment.972

So we replace t with t+ 1. That is, D′ = D ∪ {t+ 1} \ {t}. If GE(t+ 1)−GE(t) < 0, implying973

GE(t)−GE(t− 1)< 0, then the path with duration t− 1 results in a larger game entertainment.974

So we replace t with t− 1. That is, D′ = D ∪ {t− 1} \ {t}. If GE(t+ 1)−GE(t) = 0 and then975

GE(t)−GE(t−1) = 0, all three durations provide equal game entertainment. So t can be replaced976

with either t− 1 or t+1.977

Since t is not the largest element in D, removing t will not change the number of vertices nv. The978

number of paths np will either stay the same or decrease by 1, depending on whether or not the979

new duration is already in D. Therefore, the decision fatigue will decrease or remain unchanged,980

and the game entertainment will increase or remain unchanged. In conclusion, the overall expected981

utility will not decrease, i.e., Π(TD)≤Π(TD
′
).982

Case 3: t is not the greatest element in U , but it is the greatest element in D.983

This case follows the previous case. The only difference is that removing t will change the number984

of vertices nv as t is the largest element in D. Since we assume the fatigue function is a linear985

function of the number of vertices and the number of paths, we denote wv as the marginal fatigue986

caused by adding a vertex. We would consider the following differences:987

GE(t+1)−GE(t)−wv =Λα−
∑

{b:b≤t,t∗
TD,b

=t}

m(b)β−wv988

=Λα−
∑

{b:b≤t−1,t∗
TD,b

=t}

m(b)β−wv989

=GE(t)−GE(t− 1)−wv.990
991

If GE(t+1)−GE(t)−wv > 0, then t can be replaced with t+1. So D′ =D∪{t+1}\{t}. Under992

the new side-quest tree TD
′
, the number of vertices is increased by 1 and the number of paths np993

is unchanged. Hence, the decision fatigue will increase. However, the gain of game entertainment994

surpasses the increase of decision fatigue. Therefore, the overall expected utility will not decrease.995

If GE(t+1)−GE(t)−wv < 0, implying GE(t)−GE(t−1)−wv < 0, then t can be replaced with996

t− 1. So D′ =D ∪ {t− 1} \ {t}. In this case, the decision fatigue will decrease since the number997

of vertices nv decreases and the number of paths np will either stay the same or decrease by 1,998

depending on whether or not the new duration t−1 is in D. The benefit from lowering the decision999

fatigue dominates the change of game entertainment. Thus, the overall expected utility will not1000

decrease.1001
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If GE(t+1)−GE(t)−wv =GE(t)−GE(t−1)−wv = 0, then t can be replaced with either t−11002

or t+1. The number of paths np will either stay the same or decrease by 1, depending on whether1003

or not the new duration is in D. Again, the overall expected utility will not decrease in this case.1004

From the above discussion, we show that we have constructed a new duration set D′ which1005

contains fewer elements that are not contained in B and does not decrease the expected utility.1006

In other words, by the above construction, we are able to remove one element in D \ B without1007

lowering the expected utility. Because the original duration set D has finitely many elements that1008

are not contained in B. We can repeat the above construction by a finite number of times and1009

remove all elements in D that are not contained in B, eventually resulting in a new duration set1010

D∗ such that D∗ ⊆B. By the second property, we guarantee Π(TD)≤Π(TD
∗
). We have completed1011

the proof. □1012

Appendix B: Proofs regarding Algorithm 1 for the optimal side quest tree1013
sec:ia-general-v-p

B.1 Proof of Lemma 41014

By Theorem 3, there exists an optimal solution to (WMP) that is a side quest tree. We let T ∗ be1015

the optimal side quest tree, i∗ be the length of the longest complete path in T ∗, and µ∗ be the1016

number of complete paths in T ∗. Clearly, i∗ ∈ [N ] and µ∗ ∈ [i∗] by Lemma 2. Since T ∗ is an optimal1017

solution to (WMP) and yields the maximum expected utility, it should also be an optimal solution1018

to (WMPi,µ) with i= i∗ and µ= µ∗. Thus, T ∗ must be an optimal (i∗, µ∗)-SQT, which implies that1019

the optimal side quest tree can be found in the sets of S∗
i,µ for i∈ [N ] and µ∈ [i].1020

By Proposition 1, there are at most |B| different elements in the duration set of the optimal side1021

quest tree. Therefore, the capacity of the optimal side quest tree is at most |B|. Thus, the optimal1022

side quest tree can be found in sets S∗
i,µ for i∈ [N ] and µ∈ [|B|]. □1023

B.2 Proof of Lemma 51024

Recall from (17), the designer’s objective consists of two terms: U(G) is the expected utility from1025

play minus the impatience penalty (below we refer it as “game entertainment”), and F (G) indicates1026

the disutility from decision fatigue.1027

Consider the difference in the expected utility (i.e., the designer’s objective) under a single-path1028

transformation, for i, j,µ∈ [N ], i < j and 1<µ≤ j, we have:1029

Π(ψij(Ti,µ−1))−Π(Ti,µ−1) = [U(ψij(Ti,µ−1))−U(Ti,µ−1)]− [F (ψij(Ti,µ−1))−F (Ti,µ−1)]1030

=∆Uij(µ− 1)−∆Fij(µ− 1).1031
1032

We denote ∆Uij(µ− 1) =U(ψij(Ti,µ−1))−U(Ti,µ−1) and ∆Fij(µ− 1) = F (ψij(Ti,µ−1))−F (Ti,µ−1).1033

In what follows, we investigate the two terms ∆Uij(µ− 1) and ∆Fij(µ− 1).1034
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(1): Decision fatigue increment after single-path transformation ∆Fij(µ− 1)1035

By its definition, the single-path transformation ψij that maps an (i, µ− 1)-SQT Ti,µ−1 to an1036

(j,µ)-SQT Tj,µ introduces j − i additional vertices and 1 additional complete path. In particular,1037

the original side-quest tree Ti,µ−1 has i+ 1 vertices and µ− 1 complete paths, and the new side-1038

quest tree ψij(Ti) has j+1 vertices and µ complete paths. Finally, the decision fatigue increment1039

after the single-path transformation ψij is equal to1040

∆Fij(µ− 1) =F (ψij(Ti,µ−1))−F (Ti,µ−1)1041

=F (j+1, µ)−F (i+1, µ− 1).1042
1043

(2): Game entertainment increment after single-path transformation ∆Uij(µ− 1)1044

Recall from earlier that game entertainment indicates players’ utility from play minus impatience1045

penalty. Specifically, given a graph G, and a player with budget b chooses his optimal duration t∗G,b1046

(specified in (10)) and his game entertainment is defined as u(t∗G,b)− q(t∗G,b|b) where u satisfies (3)1047

and q satisfies (5).1048

Consider the original side quest tree Ti,µ−1 and the new side quest tree ψij(Ti,µ−1) resulting from1049

the single-path transformation. Then,1050

∆Uij(µ− 1) = EB[u(t
∗
ψij(Ti,µ−1),B

)− q(t∗ψij(Ti,µ−1),B
|B)]−EB[u(t

∗
Ti,µ−1,B

)− q(t∗Ti,µ−1,B
|B)]1051

=
N∑
b=1

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b).1052

1053

What impacts the difference ∆Uij(µ−1) are the players’ optimal durations t∗Ti,b and t
∗
ψij(Ti),b

under1054

the two side quest trees Ti,µ−1 and ψij(Ti,µ−1). Thus, we need to explore how players will adjust1055

their path decisions after the single-path transformation ψij.1056

Observe that the single-path transformation ψij adds one single path, which is the j-length path.1057

Hence, given the new side quest tree ψij(Ti,µ−1), players only need to think about whether to stay1058

on their original path or switch to the new j-length path. We make the following claims about1059

players’ path decisions after the single-path transformation ψij.1060

(i) For players with time budgets at most i, their decisions of optimal path remain the1061

unchanged. That is, if a player with budget b ≤ i selected the path of length k (for1062

some duration k) under the original side quest tree Ti,µ−1, he will continue to select1063

the same path under the new side quest tree ψij(Ti,µ−1).1064

Suppose those players with time budgets at most i switch to the new j-length path.1065

Their utility from play increases, and so does the impatience penalty. However, we1066

assume the growth in impatience penalty is greater than the growth in utility from1067
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play (Assumption 2). Then switching to the new longer path will make those players1068

worse off. Thus, under the new side quest tree ψij(Ti,µ−1), players with time budgets1069

at most i would still prefer the same optimal path as they did under the original side1070

quest tree Ti.1071

As a result, for players with time budgets at most i, there is no change in their game1072

entertainment after the single-path transformation, i.e.,1073

i∑
b=1

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b) = 0.1074

1075

(ii) For players with time budgets of at least j, they selected the longest path with length i1076

under the original side-quest tree Ti,µ−1. Now given the new side quest tree ψij(Ti,µ−1)1077

with the new j-length path, those players will all switch to this longer j-length path,1078

because it gives them higher utility from play and does not incur any impatience1079

penalty.1080

Thus, for players with time budget of at least j, the change of their game entertain-1081

ment after the single-path transformation is equal to1082

N∑
b=j

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b)1083

=
N∑
b=j

{[u(j)−u(i)]− [0− 0]}m(b)1084

=
N∑
b=j

α(j− i)m(b).1085

1086

(iii) For players with time budgets strictly between i and j, they used to select the longest1087

path with length i under the original side-quest tree Ti,µ−1. Given the new side-quest1088

tree, they must decide between choosing the i-length path that ψij(Ti,µ−1) inherits from1089

Ti,µ−1 or the new path j-length path added by the single-path transformation.1090

If a player with budget b chooses the original i-length path, his utility from play1091

is αi and the impatience penalty is 0. If a player with budget b chooses the new j-1092

length path, he earns the utility from play αj but pays the impatience penalty β(j−b),1093

resulting in a difference of αj−β(j− b).1094

Then we compare the two utilites αi and αj − β(j − b). We define b̄ =1095

max{⌈αi−(α−β)j
β

⌉, i+1} where αi−(α−β)j
β

is solved from the equation αi= αj−β(j− b),1096

and ⌈αi−(α−β)j
β

⌉ indicates the smallest integer that is not smaller than αi−(α−β)j
β

. By its1097

definition, we guarantee i < b̄ < j.1098
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When b̄≤ b≤ j − 1, we have αi≤ αj − β(j − b), suggesting that players with time1099

budget b ∈ [b̄, j − 1] should switch to the new j-length path to get a higher game1100

entertainment. When i+ 1≤ b < b̄, we have αi > αj − β(j − b), implying that players1101

with time budget b∈ [i+1, b̄) should stay in the original i-length path.1102

Therefore, for players with time budgets strictly between i and j, the change of their1103

game entertainment after the single-path transformation is computed by1104

j−1∑
b=i+1

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b)1105

=
b̄−1∑
b=i+1

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b)1106

+

j−1∑
b=b̄

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b)1107

=0+

j−1∑
b=b̄

{[αj−αi]− [β(j− b)− 0]}m(b)1108

=

j−1∑
b=b̄

((α−β)j+βb−αi)m(b).1109

1110

Following the above discussion, we conclude the game entertainment (i.e., utility from play minus1111

impatience penalty) increment after the single-path transformation ψij to be1112

∆Uij(µ− 1) =
N∑
b=1

{[
u(t∗ψij(Ti,µ−1),b

)−u(t∗Ti,µ−1,b
)
]
−
[
q(t∗ψij(Ti,µ−1),b

|b)− q(t∗Ti,µ−1,b
|b)

]}
m(b)1113

=
N∑
b=j

α(j− i)m(b)+

j−1∑
b=b̄

((α−β)j+βb−αi)m(b).1114

1115

It is straightforward to see that ∆Uij(µ− 1) is independent of µ, which is the capacity of graph1116

Ti,µ−1. Therefore, we use ∆Uij instead of ∆Uij(µ− 1) hearafter.1117

To sum up, we have proven Π(ψij(Ti,µ−1)) − Π(Ti,µ−1) = ∆Uij − ∆Fij(µ − 1) where ∆Uij =1118 ∑N

b=j α(j− i)m(b)+
∑j−1

b=b̄((α− β)j+ βb−αi)m(b) and ∆Fij(µ− 1) = F (j+1, µ)−F (i+1, µ− 1)1119

for i, j,µ∈ [N ], i < j and 1<µ≤ j. The subscripts of ∆Uij and ∆Fij(µ− 1) reflect the changes in1120

the number of vertices. We remark that ∆Uij only depends on i and j, but not on the number of1121

complete paths µ, and ∆Fij(µ− 1) depends on all of i, j, and µ. □1122

B.3 Proof of Lemma 61123

(i) It is straightforward to see that the optimal (j,µ)-SQT T ∗
j,µ where j ∈ [N ] and µ∈ {2, . . . , j}must1124

be constructed by a single-path transformation from a (i, µ−1)-SQT Ti,µ−1 where i∈ {1, . . . , j−1}.1125

Indeed, this (i, µ− 1)-SQT Ti,µ−1 can be retrieved backwards by removing the j-length path. The1126

remaining question is that whether Ti,µ−1 is an optimal (i, µ−1)-SQT (i.e., whether Ti,µ−1 ∈ S∗
i,µ−1).1127
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We prove by contradiction. Suppose T ∗
j,µ =Π(ψij(Ti,µ−1)) and Ti,µ−1 is not an optimal (i, µ)-SQT.1128

We let T ∗
i,µ−1 be an optimal (i, µ− 1)-SQT. Then Π(T ∗

i,µ−1)> Π(Ti,µ−1). Following Lemma 5, we1129

have Π(T ∗
j,µ)−Π(Ti,µ−1) = Π(ψij(Ti,µ−1))−Π(Ti,µ−1) = ∆Uij −∆Fij(µ− 1) and Π(ψij(T

∗
i,µ−1))−1130

Π(T ∗
i,µ−1) =∆Uij −∆Fij(µ− 1). Thus, the two differences Π(T ∗

j,µ)−Π(Ti,µ−1) and Π(ψij(T
∗
i,µ−1))−1131

Π(T ∗
i,µ−1) should be the same, i.e., Π(T ∗

j,µ) − Π(Ti,µ−1) = Π(ψij(T
∗
i,µ−1)) − Π(T ∗

i,µ−1). Because1132

Π(T ∗
i,µ−1)>Π(Ti,µ−1), we must end up with Π(ψij(T

∗
i,µ−1))>Π(T ∗

j,µ). But this contradicts the fact1133

that T ∗
j,µ is an optimal (j,µ)-SQT. We reach a contradiction. Thus, for every optimal (j,µ)-SQT1134

T ∗
j,µ, there must be an optimal (i, µ− 1)-SQT T ∗

i,µ−1 ∈ S∗
i,µ−1 such that T ∗

j,µ = ψij(T
∗
i,µ−1). In other1135

words, the optimal (j,µ)-SQT is created by a single-path transformation from an optimal (i, µ−1)-1136

SQT. □1137

(ii) Suppose ψij(T
∗
i,µ−1) is an optimal (j,µ)-SQT that arises from an optimal (i, µ − 1)-1138

SQT T ∗
i,µ−1 ∈ S∗

i,µ−1. Then ψij(T
∗
i,µ−1) has the maximum expected utility among all (j,µ)-1139

SQT, i.e., Π(ψij(T
∗
i,µ−1)) ≥ Π(ψij(Ti,µ−1)) for any Ti,µ−1 ∈ Si,µ−1. Consider another optimal1140

(i, µ − 1)-SQT T̂ ∗
i,µ−1 ∈ S∗

i,µ−1 (T̂ ∗
i,µ−1 ̸= T ∗

i,µ−1). Since both are optimal (i, µ − 1)-SQT, we have1141

Π(T ∗
i,µ−1) = Π(T̂ ∗

i,µ−1). By Lemma 5, we have Π(ψij(T
∗
i,µ−1)) = Π(T ∗

i,µ−1) + ∆Uij − ∆Fij(µ − 1)1142

and Πi(ψij(T̂
∗
i,µ−1)) = Π(T̂ ∗

i,µ−1) + ∆Uij − ∆Fij(µ − 1). Therefore, Π(ψij(T
∗
i,µ−1)) = Π(T ∗

i,µ−1) +1143

∆Uij −∆Fij(µ − 1) = Π(T̂ ∗
i,µ−1) + ∆Uij −∆Fij(µ − 1) = Πi(ψij(T̂

∗
i,µ−1)). Additionally, it implies1144

Π(ψij(T̂
∗
i,µ−1)) = Π(ψij(T

∗
i,µ−1))≥Π(ψij(Ti,µ−1)) for any Ti,µ−1 ∈ Si,µ−1. That is, ψij(T̂

∗
i,µ−1) is also1145

an optimal (j,µ)-SQT with Π(ψij(T
∗
i,µ−1)) =Πi(ψij(T̂

∗
i,µ−1)). □1146

(iii) We prove by contradiction. Clearly any ψij(T
∗
i,µ−1) where i∈ [j−1] is an element of Sj,µ. Let1147

the graph ψij(T
∗
i,µ−1) with largest expected utility among i ∈ [j − 1] be denoted as T̂j,µ. Suppose1148

T̂j,µ is not an element of S∗
j,µ. It implies that ψij(T

∗
i,µ−1) is not an element of S∗

j,µ for all i∈ [j− 1].1149

Consider an optimal (j,µ)-LQST T ∗
j,µ. Following (i), T ∗

j,µ must arise from an optimal (i, µ −1150

1)-SQT for some i ∈ [j − 1] which we denote as T̃ ∗
i,µ−1. In other words, T ∗

j,µ = ψij(T̃
∗
i,µ−1) and1151

Π(ψij(T̃
∗
i,µ−1))≥Π(Tj,µ) for all Tj,µ ∈ Sj,µ. Following (ii), since both T̃ ∗

i,µ−1 and T ∗
i,µ−1 are optimal1152

(i, µ− 1)-SQT, we have Π(ψij(T̃
∗
i,µ−1)) =Π(ψij(T

∗
i,µ−1)), implying that ψij(T

∗
i,µ−1) must be an opti-1153

mal (j,µ)-SQT as well. We obtain a contradiction. Thus, the graph in {ψij(T ∗
i,µ−1)|i∈ [j−1]} with1154

largest Π value must be an element of S∗
j,µ. □1155

B.4 Proof of Theorem 41156

The proof consists of two parts. We first prove Algorithm 1 outputs the optimal side-quest tree.1157

Then we show Algorithm 1 runs in polynomial time.1158

(i) The optimality of Algorithm 11159

Our algorithm builds on the optimal structure discussed in Theorem 3 as well as Lemmas 4-6.1160

By Lemma 5 and (i) of Lemma 6, Algorithm 1 calculates all possible objective values of the1161

optimal (j,µ)-SQT recursively in line 9 using Πi,j,µ =Πi,j +∆Uij −∆Fij(µ− 1), where Πi,j, ∆Uij1162
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and Fij(µ−1) are given constants. By (ii) of Lemma 6, when there are multiple optimal (i, µ−1)-1163

SQTs, the (j,µ)-SQTs constructed by any optimal (i, µ− 1)-SQTs are optimal sharing the same1164

objective value. Therefore, we can select any optimal (i, µ − 1)-SQT to construct the optimal1165

(j,µ)-SQT.1166

Next, Algorithm 1 computes the objective value of the optimal (j,µ)-SQT in line 11 by choosing1167

the maximum Πi,j,µ for i∈ [j− 1]. It is ensured by (iii) of Lemma 6 that the (j,µ)-SQT in the set1168

{ψij(T ∗
i,µ−1)|i∈ [j−1]} with the maximum objective value is an optimal (j,µ)-SQT. The algorithm1169

then constructs the optimal (j,µ)-SQT from the (i∗, µ− 1)-SQT in lines 12–14 for any optimal1170

(j,µ)-SQT where j ∈ [N ] and µ∈ [min{|B|, j}].1171

Lemma 4 indicates that the optimal side quest tree is an optimal (j∗, µ∗)-SQT whose objective1172

value is the maximum among the optimal (j,µ)-SQTs where j ∈ [N ] and µ ∈ [min{|B|, j}]. Algo-1173

rithm 1 finds the optimal side quest tree T ∗ in line 18 by comparing the objective values of the1174

optimal j-LSQT for all j ∈ [N ] and µ∈ [min{|B|, j}].1175

(ii) Computational complexity of the algorithm1176

Algorithm 1 has O(N |B|) stages. At stage j ∈ [N ] and µ ∈ [min{|B|, j}], the optimal (j,µ)-SQT1177

is computed. It takes O(N) iterations to compute the possible objective value of the optimal (j,µ)-1178

SQT where µ > 1. Hence, the computational complexity of Algorithm 1 is O(N 2|B|), which is in1179

polynomial time. □1180
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